Potentially functional variants of HBEGF and ITPR3 in GnRH signaling pathway genes predict survival of non-small cell lung cancer patients.
Date
2021-01-02
Journal Title
Journal ISSN
Volume Title
Repository Usage Stats
views
downloads
Citation Stats
Abstract
The gonadotropin-releasing hormone (GnRH) signaling pathway controls reproductive functions and cancer growth and progression. However, few studies investigated roles of genetic variants of GnRH pathway genes in survival of patients with non-small cell lung cancer (NSCLC). Therefore, we first evaluated associations between 22,528 single-nucleotide polymorphisms (SNPs) in 101 GnRH pathway genes and survival of 1185 NSCLC patients using a dataset from Prostate, Lung, Colorectal and Ovarian Cancer Screening Trial. We found 572 SNPs to be significantly associated with overall survival (OS) of NSCLC (P ≤ 0.05, Bayesian false discovery probability ≤0.80). We then validated these SNPs in another dataset with 984 NSCLC patients from the Harvard Lung Cancer Susceptibility Study. Finally, two independent SNPs (HBEGF rs4150236G>A and ITPR3 rs116454384C>T) remained significantly associated with NSCLC OS in the combined analysis with hazards ratios of 0.84 (95% confidence interval = 0.76-0.92, P = 0.0003) and 0.85 (0.78-0.94, 0.0012), respectively; their genetic score (the number of protective genotypes) was associated with a better OS and disease-specific survival (Ptrend = 0.0002 and 0.0001, respectively). Further expression quantitative trail loci analysis showed a significant correlation between ITPR3 rs116454384 T allele and an increased mRNA expression level in both whole blood and normal lung tissue, and high ITPR3 mRNA expression levels in tumors were associated with a better survival of NSCLC patients. Because ITPR3 mutations were rare in tumors, ITPR3 rs116454384C>T likely had an effect on cancer progression by regulating the gene expression. Therefore, genetic variants of HBEGF rs4150236G>A and ITPR3 rs116454384C>T may be predictors for NSCLC survival, but HBEGF rs4150236G>A functional relevance remains to be determined.
Type
Department
Description
Provenance
Subjects
Citation
Permalink
Published Version (Please cite this version)
Publication Info
Wu, Yufeng, Zhensheng Liu, Dongfang Tang, Hongliang Liu, Sheng Luo, Thomas E Stinchcombe, Carolyn Glass, Li Su, et al. (2021). Potentially functional variants of HBEGF and ITPR3 in GnRH signaling pathway genes predict survival of non-small cell lung cancer patients. Translational research : the journal of laboratory and clinical medicine. 10.1016/j.trsl.2020.12.009 Retrieved from https://hdl.handle.net/10161/22312.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
Scholars@Duke
Sheng Luo
Carolyn Glass
Cardiothoracic Pathologist and Physician-Scientist
Division Chief, Cardiovascular Pathology
Co-Director, Division of Artificial Intelligence and Computational Pathology
Associate Director, Residency Program
Director, Duke University Hospital Autopsy Service
Dr. Glass completed medical residency in Anatomic Pathology at the Brigham and Women’s Hospital/Harvard Medical School followed by fellowships in Cardiothoracic Pathology also at Brigham and Women’s Hospital/Harvard Medical School and Pulmonary/Cardiac Transplant Pathology at the University of Texas Southwestern Medical Center. Dr. Glass initially trained as a vascular surgeon with a focus on endovascular/interventional procedures through the 0+5 Integrated Vascular Surgery Program at the University of Rochester Medical Center from 2007-2011. As a recipient of the NIH National Lung Blood Institute T32 Ruth Kirschstein National Service Research Award, she completed a Ph.D with a concentration in Genomics and Epigenetics in 2014. Dr. Glass serves as P.I. of multiple NIH grants, including U54 and SBIR.
As a thoracic surgical pathologist, Dr. Glass diagnoses complex heart transplant rejection and thoracic malignancies. She works closely with the Duke Thoracic Oncology Group, DCI Center for Cancer Immunotherapy, Duke Division of Cardiovascular Medicine and Cardiothoracic Surgery and Pratt School of Biomedical Engineering.
Dr. Glass is the recipient of the Society of Cardiovascular Pathology (SCVP) Young Investigator’s Award, the William von Liebig Vascular Biology Research Fellowship at the Harvard Institutes of Medicine, the Duke Pathology Salvatore V. Pizzo Faculty Research Mentor Award, the Duke Department of Pathology Early Career Research Achievement Award and is author of over 85 publications (including book chapters in the recent W.H.O. Classification Tumours of the Lung, Pleura, Thymus and Heart) and 50 national presentations in cardiovascular disease, thoracic malignancies, surgery and machine learning.
In addition to her clinical and research activities, Dr. Glass serves on the Executive/National Committees for the Society of Cardiovascular Pathology, College of American Pathology Artificial Intelligence Committee and the Duke School of Medicine Executive Admissions Committee.
Qingyi Wei
Qingyi Wei, MD, PhD, Professor in the Department of Medicine, is Associate Director for Cancer Control and Population Sciences, Co-leader of CCPS and Co-leader of Epidemiology and Population Genomics (Focus Area 1). He is a professor of Medicine and an internationally recognized epidemiologist focused on the molecular and genetic epidemiology of head and neck cancers, lung cancer, and melanoma. His research focuses on biomarkers and genetic determinants for the DNA repair deficient phenotype and variations in cell death. He is Editor-in-Chief of the open access journal "Cancer Medicine" and Associate Editor-in-Chief of the International Journal of Molecular Epidemiology and Genetics.
Area of Expertise: Epidemiology
Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.