Insight into How the Coordination Environment of Cu Influences Chemical and Biological Activity of the Antifungal Peptide Histatin-5
Date
2019
Authors
Advisors
Journal Title
Journal ISSN
Volume Title
Repository Usage Stats
views
downloads
Abstract
The histidine-rich salivary peptides of the histatin family are known to bind copper (Cu) and other metal ions in vitro, but the details of these interactions are poorly understood and their implications on in vivo antifungal activity have not been established. Here, we explore how the coordination environment of Cu influences chemical and biological activity of the antifungal peptide Hist-5. Antifungal susceptibility assays and Cu-binding experiments reveal how the efficacy of Hist-5 against the commensal organism Candida albicans depends on the availability of Cu in the growth environment. Further, this biological activity correlates with the presence of adjacent histidine residues (bis-His) within the histatin peptide that support Cu(I) binding in the low nM range. Evaluation of oxygen reactivity of the Histatin Cu(I)-bis-His complexes indicates the PCu(I) complex is reactive towards H2O2. EPR, UV-Vis and HPLC studies demonstrate that exposure to H2O2 results in the formation of a metalloradical complex reminiscent of radical copper oxidases. Additional exploration of the coordination environment conducive to metalloradical formation exposes the importance of the third ligand (His3) of the Cu(I)-bis-His Complex for H2O2. His3 mutant peptides also disclose the tunability of the H2O2 reactivity. Furthermore, substrate evaluation assays offer evidence of the capability of the Cu-Hist-5 to specifically chemically modify a cell wall component. Together, these results provided compelling evidence supporting that Cu-coordination plays a critical role in the biological and chemical activity of Hist-5.
Type
Department
Description
Provenance
Citation
Permalink
Citation
Conklin Lopez, Steven (2019). Insight into How the Coordination Environment of Cu Influences Chemical and Biological Activity of the Antifungal Peptide Histatin-5. Dissertation, Duke University. Retrieved from https://hdl.handle.net/10161/19846.
Collections
Except where otherwise noted, student scholarship that was shared on DukeSpace after 2009 is made available to the public under a Creative Commons Attribution / Non-commercial / No derivatives (CC-BY-NC-ND) license. All rights in student work shared on DukeSpace before 2009 remain with the author and/or their designee, whose permission may be required for reuse.