Generation of high curvature membranes mediated by direct endophilin bilayer interactions.

Loading...
Thumbnail Image

Date

2001-10-15

Journal Title

Journal ISSN

Volume Title

Repository Usage Stats

108
views
102
downloads

Citation Stats

Abstract

Endophilin 1 is a presynaptically enriched protein which binds the GTPase dynamin and the polyphosphoinositide phosphatase synptojanin. Perturbation of endophilin function in cell-free systems and in a living synapse has implicated endophilin in endocytic vesicle budding (Ringstad, N., H. Gad, P. Low, G. Di Paolo, L. Brodin, O. Shupliakov, and P. De Camilli. 1999. Neuron. 24:143-154; Schmidt, A., M. Wolde, C. Thiele, W. Fest, H. Kratzin, A.V. Podtelejnikov, W. Witke, W.B. Huttner, and H.D. Soling. 1999. Nature. 401:133-141; Gad, H., N. Ringstad, P. Low, O. Kjaerulff, J. Gustafsson, M. Wenk, G. Di Paolo, Y. Nemoto, J. Crun, M.H. Ellisman, et al. 2000. Neuron. 27:301-312). Here, we show that purified endophilin can directly bind and evaginate lipid bilayers into narrow tubules similar in diameter to the neck of a clathrin-coated bud, providing new insight into the mechanisms through which endophilin may participate in membrane deformation and vesicle budding. This property of endophilin is independent of its putative lysophosphatydic acid acyl transferase activity, is mediated by its NH2-terminal region, and requires an amino acid stretch homologous to a corresponding region in amphiphysin, a protein previously shown to have similar effects on lipid bilayers (Takei, K., V.I. Slepnev, V. Haucke, and P. De Camilli. 1999. Nat. Cell Biol. 1:33-39). Endophilin cooligomerizes with dynamin rings on lipid tubules and inhibits dynamin's GTP-dependent vesiculating activity. Endophilin B, a protein with homology to endophilin 1, partially localizes to the Golgi complex and also deforms lipid bilayers into tubules, underscoring a potential role of endophilin family members in diverse tubulovesicular membrane-trafficking events in the cell.

Department

Description

Provenance

Citation

Published Version (Please cite this version)

10.1083/jcb.200107075

Publication Info

Farsad, K, N Ringstad, K Takei, SR Floyd, K Rose and P De Camilli (2001). Generation of high curvature membranes mediated by direct endophilin bilayer interactions. J Cell Biol, 155(2). pp. 193–200. 10.1083/jcb.200107075 Retrieved from https://hdl.handle.net/10161/15939.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Floyd

Scott Richard Floyd

Gary Hock and Lyn Proctor Associate Professor of Radiation Oncology

Diseases of the brain carry particular morbidity and mortality, given the fundamental function of the brain for human life and quality of life. Disease of the brain are also particularly difficult to study, given the complexity of the brain. Model systems that capture this complexity, but still allow for experiments to test therapies and mechanisms of disease are badly needed.  We have developed an experimental model system that uses slices made from rat and mouse brains to create a test platform to research new treatments for brain diseases such as stroke, Alzheimer's disease, Huntington's disease and brain tumors. This model system reduces the number of experimental animals used, and streamlines experiments so that final testing in laboratory animals is more efficient. We use this brainslice system and limited numbers of experimental animals to test drugs and genetic pathways to treat stroke, Alzheimer's disease, Huntington's disease and brain tumors. As many brain tumors are treated with radiation therapy, we have a particular interest in the cellular response to DNA damage caused by radiation. DNA damage signaling and repair are fundamental processes necessary for cells to maintain genomic integrity. Problems with these processes can lead to cancer. As many cancer cells have altered DNA damage and repair pathways, we can apply DNA damage as cancer therapy. Our knowledge of how normal and neoplastic cells handle DNA damage is still incomplete. A deeper understanding can lead to improved cancer treatment, and to better protection from the harmful effects of DNA damaging agents like radiation. To this end, we plan experiments that test the effects of radiation on normal animal tissues and animal models of cancer, as well as molecular pathways in brain diseases such as Alzheimer’s, Huntington’s and stroke.


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.