Progress in intra-articular therapy.

Loading...
Thumbnail Image

Date

2014-01

Journal Title

Journal ISSN

Volume Title

Repository Usage Stats

370
views
879
downloads

Citation Stats

Abstract

Diarthrodial joints are well suited to intra-articular injection, and the local delivery of therapeutics in this fashion brings several potential advantages to the treatment of a wide range of arthropathies. Possible benefits over systemic delivery include increased bioavailability, reduced systemic exposure, fewer adverse events, and lower total drug costs. Nevertheless, intra-articular therapy is challenging because of the rapid egress of injected materials from the joint space; this elimination is true of both small molecules, which exit via synovial capillaries, and of macromolecules, which are cleared by the lymphatic system. In general, soluble materials have an intra-articular dwell time measured only in hours. Corticosteroids and hyaluronate preparations constitute the mainstay of FDA-approved intra-articular therapeutics. Recombinant proteins, autologous blood products and analgesics have also found clinical use via intra-articular delivery. Several alternative approaches, such as local delivery of cell and gene therapy, as well as the use of microparticles, liposomes, and modified drugs, are in various stages of preclinical development.

Department

Description

Provenance

Citation

Published Version (Please cite this version)

10.1038/nrrheum.2013.159

Publication Info

Evans, Christopher H, Virginia B Kraus and Lori A Setton (2014). Progress in intra-articular therapy. Nat Rev Rheumatol, 10(1). pp. 11–22. 10.1038/nrrheum.2013.159 Retrieved from https://hdl.handle.net/10161/8166.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Kraus

Virginia Byers Kraus

Mary Bernheim Distinguished Professor of Medicine

Virginia Byers Kraus, MD, PhD, is the Mary Bernheim Distinguished Professor of Medicine, Professor of Orthopaedic Surgery, Professor of Pathology and a faculty member of the Duke Molecular Physiology Institute in the Duke University School of Medicine. She is a practicing Rheumatologist with over 30 years’ experience in translational musculoskeletal research focusing on osteoarthritis, the most common of all arthritides. She trained at Brown University (ScB 1979), Duke University (MD 1982, PhD 1993) and the Duke University School of Medicine (Residency in Internal Medicine and Fellowship in Rheumatology). Her career has focused on elucidating osteoarthritis pathogenesis and translational research into the discovery and validation of biomarkers for early osteoarthritis detection, prediction of progression, monitoring of disease status, and facilitation of therapeutic developments. She is co-PI of the Foundation for NIH Biomarkers Consortium Osteoarthritis project. Trained as a molecular biologist and a Rheumatologist, she endeavors to study disease from bedside to bench.

Setton

Lori A. Setton

Adjunct Professor of Biomedical Engineering

Research in Setton's laboratory is focused on the role of mechanical factors in the degeneration and repair of soft tissues of the musculoskeletal system, including the intervertebral disc, articular cartilage and meniscus. Work in the Laboratory is focused on engineering and evaluating materials for tissue regeneration and drug delivery. Studies combining engineering and biology are also used to determine the role of mechanical factors to promote and control healing of cartilaginous tissues. Research in the Laboratory is funded by The National Institutes of Health, The Coulter Foundation and The North Carolina Biotechnology Center.


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.