Soy protein supplementation is not androgenic or estrogenic in college-aged men when combined with resistance exercise training
Journal Title
Journal ISSN
Volume Title
Repository Usage Stats
views
downloads
Citation Stats
Attention Stats
Abstract
<jats:title>Abstract</jats:title><jats:p>It is currently unclear as to whether sex hormones are significantly affected by soy or whey protein consumption. Additionally, estrogenic signaling may be potentiated via soy protein supplementation due to the presence of phytoestrogenic isoflavones. Limited evidence suggests that whey protein supplementation may increase androgenic signalling. Therefore, the purpose of this study was to examine the effects of soy protein concentrate (SPC), whey protein concentrate (WPC), or placebo (PLA) supplementation on serum sex hormones, androgen signaling markers in muscle tissue, and estrogen signaling markers in subcutaneous (SQ) adipose tissue of previously untrained, college-aged men (n = 47, 20 ± 1 yrs) that resistance trained for 12 weeks. Fasting serum total testosterone increased pre- to post-training, but more so in subjects consuming WPC (p < 0.05), whereas serum 17β-estradiol remained unaltered. SQ estrogen receptor alpha (ERα) protein expression and hormone-sensitive lipase mRNA increased with training regardless of supplementation. Muscle androgen receptor (AR) mRNA increased while ornithine decarboxylase mRNA (a gene target indicative of androgen signaling) decreased with training regardless of supplementation (p < 0.05). No significant interactions of supplement and time were observed for adipose tissue ERα/β protein levels, muscle tissue AR protein levels, or mRNAs in either tissue indicative of altered estrogenic or androgenic activity. Interestingly, WPC had the largest effect on increasing type II muscle fiber cross sectional area values (Cohen’s d = 1.30), whereas SPC had the largest effect on increasing this metric in type I fibers (Cohen’s d = 0.84). These data suggest that, while isoflavones were detected in SPC, chronic WPC or SPC supplementation did not appreciably affect biomarkers related to muscle androgenic signaling or SQ estrogenic signaling. The noted fiber type-specific responses to WPC and SPC supplementation warrant future research.</jats:p>
Type
Department
Description
Provenance
Subjects
Citation
Permalink
Published Version (Please cite this version)
Publication Info
Haun, Cody T, C Brooks Mobley, Christopher G Vann, Matthew A Romero, Paul A Roberson, Petey W Mumford, Wesley C Kephart, James C Healy, et al. (n.d.). Soy protein supplementation is not androgenic or estrogenic in college-aged men when combined with resistance exercise training. Scientific Reports, 8(1). 10.1038/s41598-018-29591-4 Retrieved from https://hdl.handle.net/10161/29778.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
Scholars@Duke
Christopher Vann
Dr. Vann is an exercise physiologist with a research focus centered in skeletal muscle physiology. His research focuses on elucidating mechanisms of tissue-to-tissue crosstalk and understanding how exercise-induced changes in epigenetic, genetic, and protein-level factors relate to health and performance outcomes across the age span. As rates of obesity, cardiometabolic disease, and sarcopenia increase in the U.S., Dr. Vann's research is centered on understanding the role of exercise in improved health outcomes at the molecular level and applying this knowledge to develop precise evidence based exercise interventions.
Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.