Inference of riverine nitrogen processing from longitudinal and diel variation in dual nitrate isotopes
Date
2012-03-01
Authors
Journal Title
Journal ISSN
Volume Title
Repository Usage Stats
views
downloads
Citation Stats
Abstract
Longitudinal and diel measurements of dual isotope composition (δ15N and δ18O) in nitrate (NO3-N) were made in the Ichetucknee River, a large (∼8m3 s -1), entirely spring-fed river in North Florida, to determine whether isotopic variation can deconvolve assimilatory and dissimilatory removal. Comparing nitrate concentrations and isotope composition during the day and night we predicted (1) daytime declines in total fractionation due to low assimilatory fractionation and (2) diurnal variation in dual isotope coupling between 1:1 (assimilation) and 2:1 (denitrification). Five daytime longitudinal transects comprising 10 sampling stations showed consistent NO3-N removal (25-35% of inputs) and modest fractionation (15ε total between -2 and -6‰, enriching the residual nitrate pool). Lower fractionation (by ∼1‰) during two nighttime transects, suggests higher fractionation due to assimilation than denitrification. Total fractionation was significantly negatively associated with discharge, input [NO3-N], N mass removal, and fractional water loss. Despite well-constrained mass balance estimates that denitrification dominated total N removal, isotope coupling was consistently 1:1, both for longitudinal and diel sampling. Hourly samples on two dates at the downstream location showed significant diel variation in concentration ([NO3-N] amplitude = 60 to 90 μg N L-1) and isotope composition (δ15N amplitude = -0.7‰ to -1.6‰). Total fractionation differed between day and night only on one date but estimated assimilatory fractionation assuming constant denitrification was highly variable and implausibly large (for N, 15ε = -2 to -25‰), suggesting that fractionation and removal due to denitrification is not diurnally constant. Pronounced counterclockwise hysteresis in the relationship between [NO3-N] and δ15N suggests diel variation in N isotope dynamics. Together, low fractionation, isotope versus concentration hysteresis, and consistent 1:1 isotope coupling suggests that denitrification is controlled by NO 3- diffusion into the benthic sediments, the length of which is mediated by riverine oxygen dynamics. While using dual isotope behavior to deconvolve removal pathways was not possible, isotope measurements did yield valuable information about riverine N cycling and transformations. Copyright © 2012 by the American Geophysical Union.
Type
Department
Description
Provenance
Subjects
Citation
Permalink
Published Version (Please cite this version)
Publication Info
Cohen, MJ, JB Heffernan, A Albertin and JB Martin (2012). Inference of riverine nitrogen processing from longitudinal and diel variation in dual nitrate isotopes. Journal of Geophysical Research: Biogeosciences, 117(1). 10.1029/2011JG001715 Retrieved from https://hdl.handle.net/10161/9145.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
Scholars@Duke
James Brendan Heffernan
I am interested in major changes in ecosystem structure, particularly in streams, rivers and wetlands. My work focuses on feedbacks among ecological, physical, and biogeochemical processes, and uses a wide range of tools and approaches. I am particularly interested in projects that address both basic ecological theory and pressing environmental problems. Increasingly, we are applying tools and theories developed for local ecosystems to better understand ecological patterns and mechanisms at regional and continental scales.
Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.