The strontium isotope fingerprint of phosphate rocks mining.
Date
2022-12
Journal Title
Journal ISSN
Volume Title
Citation Stats
Abstract
High concentrations of metal(loid)s in phosphate rocks and wastewater associated with phosphate mining and fertilizer production operations pose potential contamination risks to water resources. Here, we propose using Sr isotopes as a tracer to determine possible water quality impacts induced from phosphate mining and fertilizers production. We utilized a regional case study in the northeastern Negev in Israel, where salinization of groundwater and a spring have been attributed to historic leaking and contamination from an upstream phosphate mining wastewater. This study presents a comprehensive dataset of major and trace elements, combined with Sr isotope analyses of the Rotem phosphate rocks, local aquifer carbonate rocks, wastewater from phosphate operation in Mishor Rotem Industries, saline groundwater suspected to be impacted by Rotem mining activities, and two types of background groundwater from the local Judea Group aquifer. The results of this study indicate that trace elements that are enriched in phosphate wastewater were ubiquitously present in the regional and non-contaminated groundwater at the same levels as detected in the impacted waters, and thus cannot be explicitly linked to the phosphate wastewater. The 87Sr/86Sr ratios of phosphate rocks (0.707794 ± 5 × 10-5) from Mishor Rotem Industries were identical to that of associated wastewater (0.707789 ± 3 × 10-5), indicating that the Sr isotopic fingerprint of phosphate rocks is preserved in its wastewater. The 87Sr/86Sr (0.707949 ± 3 × 10-6) of the impacted saline groundwater were significantly different from those of the Rotem wastewater and the background saline groundwater, excluding phosphate mining effluents as the major source for contamination of the aquifer. Instead, the 87Sr/86Sr ratio of the impacted water was similar to the composition of brines from the Dead Sea, which suggests that the salinization was derived primarily from industrial Dead Sea effluents with distinctive Sr isotope and geochemical fingerprints.
Type
Department
Description
Provenance
Subjects
Citation
Permalink
Published Version (Please cite this version)
Publication Info
Vengosh, Avner, Zhen Wang, Gordon Williams, Robert Hill, Rachel M Coyte and Gary S Dwyer (2022). The strontium isotope fingerprint of phosphate rocks mining. The Science of the total environment, 850. p. 157971. 10.1016/j.scitotenv.2022.157971 Retrieved from https://hdl.handle.net/10161/26628.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
Scholars@Duke
Avner Vengosh
Avner Vengosh is a Distinguished Professor and Nicholas Chair of Environmental Quality at the Nicholas School of the Environment. He is the chair of the Division of Earth and Climate Sciences. Professor Vengosh and his team have studied the energy-water nexus, conducting pioneer research on the impact of hydraulic fracturing and coal ash disposal on the quantity and quality of water resources in the U.S. and China. He has also investigated the sources and mechanisms of water contamination in numerous countries across the globe, including salinity and radioactivity in the Middle East, uranium in India, fluoride in Eastern Africa, arsenic in Vietnam, and hexavalent chromium in North Carolina and China. As part of these studies, his team has developed novel geochemical and isotopic tracers that are used as fingerprints to delineate the sources of water contamination and evaluate potential risks for human health. Currently, his team is engaged in studying phosphate rocks geochemistry and the impact of fertilizers on soil and water quality, unconventional sources of critical raw materials, and potential environmental effects of lithium mining from hard rocks and brines. He is a Fellow of the Geological Society of America (GSA) and International Association of Geochemistry (IAGC). In 2019, 2020 and 2021 he was recognized as one of the Web of Science Highly Cited Researchers. He serves as an Editor of GeoHealth and on the editorial board of the journal Environmental Science and Technology. He has published 171 scientific papers in leading international journals. His recent cross-disciplinary book “Water Quality Impacts of the Energy-Water Nexus” (Cambridge University Press, 2020) provides an integrated assessment of the different scientific and policy tools around the energy-water nexus. It focuses on how water use, and wastewater and waste solids produced from fossil fuel energy production affect water quality and quantity. Summarizing cutting edge research, the book describes the scientific methods for detecting contamination sources in the context of policy and regulations.
Gordon Williams
Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.