Interferon alpha inhibits spinal cord synaptic and nociceptive transmission via neuronal-glial interactions.

Loading...
Thumbnail Image

Date

2016-09-27

Journal Title

Journal ISSN

Volume Title

Repository Usage Stats

110
views
185
downloads

Citation Stats

Abstract

It is well known that interferons (IFNs), such as type-I IFN (IFN-α) and type-II IFN (IFN-γ) are produced by immune cells to elicit antiviral effects. IFNs are also produced by glial cells in the CNS to regulate brain functions. As a proinflammatory cytokine, IFN-γ drives neuropathic pain by inducing microglial activation in the spinal cord. However, little is known about the role of IFN-α in regulating pain sensitivity and synaptic transmission. Strikingly, we found that IFN-α/β receptor (type-I IFN receptor) was expressed by primary afferent terminals in the superficial dorsal horn that co-expressed the neuropeptide CGRP. In the spinal cord IFN-α was primarily expressed by astrocytes. Perfusion of spinal cord slices with IFN-α suppressed excitatory synaptic transmission by reducing the frequency of spontaneous excitatory postsynaptic current (sEPSCs). IFN-α also inhibited nociceptive transmission by reducing capsaicin-induced internalization of NK-1 and phosphorylation of extracellular signal-regulated kinase (ERK) in superficial dorsal horn neurons. Finally, spinal (intrathecal) administration of IFN-α reduced inflammatory pain and increased pain threshold in naïve rats, whereas removal of endogenous IFN-α by a neutralizing antibody induced hyperalgesia. Our findings suggest a new form of neuronal-glial interaction by which IFN-α, produced by astrocytes, inhibits nociceptive transmission in the spinal cord.

Department

Description

Provenance

Subjects

Citation

Published Version (Please cite this version)

10.1038/srep34356

Publication Info

Liu, Chien-Cheng, Yong-Jing Gao, Hao Luo, Temugin Berta, Zhen-Zhong Xu, Ru-Rong Ji and Ping-Heng Tan (2016). Interferon alpha inhibits spinal cord synaptic and nociceptive transmission via neuronal-glial interactions. Sci Rep, 6. p. 34356. 10.1038/srep34356 Retrieved from https://hdl.handle.net/10161/13680.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Ji

Ru-Rong Ji

William Maixner Professor of Anesthesiology

I have been doing neuroscience and pain research for over 25 years in multiple academic institutes, including Duke University (2012-current), Harvard Medical School (1998-2012), Johns Hopkins Medical School, Karolinska Institute, and Peking University. The long-term goal of my lab is to identify molecular and cellular mechanisms that underlie the induction and resolution of pathological pain and develop novel pain therapeutics that can target these mechanisms, with specific focus on neuroimmune interactions. We are interested in the following scientific questions. (1) How does inflammation induce and resolve pain via immune cell interaction with primary sensory neurons? (2) How does neuroinflammation drive chronic pain via activation of glial cells in the CNS (microglia and astrocytes) and PNS (satellite glial cells) and regulation of sensory neuron plasticity (peripheral sensitization) and spinal cord synaptic plasticity (central sensitization)? (3) How do specialized pro-resolution mediators (SPMs, e.g., resolvins, protectins, and maresins) control pain via GPCR signaling? (4) How do immunotherapies through the PD-L1/PD-1 and STING/IFN pathways regulate pain, cognition, and neuronal activities? (5) How do secreted miRNAs regulate pain and itch via direct activation of surface receptors and ion channels? (6) How do nerve terminals interact with cancers in chronic pain and itch? (7) How do Toll-like receptors (TLR) in primary sensory neurons sense danger signals and regulate pain and itch? (8) How do regenerative approaches such as autologous conditioned serum (ACS) and bone marrow stromal cells (MSCs) produce long-term pain relief via secreting anti-inflammatory factors and exosomes? We employ a multidisciplinary approach that covers in vitro, ex vivo, and in vivo studies for animal behaviors, electrophysiology, molecular biology, cell biology, and transgenic animals. We have identified numerous therapeutic targets and filed many patents for translational studies. As the Director of the Center for Translational Pain Medicine (CTPM) and a highly cited researcher (Cross Field, Clarivate), I have both administrative and scientific leadership for successful completion of many research projects. 


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.