Conductance of a dissipative quantum dot: Nonequilibrium crossover near a non-Fermi-liquid quantum critical point

Loading...
Thumbnail Image

Date

2021-10-25

Journal Title

Journal ISSN

Volume Title

Repository Usage Stats

12
views
19
downloads

Citation Stats

Abstract

We find the nonlinear conductance of a dissipative resonant level in the nonequilibrium steady state near its quantum critical point. The system consists of a spin-polarized quantum dot connected to two resistive leads that provide ohmic dissipation. We focus on the crossover from the strong-coupling, non-Fermi-liquid regime to the weak-coupling, Fermi-liquid ground state, a crossover driven by the instability of the quantum critical point to hybridization asymmetry or detuning of the level in the dot. We show that the crossover properties are given by tunneling through an effective single barrier described by the boundary sine-Gordon model. The nonlinear conductance is then obtained from thermodynamic Bethe ansatz results in the literature, which were developed to treat tunneling in a Luttinger liquid. The current-voltage characteristics are thus found for any value of the resistance of the leads. For the special case of lead resistance equal to the quantum resistance, we find mappings onto, first, the two-channel Kondo model and, second, an effectively noninteracting model from which the nonlinear conductance is found analytically. A key feature of the general crossover function is that the nonequilibrium crossover driven by applied bias is different from the crossover driven by temperature—we find that the nonequilibrium crossover is substantially sharper. Finally, we compare to experimental results for both the bias and temperature crossovers: the agreement is excellent.

Department

Description

Provenance

Citation

Published Version (Please cite this version)

10.1103/physrevb.104.165423

Publication Info

Zhang, Gu, E Novais and Harold U Baranger (2021). Conductance of a dissipative quantum dot: Nonequilibrium crossover near a non-Fermi-liquid quantum critical point. Physical Review B, 104(16). pp. 165423–165423. 10.1103/physrevb.104.165423 Retrieved from https://hdl.handle.net/10161/26447.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Baranger

Harold U. Baranger

Professor of Physics

The broad focus of Prof. Baranger's group is quantum open systems at the nanoscale, particularly the generation of correlation between particles in such systems. Fundamental interest in nanophysics-- the physics of small, nanometer scale, bits of solid-- stems from the ability to control and probe systems on length scales larger than atoms but small enough that the averaging inherent in bulk properties has not yet occurred. Using this ability, entirely unanticipated phenomena can be uncovered on the one hand, and the microscopic basis of bulk phenomena can be probed on the other. Additional interest comes from the many links between nanophysics and nanotechnology. Within this thematic area, our work ranges from projects trying to nail down realistic behavior in well-characterized systems, to more speculative projects reaching beyond regimes investigated experimentally to date.

Correlations between particles are a central issue in many areas of condensed matter physics, from emergent many-body phenomena in complex materials, to strong matter-light interactions in quantum information contexts, to transport properties of single molecules. Such correlations, for either electrons or bosons (photons, plasmons, phonons,…), underlie key phenomena in nanostructures. Using the exquisite control of nanostructures now possible, experimentalists will be able to engineer correlations in nanosystems in the near future. Of particular interest are cases in which one can tune the competition between different types of correlation, or in which correlation can be tunably enhanced or suppressed by other effects (such as confinement or interference), potentially causing a quantum phase transition-- a sudden, qualitative change in the correlations in the system.

My recent work has addressed correlations in both electronic systems (quantum wires and dots) and photonic systems (photon waveguides). We have focused on 3 different systems: (1) qubits coupled to a photonic waveguide, (2) quantum dots in a dissipative environment, and (3) interfaces between graphene and a superconductor, particularly when graphene is in the quantum Hall state. The methods used are both analytical and numerical, and are closely linked to experiments.


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.