On transverse invariants from Khovanov homology

dc.contributor.author

Lipshitz, R

dc.contributor.author

Ng, L

dc.contributor.author

Sarkar, S

dc.date.accessioned

2018-12-11T15:19:47Z

dc.date.available

2018-12-11T15:19:47Z

dc.date.issued

2015

dc.date.updated

2018-12-11T15:19:46Z

dc.description.abstract

© European Mathematical Society. In [31], O. Plamenevskaya associated to each transverse knot K an element of the Khovanov homology of K. In this paper, we give two re_nements of Plamenevskaya’s invariant, one valued in Bar-Natan’s deformation (from [2]) of the Khovanov complex and another as a cohomotopy element of the Khovanov spectrum (from [20]). We show that the first of these refinements is invariant under negative flypes and SZ moves; this implies that Plamenevskaya’s class is also invariant under these moves. We go on to show that for small-crossing transverse knots K, both re_nements are determined by the classical invariants of K.

dc.identifier.issn

1663-487X

dc.identifier.issn

1664-073X

dc.identifier.uri

https://hdl.handle.net/10161/17781

dc.publisher

European Mathematical Society Publishing House

dc.relation.ispartof

Quantum Topology

dc.relation.isversionof

10.4171/QT/69

dc.subject

math.GT

dc.subject

math.GT

dc.subject

57M25, 57R17

dc.title

On transverse invariants from Khovanov homology

dc.type

Journal article

pubs.begin-page

475

pubs.end-page

513

pubs.issue

3

pubs.organisational-group

Trinity College of Arts & Sciences

pubs.organisational-group

Duke

pubs.organisational-group

Mathematics

pubs.publication-status

Published

pubs.volume

6

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1303.6371v1.pdf
Size:
463.1 KB
Format:
Adobe Portable Document Format