A Randomized, Placebo-Controlled, Phase II Trial of Intravenous Allogeneic Non-HLA Matched, Unrelated Donor, Cord Blood Infusion for Ischemic Stroke.


Stroke remains a leading cause of death and disability in the US, and time-limited reperfusion strategies remain the only approved treatment options. To address this unmet clinical need, we conducted a phase II randomized clinical trial to determine whether intravenous infusion of banked, non-HLA matched unrelated donor umbilical cord blood (UCB) improved functional outcome after stroke. Participants were randomized 2:1 to UCB or placebo within strata of National Institutes of Health Stroke Scale Score (NIHSS) and study center. Study product was infused 3-10 days following index stroke. The primary endpoint was change in modified Rankin Scale (mRS) from baseline to day 90. Key secondary outcomes included functional independence, NIHSS, the Barthel Index, and assessment of adverse events. The trial was terminated early due to slow accrual and logistical concerns associated with the COVID-19 pandemic, and a total of 73 of a planned 100 participants were included in primary analyses. The median (range) of the change in mRS was 1 point (-2, 3) in UCB and 1 point (-1,4) in Placebo (P = 0.72). A shift analysis comparing the mRS at day 90 utilizing proportional odds modeling showed a common odds ratio of 0.9 (95% CI: 0.4, 2.3) after adjustment for baseline NIHSS and randomization strata. The distribution of adverse events was similar between arms. Although this study did not suggest any safety concerns related to UCB in ischemic stroke, we did not show a clinical benefit in the reduced sample size evaluated.





Published Version (Please cite this version)


Publication Info

Laskowitz, Daniel T, Jesse Troy, Emily Poehlein, Ellen R Bennett, Elizabeth J Shpall, John R Wingard, Brian Freed, Samir R Belagaje, et al. (2024). A Randomized, Placebo-Controlled, Phase II Trial of Intravenous Allogeneic Non-HLA Matched, Unrelated Donor, Cord Blood Infusion for Ischemic Stroke. Stem cells translational medicine, 13(2). pp. 125–136. 10.1093/stcltm/szad080 Retrieved from https://hdl.handle.net/10161/30495.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.



Daniel Todd Laskowitz

Professor of Neurology

Our laboratory uses molecular biology, cell culture, and animal modeling techniques to examine the CNS response to acute injury. In particular, our laboratory examines the role of microglial activation and the endogenous CNS inflammatory response in exacerbating secondary injury following acute brain insult. Much of the in vitro work in this laboratory is dedicated to elucidating cellular responses to injury with the ultimate goal of exploring new therapeutic interventions in the clinical setting of stroke, intracranial hemorrhage, and closed head injury.

In conjunction with the Multidisciplinary Neuroprotection Laboratories, we also focus on clinically relevant small animal models of acute CNS injury. For example, we have recently characterized murine models of closed head injury, subarachnoid hemorrhage, intracranial hemorrhage and perinatal hypoxia-ischemia, in addition to the standard rodent models of focal stroke and transient forebrain ischemia. Recently we have adapted several of these models from the rat to the mouse to take advantage of murine transgenic technology. The objective of these studies are two-fold: to gain better insight into the cellular responses and pathophysiology of acute brain injury, and to test novel therapeutic strategies for clinical translation. In both cell culture systems and animal models, our primary focus is on examining the role of oxidative stress and inflammatory mechanism in mediating brain injury following acute brain insult, and examining the neuroprotective effects of endogenous apolipoprotein E in the injured mammalian central nervous system.

Our laboratory is committed to translational research, and has several active clinical research protocols, which are designed to bring the research performed in the Multidisciplinary Research Laboratories to the clinical arena. These protocols are centered around patients following stroke and acute brain injury, and are primarily based out of the Emergency Room and Neurocritical Care Unit. For example, we are currently examining the role of inflammatory mediators for use as a point-of-care diagnostic marker following stroke, intracranial hemorrhage, and closed head injury. We have recently translated a novel apoE mimetic from the preclinical setting to a multi center Phase 2 trial evaluating efficacy in intracranial hemorrhage. We are also examining the functional role of different polymorphisms of of inflammatory cytokines in the setting of acute brain injury and neurological dysfunction following cardiopulmonary bypass.


Jesse David Troy

Associate Professor of Biostatistics & Bioinformatics

I am the Associate Director of Graduate Studies for the Master of Biostatistics program. I am also an instructor in the Clinical Research Training Program. I work on research studies in cancer therapeutics and palliative care at the Duke Cancer Institute.


Emily Poehlein

Biostatistician II

Ellen Ruth Bennett

Adjunct Assistant Professor in the Department of Neurology

Eric J Marrotte

Adjunct Associate in the Department of Neurology

Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.