Convergence of a Force-Based Hybrid Method in Three Dimensions
Date
2013-01-01
Journal Title
Journal ISSN
Volume Title
Repository Usage Stats
views
downloads
Citation Stats
Abstract
We study a force-based hybrid method that couples an atomistic model with the Cauchy-Born elasticity model. We show that the proposed scheme converges to the solution of the atomistic model with second-order accuracy, since the ratio between lattice parameter and the characteristic length scale of the deformation tends to 0. Convergence is established for the three-dimensional system without defects, with general finite-range atomistic potential and simple lattice structure. The proof is based on consistency and stability analysis. General tools for stability analysis are developed in the framework opseudodifference operators in arbitrary dimensions. © 2012 Wiley Periodicals, Inc.
Type
Department
Description
Provenance
Subjects
Citation
Permalink
Published Version (Please cite this version)
Publication Info
Lu, J, and P Ming (2013). Convergence of a Force-Based Hybrid Method in Three Dimensions. Communications on Pure and Applied Mathematics, 66(1). pp. 83–108. 10.1002/cpa.21429 Retrieved from https://hdl.handle.net/10161/14088.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
Scholars@Duke

Jianfeng Lu
Jianfeng Lu is an applied mathematician interested in mathematical analysis and algorithm development for problems from computational physics, theoretical chemistry, materials science, machine learning, and other related fields.
More specifically, his current research focuses include:
High dimensional PDEs; generative models and sampling methods; control and reinforcement learning; electronic structure and many body problems; quantum molecular dynamics; multiscale modeling and analysis.
Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.