Effects of Initial Eye Position on Saccades Evoked by Microstimulation in the Primate Superior Colliculus: Implications for Models of the SC Read-Out Process.
Date
2011-01-19
Authors
Journal Title
Journal ISSN
Volume Title
Repository Usage Stats
views
downloads
Citation Stats
Abstract
The motor layers of the superior colliculus (SC) are thought to specify saccade amplitude and direction, independent of initial eye position. However, recent evidence suggests that eye position can modulate the level of activity of SC motor neurons. In this study, we tested whether initial eye position has an effect on microstimulation-evoked saccade amplitude. High (>300 Hz) and low (<300 Hz) frequency microstimulation was applied to 30 sites in the rostral part of the SC of two monkeys while they fixated one of six different locations. We found that the amplitude of the evoked saccades decreased with more contralateral initial eye positions. This effect was more pronounced in low frequency- compared to high frequency-evoked saccades, although it was present for both. Replication of these findings in head-free experiments showed that the effect of initial eye position was not due to physical constraints imposed by the oculomotor range. In addition to the effect of eye position on saccade amplitude, we also observed an increase in saccade latency and a decrease in the probability that microstimulation would evoke a saccade for low frequency stimulation at more contralateral eye positions. These findings suggest that an eye position signal can contribute to the read-out of the SC. Models of the saccadic pulse-step generator may need revision to incorporate an eye position modulation at the input stage.
Type
Department
Description
Provenance
Citation
Permalink
Published Version (Please cite this version)
Publication Info
Groh, Jennifer M (2011). Effects of Initial Eye Position on Saccades Evoked by Microstimulation in the Primate Superior Colliculus: Implications for Models of the SC Read-Out Process. Frontiers in integrative neuroscience, 4(JANUARFY 2011). p. 130. 10.3389/fnint.2010.00130 Retrieved from https://hdl.handle.net/10161/17897.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
Scholars@Duke
Jennifer M. Groh
Research in my laboratory concerns how sensory and motor systems work together, and how neural representations play a combined role in sensorimotor and cognitive processing (embodied cognition).
Most of our work concerns the interactions between vision and hearing. We frequently perceive visual and auditory stimuli as being bound together if they seem likely to have arisen from a common source. That's why we tend not to notice that the speakers on TV sets or in movie theatres are located beside, and not behind, the screen. Research in my laboratory is devoted to investigating the question of how the brain coordinates the information arising from the ears and eyes. Our findings challenge the historical view of the brain's sensory processing as being automatic, autonomous, and immune from outside influence. We have recently established that neurons in the auditory pathway (inferior colliculus, auditory cortex) alter their responses to sound depending on where the eyes are pointing. This finding suggests that the different sensory pathways meddle in one another's supposedly private affairs, making their respective influences felt even at very early stages of processing. The process of bringing the signals from two different sensory pathways into a common frame of reference begins at a surprisingly early point along the primary sensory pathways.
Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.