De novo design and molecular assembly of a transmembrane diporphyrin-binding protein complex.

Abstract

The de novo design of membrane proteins remains difficult despite recent advances in understanding the factors that drive membrane protein folding and association. We have designed a membrane protein PRIME (PoRphyrins In MEmbrane) that positions two non-natural iron diphenylporphyrins (Fe(III)DPP's) sufficiently close to provide a multicentered pathway for transmembrane electron transfer. Computational methods previously used for the design of multiporphyrin water-soluble helical proteins were extended to this membrane target. Four helices were arranged in a D(2)-symmetrical bundle to bind two Fe(II/III) diphenylporphyrins in a bis-His geometry further stabilized by second-shell hydrogen bonds. UV-vis absorbance, CD spectroscopy, analytical ultracentrifugation, redox potentiometry, and EPR demonstrate that PRIME binds the cofactor with high affinity and specificity in the expected geometry.

Department

Description

Provenance

Citation

Published Version (Please cite this version)

10.1021/ja107487b

Publication Info

Korendovych, Ivan V, Alessandro Senes, Yong Ho Kim, James D Lear, H Christopher Fry, Michael J Therien, J Kent Blasie, F Ann Walker, et al. (2010). De novo design and molecular assembly of a transmembrane diporphyrin-binding protein complex. J Am Chem Soc, 132(44). pp. 15516–15518. 10.1021/ja107487b Retrieved from https://hdl.handle.net/10161/4046.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Therien

Michael J. Therien

William R. Kenan, Jr. Distinguished Professor of Chemistry

Our research involves the synthesis of compounds, supramolecular assemblies, nano-scale objects, and electronic materials with unusual ground-and excited-state characteristics, and interrogating these structures using state-of-the-art transient optical, spectroscopic, photophysical, and electrochemical methods. Over chemical dimensions that span molecules to materials, we probe experimental and theoretical aspects of charge migration reactions and ultrafast electron transfer processes. Insights into the structure-property relationships of molecular, nanoscale, and macroscopic materials allow us to fabricate polarizable and hyperpolarizable chromophores, structures for molecular electronics applications, optical limiters, and a wide range of other electrooptic and photonic materials that include novel conducting polymers, structures for solar energy conversion, and new platforms for in vivo optical imaging. Other efforts in our laboratory involve the elaborating de novo electron- and energy-transfer proteins, interrogating catalytic redox reactions, designing catalysts for small molecule activation, and developing new tools to manipulate nanoscale structures.


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.