Evaluation and extension of in vivo detectability index to deep-learning and photon counting CT techniques

dc.contributor.author

Ria, Francesco

dc.contributor.author

Jensen, Corey

dc.contributor.author

Zarei, Mojtaba

dc.contributor.author

Liu, Xinming

dc.contributor.author

Schwartz, Fides

dc.contributor.author

Abbey, Craig

dc.contributor.author

Samei, Ehsan

dc.date.accessioned

2022-12-05T16:34:17Z

dc.date.available

2022-12-05T16:34:17Z

dc.date.issued

2022-12-01

dc.date.updated

2022-12-05T16:34:16Z

dc.identifier.uri

https://hdl.handle.net/10161/26346

dc.title

Evaluation and extension of in vivo detectability index to deep-learning and photon counting CT techniques

dc.type

Conference

duke.contributor.orcid

Ria, Francesco|0000-0001-5902-7396

duke.contributor.orcid

Schwartz, Fides|0000-0002-3598-7082

duke.contributor.orcid

Samei, Ehsan|0000-0001-7451-3309

pubs.organisational-group

Duke

pubs.organisational-group

School of Medicine

pubs.organisational-group

Staff

pubs.organisational-group

Clinical Science Departments

pubs.organisational-group

Radiology

pubs.publication-status

Published

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
RSNA_2022_new_d'_DL_and_PCCT_abstract_ria.pdf
Size:
651.49 KB
Format:
Adobe Portable Document Format
Description:
Published version