Hippocampal cellular loss after brief hypotension.

Abstract

Brief episodes of hypotension have been shown to cause acute brain damage in animal models. We used a rat hemorrhagic shock model to assess functional outcome and to measure the relative neuronal damage at 1, 4 and 14 days post-injury (3 min of hypotension). All rats underwent a neurological assessment including motor abilities, sensory system evaluation and retrograde memory at post-hypotensive insult. Brains were harvested and stained for Fluorojade C and Nissl. Stereology was used to analyze Fluorojade C and Nissl stained brain sections to quantitatively detect neuronal damage after the hypotensive insult. Statistical analysis was performed using Graphpad Prism 5 with the Bonferroni test at a 95% confidence interval after ANOVA. A Mixed Effect Model was used for the passive avoidance evaluation. Stereologically counted fluorojade positive cells in the hippocampus revealed significant differences in neuronal cell injury between control rats and rats that received 3 min of hypotension one day after insult. Quantification of Nissl positive neuronal cells showed a significant decrease in the number hippocampal cells at day 14. No changes in frontal cortical cells were evident at any time, no significative changes in neurological assessments as well. Our observations show that brief periods of hemorrhage-induced hypotension actually result in neuronal cell damage in Sprague-Dawley rats even if the extent of neuronal damage that was incurred was not significant enough to cause changes in motor or sensory behavior.

Department

Description

Provenance

Citation

Published Version (Please cite this version)

10.1186/2193-1801-2-23

Publication Info

Chaparro, Rafael E, Carolina Quiroga, Gerardo Bosco, Diana Erasso, Alessandro Rubini, Devanand Mangar, Andrea Parmagnani, Enrico M Camporesi, et al. (2013). Hippocampal cellular loss after brief hypotension. SpringerPlus, 2(1). p. 23. 10.1186/2193-1801-2-23 Retrieved from https://hdl.handle.net/10161/26348.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Chaparro

Eduardo Chaparro

Research Scholar

Dr. Chaparro earned his Medical Doctorate from Javeriana University in Bogotá, Colombia, and his Ph.D. in Medical Sciences with a specialization in Physiology, Pharmacology, and Neuroscience from the University of South Florida (USF) in Tampa, Florida. During his graduate studies at USF’s Anesthesiology Department, he investigated the effects of anesthetics and anti-apoptotic compounds on brain ischemia.

Following the completion of his Ph.D., Dr. Chaparro pursued post-doctoral training at Duke University’s Multidisciplinary Neuroprotection Laboratory. Here, he focused on testing drugs and devices in various animal models of neurological conditions. His work received special recognition for the successful testing of the first hepatocyte growth factor mimetic in an animal model of transient cerebral ischemia. Additionally, he successfully tested an FDA-approved vestibular stimulator for human use.

Dr. Chaparro then joined the Cerebrovascular and Skull Base Division at Duke University’s Department of Neurosurgery. His research has been dedicated to developing treatments for neurovascular conditions such as stroke, moyamoya disease, aneurysms, intracerebral hemorrhages, intravascular stent thrombogenicity, traumatic brain injury, and epilepsy. He currently serves as the Director of the Neurovascular Laboratory.

An entrepreneur at heart, Dr. Chaparro’s interest in hypothermia as a treatment for neuronal inflammation led him to patent a brain-cooling device, which has been successfully tested in non-human primates. He founded Neurocool, a startup aimed at further developing this prototype. As Medical Director, he is working towards FDA approval and the development of a human-compatible device to aid patients with central nervous system inflammatory conditions.


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.