Uncoupling skeletal and connective tissue patterning: conditional deletion in cartilage progenitors reveals cell-autonomous requirements for Lmx1b in dorsal-ventral limb patterning

Loading...
Thumbnail Image

Date

2010

Journal Title

Journal ISSN

Volume Title

Repository Usage Stats

337
views
336
downloads

Citation Stats

Abstract

Integration of muscle, connective tissue and skeletal patterning during development is essential for proper functioning of the musculoskeletal system. How this integration is achieved is poorly understood. There is ample evidence suggesting that skeletal pattern is programmed autonomously, whereas muscle pattern is, for the most part, programmed non-cell-autonomously. Connective tissues depend upon both muscle and skeletal tissues for their proper survival and development. Here, we employed a novel approach to dissect the coordination of musculoskeletal patterning during mouse limb development. Using both conditional gain- and loss-of-function approaches, we selectively deleted or activated the LIM-homeodomain transcription factor Lmx1b in skeletal progenitors using a Sox9-Cre knock-in allele. As Lmx1b is both necessary and sufficient to specify dorsal pattern, this approach allowed us to investigate the effect of selectively deleting or activating Lmx1b in skeletal progenitors on muscle, connective and skeletal tissues during limb development. Our results indicate that whereas Lmx1b activity is required autonomously in skeletal progenitors to direct dorsal pattern, loss or gain of Lmx1b activity in skeletal progenitors has no effect on muscle or connective tissue patterning. Hence, we show for the first time that skeletal and connective tissue patterning can be uncoupled, indicating a degree of autonomy in the formation of the musculoskeletal system.

Department

Description

Provenance

Citation

Li,Ying;Qiu,Qiong;Watson,Spenser S.;Schweitzer,Ronen;Johnson,Randy L.. 2010. Uncoupling skeletal and connective tissue patterning: conditional deletion in cartilage progenitors reveals cell-autonomous requirements for Lmx1b in dorsal-ventral limb patterning. Development 137(7): 1181-1188.

Published Version (Please cite this version)

10.1242/dev.045237


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.