Initial Conditions of Bulk Matter in Ultrarelativistic Nuclear Collisions

Loading...
Thumbnail Image

Date

2019

Journal Title

Journal ISSN

Volume Title

Repository Usage Stats

175
views
47
downloads

Abstract

Dynamical models based on relativistic fluid dynamics provide a powerful tool to extract the properties of the strongly-coupled quark-gluon plasma (QGP) produced in the first ${\sim}10^{-23}$ seconds of an ultrarelativistic nuclear collision. The largest source of uncertainty in these model-to-data extractions is the choice of theoretical initial conditions used to model the distribution of energy or entropy at the hydrodynamic starting time.

Descriptions of the QGP initial conditions are generally improved through iterative cycles of testing and refinement. Individual models are compared to experimental data; the worst models are discarded and best models retained. Consequently, successful traits (assumptions) are passed on to subsequent generations of the theoretical landscape. This so-called bottom-up approach correspondingly describes a form of theoretical trial and error, where each trial proposes a first principles solution to the problem at hand.

A natural complement to this strategy is to employ a top-down or data driven approach which is able to reverse engineer properties of the initial conditions from the constraints imposed by the experimental data. In this dissertation, I motivate and develop a parametric model for initial energy and entropy deposition in ultrarelativistic nuclear collisions which is based on a family of functions known as the generalized means. The ansatz closely mimics the variability of first-principle calculations and hence serves as a reasonable parametric form for exploring QGP energy and entropy deposition assuming imperfect knowledge of the complex physical processes which lead to its creation.

With the parametric model in hand, I explore broad implications of the proposed ansatz using recently adapted Bayesian methods to simultaneously constrain properties of the initial conditions and QGP medium using experimental data from the Large Hadron Collider. These analyses show that the QGP initial conditions are highly constrained by available measurements and provide evidence of a unified hydrodynamic description of small and large nuclear collision systems.

Department

Description

Provenance

Citation

Citation

Moreland, John Scott (2019). Initial Conditions of Bulk Matter in Ultrarelativistic Nuclear Collisions. Dissertation, Duke University. Retrieved from https://hdl.handle.net/10161/18797.

Collections


Except where otherwise noted, student scholarship that was shared on DukeSpace after 2009 is made available to the public under a Creative Commons Attribution / Non-commercial / No derivatives (CC-BY-NC-ND) license. All rights in student work shared on DukeSpace before 2009 remain with the author and/or their designee, whose permission may be required for reuse.