Evolution of the sex-related locus and genomic features shared in microsporidia and fungi.


BACKGROUND: Microsporidia are obligate intracellular, eukaryotic pathogens that infect a wide range of animals from nematodes to humans, and in some cases, protists. The preponderance of evidence as to the origin of the microsporidia reveals a close relationship with the fungi, either within the kingdom or as a sister group to it. Recent phylogenetic studies and gene order analysis suggest that microsporidia share a particularly close evolutionary relationship with the zygomycetes. METHODOLOGY/PRINCIPAL FINDINGS: Here we expanded this analysis and also examined a putative sex-locus for variability between microsporidian populations. Whole genome inspection reveals a unique syntenic gene pair (RPS9-RPL21) present in the vast majority of fungi and the microsporidians but not in other eukaryotic lineages. Two other unique gene fusions (glutamyl-prolyl tRNA synthetase and ubiquitin-ribosomal subunit S30) that are present in metazoans, choanoflagellates, and filasterean opisthokonts are unfused in the fungi and microsporidians. One locus previously found to be conserved in many microsporidian genomes is similar to the sex locus of zygomycetes in gene order and architecture. Both sex-related and sex loci harbor TPT, HMG, and RNA helicase genes forming a syntenic gene cluster. We sequenced and analyzed the sex-related locus in 11 different Encephalitozoon cuniculi isolates and the sibling species E. intestinalis (3 isolates) and E. hellem (1 isolate). There was no evidence for an idiomorphic sex-related locus in this Encephalitozoon species sample. According to sequence-based phylogenetic analyses, the TPT and RNA helicase genes flanking the HMG genes are paralogous rather than orthologous between zygomycetes and microsporidians. CONCLUSION/SIGNIFICANCE: The unique genomic hallmarks between microsporidia and fungi are independent of sequence based phylogenetic comparisons and further contribute to define the borders of the fungal kingdom and support the classification of microsporidia as unusual derived fungi. And the sex/sex-related loci appear to have been subject to frequent gene conversion and translocations in microsporidia and zygomycetes.





Published Version (Please cite this version)


Publication Info

Lee, Soo Chan, Nicolas Corradi, Sylvia Doan, Fred S Dietrich, Patrick J Keeling and Joseph Heitman (2010). Evolution of the sex-related locus and genomic features shared in microsporidia and fungi. PLoS One, 5(5). p. e10539. 10.1371/journal.pone.0010539 Retrieved from https://hdl.handle.net/10161/4539.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.



Fred Samuel Dietrich

Associate Professor of Molecular Genetics and Microbiology

My laboratory is interested in fungal genomics.

In particular we use genomic sequencing of fungal strains and species in comparative analysis. Starting with the sequencing of Saccharomyces cerevisiae strain S288C, I have been involved in the genome sequencing and annotation of Ashbya gossypiiCryptococcus neoformans var. grubii and ~100 additional S. cerevisiae strains. We currently use Illumina paired end and mate paired sequencing, as this is at presently the most cost effective widely used technology capable of generating high accuracy, zero gap whole genome sequences. The 100-genomes S. cerevisiae data as well as the fully updated fully annotated A. gossypii sequence (Genbank numbers AE016814-AE016820), which spans all seven chromosomes from telomere to telomere, were generated using Illumina data. In my laboratory we strive to utilize comparative genomics data to understand aspects of basic fungal biology. Some of our specific areas of interest are filamentous growth, mapping of complex traits, horizontal gene transfer, and identification of RNA coding genes. This work involves a combination of experimental work and bioinformatics analysis. Research in S. cerevisiae has greatly benefitted from an accurate, annotated S. cerevisiae reference genome, and that research into the tremendous diversity in this organism will similarly benefit from the availability of a large number of accurate, fully annotated genome sequences. The use of genomic information to better understand the biology of these organisms, and this is what students in my laboratory generally work on.

What is the set of genes found in a pathogenic fungus such as Cryptococcus?

Our interest in this human pathogen is to expand beyond looking at one isolate and to investigate the diversity in the population. Are there genes found in some Cryptococcus neoformans isolates but not in others? Are there regions of the genome or individual genes which are highly diverged between Cryptococcus isolates? Efforts are now underway at Stanford University to sequence the genome of the JEC21 strain of Cryptococcus. This is a strain that has been agreed upon by the community of Cryptococcus researchers as a reference strain. Obtaining the DNA sequence of this strain is only the start however. From that sequence identifying the complete set of genes will be a considerable challenge requiring both bioinformatic as well as experimental tools. While this work on gene identification is going on we plan on addressing the question of how much do other Cryptococcus isolates differ from JEC21.

What is the set of genes in humans?

The complete DNA sequence of human and mouse will become available soon. This does not mean that we will know the complete set of human or mouse genes. Our current state of knowledge does not allow us to accurately predict human genes directly from DNA sequence. We are interested in applying to the human genome some of the experimental and bioinformatic tools we are developing and utilizing in fungal systems.

Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.