Redox rhythm reinforces the circadian clock to gate immune response.

Loading...
Thumbnail Image

Date

2015-07-23

Journal Title

Journal ISSN

Volume Title

Repository Usage Stats

395
views
734
downloads

Citation Stats

Abstract

Recent studies have shown that in addition to the transcriptional circadian clock, many organisms, including Arabidopsis, have a circadian redox rhythm driven by the organism's metabolic activities. It has been hypothesized that the redox rhythm is linked to the circadian clock, but the mechanism and the biological significance of this link have only begun to be investigated. Here we report that the master immune regulator NPR1 (non-expressor of pathogenesis-related gene 1) of Arabidopsis is a sensor of the plant's redox state and regulates transcription of core circadian clock genes even in the absence of pathogen challenge. Surprisingly, acute perturbation in the redox status triggered by the immune signal salicylic acid does not compromise the circadian clock but rather leads to its reinforcement. Mathematical modelling and subsequent experiments show that NPR1 reinforces the circadian clock without changing the period by regulating both the morning and the evening clock genes. This balanced network architecture helps plants gate their immune responses towards the morning and minimize costs on growth at night. Our study demonstrates how a sensitive redox rhythm interacts with a robust circadian clock to ensure proper responsiveness to environmental stimuli without compromising fitness of the organism.

Department

Description

Provenance

Citation

Published Version (Please cite this version)

10.1038/nature14449

Publication Info

Zhou, M, W Wang, S Karapetyan, M Mwimba, J Marques, NE Buchler and X Dong (2015). Redox rhythm reinforces the circadian clock to gate immune response. Nature, 523(7561). pp. 472–476. 10.1038/nature14449 Retrieved from https://hdl.handle.net/10161/10230.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Dong

Xinnian Dong

Arts and Sciences Distinguished Professor of Biology

Using Arabidopsis thaliana as a model system, my laboratory studies the mechanisms of plant defense against microbial pathogens. We focus on a specific response known as systemic acquired resistance (SAR). SAR, which can be induced by a local infection, provides the plants with long lasting, systemic resistance against a broad spectrum of pathogens. Salicylic acid (SA; an active ingredient of aspirin) has been found to be the endogenous signal of SAR. Using a genetic approach, our laboratory identified genes involved in the regulation of SAR. Molecular and genetic analyses are being carried out to understand the gene function and to elucidate the SAR signaling pathway. These SAR-regulating genes are also favorite targets for molecular engineering of disease-resistance crops.


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.