Predicting the frequency dispersion of electronic hyperpolarizabilities on the basis of absorption data and thomas-kuhn sum rules

Loading...
Thumbnail Image

Date

2010-02-11

Journal Title

Journal ISSN

Volume Title

Repository Usage Stats

292
views
410
downloads

Citation Stats

Abstract

Successfully predicting the frequency dispersion of electronic hyperpolarizabilities is an unresolved challenge in materials science and electronic structure theory. We show that the generalized Thomas-Kuhn sum rules, combined with linear absorption data and measured hyperpolarizability at one or two frequencies, may be used to predict the entire frequency-dependent electronic hyperpolarizability spectrum. This treatment includes two- and three-level contributions that arise from the lowest two or three excited electronic state manifolds, enabling us to describe the unusual observed frequency dispersion of the dynamic hyperpolarizability in high oscillator strength M-PZn chromophores, where (porphinato)zinc(II) (PZn) and metal(II)polypyridyl (M) units are connected via an ethyne unit that aligns the high oscillator strength transition dipoles of these components in a head-to-tail arrangement. We show that some of these structures can possess very similar linear absorption spectra yet manifest dramatically different frequency dependent hyperpolarizabilities, because of three-level contributions that result from excited state-to excited state transition dipoles among charge polarized states. Importantly, this approach provides a quantitative scheme to use linear optical absorption spectra and very limited individual hyperpolarizability measurements to predict the entire frequency-dependent nonlinear optical response. Copyright © 2010 American Chemical Society.

Department

Description

Provenance

Subjects

Citation

Published Version (Please cite this version)

10.1021/jp911556x

Publication Info

Hu, X, D Xiao, S Keinan, I Asselberghs, MJ Therien, K Clays, W Yang, DN Beratan, et al. (2010). Predicting the frequency dispersion of electronic hyperpolarizabilities on the basis of absorption data and thomas-kuhn sum rules. Journal of Physical Chemistry C, 114(5). pp. 2349–2359. 10.1021/jp911556x Retrieved from https://hdl.handle.net/10161/4078.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Therien

Michael J. Therien

William R. Kenan, Jr. Distinguished Professor of Chemistry

Our research involves the synthesis of compounds, supramolecular assemblies, nano-scale objects, and electronic materials with unusual ground-and excited-state characteristics, and interrogating these structures using state-of-the-art transient optical, spectroscopic, photophysical, and electrochemical methods. Over chemical dimensions that span molecules to materials, we probe experimental and theoretical aspects of charge migration reactions and ultrafast electron transfer processes. Insights into the structure-property relationships of molecular, nanoscale, and macroscopic materials allow us to fabricate polarizable and hyperpolarizable chromophores, structures for molecular electronics applications, optical limiters, and a wide range of other electrooptic and photonic materials that include novel conducting polymers, structures for solar energy conversion, and new platforms for in vivo optical imaging. Other efforts in our laboratory involve the elaborating de novo electron- and energy-transfer proteins, interrogating catalytic redox reactions, designing catalysts for small molecule activation, and developing new tools to manipulate nanoscale structures.

Yang

Weitao Yang

Philip Handler Distinguished Professor of Chemistry

Prof. Yang, the Philip Handler Professor of Chemistry, is developing methods for quantum mechanical calculations of large systems and carrying out quantum mechanical simulations of biological systems and nanostructures. His group has developed the linear scaling methods for electronic structure calculations and more recently the QM/MM methods for simulations of chemical reactions in enzymes.


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.