From the Cover: Arsenite Uncouples Mitochondrial Respiration and Induces a Warburg-like Effect in Caenorhabditis elegans.
Date
2016-08
Journal Title
Journal ISSN
Volume Title
Repository Usage Stats
views
downloads
Citation Stats
Abstract
Millions of people worldwide are chronically exposed to arsenic through contaminated drinking water. Despite decades of research studying the carcinogenic potential of arsenic, the mechanisms by which arsenic causes cancer and other diseases remain poorly understood. Mitochondria appear to be an important target of arsenic toxicity. The trivalent arsenical, arsenite, can induce mitochondrial reactive oxygen species production, inhibit enzymes involved in energy metabolism, and induce aerobic glycolysis in vitro, suggesting that metabolic dysfunction may be important in arsenic-induced disease. Here, using the model organism Caenorhabditis elegans and a novel metabolic inhibition assay, we report an in vivo induction of aerobic glycolysis following arsenite exposure. Furthermore, arsenite exposure induced severe mitochondrial dysfunction, including altered pyruvate metabolism; reduced steady-state ATP levels, ATP-linked respiration and spare respiratory capacity; and increased proton leak. We also found evidence that induction of autophagy is an important protective response to arsenite exposure. Because these results demonstrate that mitochondria are an important in vivo target of arsenite toxicity, we hypothesized that deficiencies in mitochondrial electron transport chain genes, which cause mitochondrial disease in humans, would sensitize nematodes to arsenite. In agreement with this, nematodes deficient in electron transport chain complexes I, II, and III, but not ATP synthase, were sensitive to arsenite exposure, thus identifying a novel class of gene-environment interactions that warrant further investigation in the human populace.
Type
Department
Description
Provenance
Citation
Permalink
Published Version (Please cite this version)
Publication Info
Luz, Anthony L, Tewodros R Godebo, Dhaval P Bhatt, Olga R Ilkayeva, Laura L Maurer, Matthew D Hirschey and Joel N Meyer (2016). From the Cover: Arsenite Uncouples Mitochondrial Respiration and Induces a Warburg-like Effect in Caenorhabditis elegans. Toxicol Sci, 152(2). pp. 349–362. 10.1093/toxsci/kfw093 Retrieved from https://hdl.handle.net/10161/12419.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
Scholars@Duke

Olga Ilkayeva
Olga Ilkayeva, Ph.D., is the Director of the Metabolomics Core Laboratory at Duke Molecular Physiology Institute. She received her Ph.D. training in Cell Regulation from UT Southwestern Medical Center at Dallas, TX. Her postdoctoral research in the laboratory of Dr. Chris Newgard at Duke University Medical Center focused on lipid metabolism and regulation of insulin secretion. As a research scientist at the Stedman Nutrition and Metabolism Center, Dr. Ilkayeva expanded her studies to include the development of targeted mass spectrometry analyses. Currently, she works on developing and validating quantitative mass spectrometry methods used for metabolic profiling of various biological models with emphasis on diabetes, obesity, cardiovascular disease, and the role of gut microbiome in both health and disease.

Matthew Hirschey
The Hirschey Lab in the Duke Molecular Physiology Institute, and the Departments of Medicine and Pharmacology & Cancer Biology at Duke University studies different aspects of metabolic control, mitochondrial signaling, and cellular processes regulating human health and disease.

Joel Meyer
Dr. Meyer studies the effects of toxic agents and stressors on human and wildlife health. He is particularly interested in understanding the mechanisms by which environmental agents cause DNA damage, the molecular processes that organisms employ to protect prevent and repair DNA damage, and genetic differences that may lead to increased or decreased sensitivity to DNA damage. Mitochondrial DNA damage and repair, as well as mitochondrial function in general, are a particular focus. He studies these effects in the nematode Caenorhabditis elegans, in cell culture, and collaboratively in other laboratory model organisms as well as in human populations in the USA and globally.
Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.