Predicting the frequency dispersion of electronic hyperpolarizabilities on the basis of absorption data and thomas-kuhn sum rules
Date
2010-02-11
Journal Title
Journal ISSN
Volume Title
Repository Usage Stats
views
downloads
Citation Stats
Abstract
Successfully predicting the frequency dispersion of electronic hyperpolarizabilities is an unresolved challenge in materials science and electronic structure theory. We show that the generalized Thomas-Kuhn sum rules, combined with linear absorption data and measured hyperpolarizability at one or two frequencies, may be used to predict the entire frequency-dependent electronic hyperpolarizability spectrum. This treatment includes two- and three-level contributions that arise from the lowest two or three excited electronic state manifolds, enabling us to describe the unusual observed frequency dispersion of the dynamic hyperpolarizability in high oscillator strength M-PZn chromophores, where (porphinato)zinc(II) (PZn) and metal(II)polypyridyl (M) units are connected via an ethyne unit that aligns the high oscillator strength transition dipoles of these components in a head-to-tail arrangement. We show that some of these structures can possess very similar linear absorption spectra yet manifest dramatically different frequency dependent hyperpolarizabilities, because of three-level contributions that result from excited state-to excited state transition dipoles among charge polarized states. Importantly, this approach provides a quantitative scheme to use linear optical absorption spectra and very limited individual hyperpolarizability measurements to predict the entire frequency-dependent nonlinear optical response. Copyright © 2010 American Chemical Society.
Type
Department
Description
Provenance
Subjects
Citation
Permalink
Published Version (Please cite this version)
Publication Info
Hu, X, D Xiao, S Keinan, I Asselberghs, MJ Therien, K Clays, W Yang, DN Beratan, et al. (2010). Predicting the frequency dispersion of electronic hyperpolarizabilities on the basis of absorption data and thomas-kuhn sum rules. Journal of Physical Chemistry C, 114(5). pp. 2349–2359. 10.1021/jp911556x Retrieved from https://hdl.handle.net/10161/4078.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
Scholars@Duke
Michael J. Therien
Our research involves the synthesis of compounds, supermolecular assemblies, nano-scale objects, and electronic materials with unusual ground-and excited-state characteristics, and interrogating these structures using state-of-the-art transient optical, spectroscopic, photophysical, and electrochemical methods. Research activities span physical inorganic chemistry, physical organic chemistry, synthetic chemistry, bioinorganic chemistry, spectroscopy, photophysics, excited-state dynamics, spintronics, and imaging. My laboratory: (i) designs chromophores and supermolecules that display exceptional opto-electronic properties and elucidates their excited-state dynamics, (ii) engineers highly conjugated molecular structures for optical limiting, specialized emission, and high charge mobility, (iii) designs conjugated materials and hybrid molecular-nanoscale structures for energy conversion reactions, (iv) develops molecular wires that propagate spin-polarized currents, (v) fabricates emissive nanoscale structures for in vivo optical imaging, (vi) engineers de novo transition metal cofactor-binding proteins that test light-driven biological energy transducing mechanisms and realize opto-electronic functionalities not found in nature, and (vii) designs and interrogates complex molecular and nanoscale assemblies in which ultrafast energy and charge migration reactions are controlled by quantum coherence effects.
Weitao Yang
Prof. Yang, the Philip Handler Professor of Chemistry, is developing methods for quantum mechanical calculations of large systems and carrying out quantum mechanical simulations of biological systems and nanostructures. His group has developed the linear scaling methods for electronic structure calculations and more recently the QM/MM methods for simulations of chemical reactions in enzymes.
David N. Beratan
Dr. Beratan is developing theoretical approaches to understand the function of complex molecular and macromolecular systems, including: the molecular underpinnings of energy harvesting and charge transport in biology; the mechanism of solar energy capture and conversion in man-made structures; the nature of charge conductivity in naturally occurring nucleic acids and in synthetic constructs, including the photochemical repair of damaged DNA in extremophiles; CH bond activation by copper oxygenase enzymes; the flow of charge in bacterial appendages on the micrometer length scale; the theoretical foundations for inverse molecular design - the property driven discovery of chemical structures with optimal properties; the exploitation of molecular diversity in the mapping of molecular and materials "space"; the use of infra-red excitation to manipulate electron transport through molecules; the optical signatures of molecular chirality and the influence of chirality on charge transport. Prof. Beratan is affiliated with the Departments of Chemistry, Biochemistry, Physics, as well as Duke's programs in Computational Biology and Bioinformatics, Structural Biology and Biophysics, Nanosciences, and Phononics.
Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.