Characterization of high order modes of plasmonic antenna formed by nanoparticle/thin film hybrid structures

dc.contributor.author

Chen, SY

dc.contributor.author

Urzhumov, Y

dc.contributor.author

Smith, DR

dc.contributor.author

Lazarides, AA

dc.contributor.editor

Adibi, Ali

dc.contributor.editor

Lin, Shawn-Yu

dc.contributor.editor

Scherer, Axel

dc.date.accessioned

2012-05-29T21:39:12Z

dc.date.issued

2012-05-04

dc.description.abstract

The plasmonic modes of a nano-antenna formed by a nanoparticle/thin film hybrid system are investigated. Plasmonic nano-antennas are well-known for their capabilities to concentrate electromagnetic wave into extreme small region and couple the emission from active materials in proximity to the antennas into far-field region. Previously, we have shown through direct measurement of emission profile images that the nano-antennas not only enhance Raman emission but also systematically direct inelastic emission to the far-field through the dipole mode. We also showed that high order modes of the hybrid structure can be detected. Here, the higher order plasmonic modes are characterized through imaging, variable angle linearly polarized excitation, and simulation. Through spectral simulation with improved resolution, two distinct modes are found to contribute to the broad band high order mode. One has dipole-like behavior and the other has quadrupole-like behavior. The modes are characterized both through near-field distribution and farfield scattering profiles. The quadrupole-like mode can be excited by both p- and s-polarized light whereas the dipolelike mode is only excited by p-polarized light. These high order modes are not as bright as the dipole mode in the farfield spectrum but have substantial near field enhancement which can be utilized for surface-enhancing spectroscopy and sensing. In addition, characterization of high order modes may serve to clarify the interaction between nano-antenna and active materials and will lead to design rules for applications of active plasmonic structures in integrated optical circuits. © 2012 Copyright Society of Photo-Optical Instrumentation Engineers (SPIE).

Photonic and Phononic Properties of Engineered Nanostructures II;82691M.

dc.identifier.issn

0277-786X

dc.identifier.uri

https://hdl.handle.net/10161/5725

dc.language.iso

en_US

dc.publisher

SPIE

dc.relation.ispartof

Proceedings of SPIE - The International Society for Optical Engineering

dc.relation.isversionof

10.1117/12.907700

dc.relation.journal

Proceedings of SPIE

dc.title

Characterization of high order modes of plasmonic antenna formed by nanoparticle/thin film hybrid structures

dc.type

Journal article

duke.description.volume

8269

pubs.begin-page

82691M

pubs.organisational-group

Duke

pubs.organisational-group

Electrical and Computer Engineering

pubs.organisational-group

Pratt School of Engineering

pubs.publication-status

Published

pubs.volume

8269

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Characterization of high order modes of plasmonic antenna_published.pdf
Size:
2.32 MB
Format:
Adobe Portable Document Format
Description:
Main article