RNA-Based Vaccines in Cancer Immunotherapy.

Loading...
Thumbnail Image

Date

2015

Journal Title

Journal ISSN

Volume Title

Repository Usage Stats

216
views
242
downloads

Citation Stats

Attention Stats

Abstract

RNA vaccines traditionally consist of messenger RNA synthesized by in vitro transcription using a bacteriophage RNA polymerase and template DNA that encodes the antigen(s) of interest. Once administered and internalized by host cells, the mRNA transcripts are translated directly in the cytoplasm and then the resulting antigens are presented to antigen presenting cells to stimulate an immune response. Alternatively, dendritic cells can be loaded with either tumor associated antigen mRNA or total tumor RNA and delivered to the host to elicit a specific immune response. In this review, we will explain why RNA vaccines represent an attractive platform for cancer immunotherapy, discuss modifications to RNA structure that have been developed to optimize mRNA vaccine stability and translational efficiency, and describe strategies for nonviral delivery of mRNA vaccines, highlighting key preclinical and clinical data related to cancer immunotherapy.

Department

Description

Provenance

Citation

Published Version (Please cite this version)

10.1155/2015/794528

Publication Info

McNamara, Megan A, Smita K Nair and Eda K Holl (2015). RNA-Based Vaccines in Cancer Immunotherapy. J Immunol Res, 2015. p. 794528. 10.1155/2015/794528 Retrieved from https://hdl.handle.net/10161/14926.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Nair

Smita K Nair

Professor in Surgery

I have 22 years of experience in the field of cancer vaccines and immunotherapy and I am an accomplished T cell immunologist. Laboratory website:
https://surgery.duke.edu/immunology-inflammation-immunotherapy-laboratory

Current projects in the Nair Laboratory:
1] Dendritic cell vaccines using tumor-antigen encoding RNA (mRNA, total tumor RNA, amplified tumor mRNA)
2] Local immune receptor modulation using mRNA that encodes for antibodies, receptor-ligands, cytokines, chemokines and toll-like receptors (current target list: CTLA4, GITR, PD1, TIM3, LAG3, OX40 and 41BB)
3] Combination therapies for cancer: cytotoxic therapy (radiation, chemo and oncolytic poliovirus therapy) with dendritic cell-based vaccines and immune checkpoint blockade
4] Adoptive T cell therapy using tumor RNA-transfected dendritic cells to expand tumor-specific T cells ex vivo
5] Adoptive T cell therapy using PSMA CAR (chimeric antigen receptor) RNA-transfected T cells
6] Direct injection of tumor antigen encoding RNA (targeting antigens to dendric cells in vivo using nanoparticles and aptamers)

Holl

Eda K Holl

Adjunct Assistant Professor in the Department of Surgery

Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.