Pre-trained Hypergraph Convolutional Neural Networks with Self-supervised Learning
Date
2024-01-01
Journal Title
Journal ISSN
Volume Title
Repository Usage Stats
views
downloads
Attention Stats
Abstract
Hypergraphs are powerful tools for modeling complex interactions across various domains, including biomedicine. However, learning meaningful node representations from hypergraphs remains a challenge. Existing supervised methods often lack generalizability, thereby limiting their real-world applications. We propose a new method, Pre-trained Hypergraph Convolutional Neural Networks with Self-supervised Learning (PhyGCN), which leverages hypergraph structure for self-supervision to enhance node representations. PhyGCN introduces a unique training strategy that integrates variable hyperedge sizes with self-supervised learning, enabling improved generalization to unseen data. Applications on multi-way chromatin interactions and polypharmacy side-effects demonstrate the effectiveness of PhyGCN. As a generic framework for high-order interaction datasets with abundant unlabeled data, PhyGCN holds strong potential for enhancing hypergraph node representations across various domains.
Type
Department
Description
Provenance
Subjects
Citation
Permalink
Collections
Scholars@Duke
Pan Xu
My research is centered around Machine Learning, with broad interests in the areas of Artificial Intelligence, Data Science, Optimization, Reinforcement Learning, High Dimensional Statistics, and their applications to real-world problems including Bioinformatics and Healthcare. My research goal is to develop computationally- and data-efficient machine learning algorithms with both strong empirical performance and theoretical guarantees.
Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.
