The Achilles' heel of cardiovascular genetic testing: distinguishing pathogenic mutations from background genetic noise.

Loading...
Thumbnail Image

Date

2011-10

Journal Title

Journal ISSN

Volume Title

Repository Usage Stats

50
views
48
downloads

Citation Stats

Abstract

Although the etiologies of sudden cardiac death (SCD) are diverse, genetic mutations associated with cardiomyopathic and channelopathic diseases are major causes, and clinically available genetic tests offer the potential to identify at-risk family members, contribute to risk stratification, and guide therapeutic intervention. Recently, the first large-scale systematic studies exploring the background genetic "noise" rate of these tests have been conducted and offer guidance in interpreting positive genetic test results.

Department

Description

Provenance

Citation

Published Version (Please cite this version)

10.1038/clpt.2011.192

Publication Info

Landstrom, AP, and MJ Ackerman (2011). The Achilles' heel of cardiovascular genetic testing: distinguishing pathogenic mutations from background genetic noise. Clinical pharmacology and therapeutics, 90(4). pp. 496–499. 10.1038/clpt.2011.192 Retrieved from https://hdl.handle.net/10161/20324.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Landstrom

Andrew Paul Landstrom

Associate Professor of Pediatrics

Dr. Landstrom is a physician scientist who specializes in the care of children and young adults with arrhythmias, heritable cardiovascular diseases, and sudden unexplained death syndromes. As a clinician, he is trained in pediatric cardiology with a focus on arrhythmias and genetic diseases of the heart.  He specializes in caring for patients with heritable arrhythmia (channelopathies) such as long QT syndrome, Brugada syndrome, catecholaminergic polymorphic ventricular tachycardia, and short QT syndrome.  He also specializes in the evaluation of children following a cardiac arrest or after the sudden and unexplained death of a family member.  He has expertise in cardiovascular genetics and uses it to identify individuals in a family who may be at risk of a disease, even if all clinical testing is negative.  As a scientist, he is trained in genetics and cell biology.  He runs a research lab exploring the genetic and molecular causes of arrhythmias, sudden unexplained death syndromes, and heart muscle disease (cardiomyopathies).  He utilizes patient-derived induced pluripotent stem cells and genetic mouse models to identify the mechanisms of cardiovascular genetic disease with the goal of developing novel therapies.


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.