Population genetic differentiation of the hydrothermal vent crab Austinograea alayseae (Crustacea: Bythograeidae) in the Southwest Pacific Ocean.

Loading...
Thumbnail Image

Date

2019-01

Journal Title

Journal ISSN

Volume Title

Repository Usage Stats

59
views
29
downloads

Citation Stats

Abstract

To understand the origin, migration, and distribution of organisms across disjunct deep-sea vent habitats, previous studies have documented the population genetic structures of widely distributed fauna, such as gastropods, bivalves, barnacles, and squat lobsters. However, a limited number of investigations has been conducted in the Southwest Pacific Ocean, and many questions remain. In this study, we determined the population structure of the bythograeid crab Austinograea alayseae from three adjacent vent systems (Manus Basin, North Fiji Basin, and Tonga Arc) in the Southwest Pacific Ocean using the sequences of two mitochondrial genes (COI and 16S rDNA) and one nuclear gene (28S rDNA). Populations were divided into a Manus clade and a North Fiji-Tonga clade, with sequence divergence values in the middle of the barcoding gap for bythograeids. We inferred that hydrographic and/or physical barriers act on the gene flow of A. alayseae between the Manus and North Fiji basins. Austinograea alayseae individuals interact freely between the North Fiji Basin and the Lau Basin (Tonga Arc). Although further studies of genetic differentiation over a geological time scale, life-history attributes, and genome-based population genetics are needed to improve our understanding of the evolutionary history of A. alayseae, our results contribute to elucidating the phylogeny, evolution, and biogeography of bythograeids.

Department

Description

Provenance

Subjects

Citation

Published Version (Please cite this version)

10.1371/journal.pone.0215829

Publication Info

Lee, Won-Kyung, Se-Joo Kim, Bo Kyeng Hou, Cindy Lee Van Dover and Se-Jong Ju (2019). Population genetic differentiation of the hydrothermal vent crab Austinograea alayseae (Crustacea: Bythograeidae) in the Southwest Pacific Ocean. PloS one, 14(4). p. e0215829. 10.1371/journal.pone.0215829 Retrieved from https://hdl.handle.net/10161/19255.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Van Dover

Cindy Van Dover

Harvey W. Smith Distinguished Professor Emeritus of Biological Oceanography in the Division of Earth and Ocean Sciences

Dr. Cindy Lee Van Dover is a deep-sea biologist with an interest in ocean exploration and the ecology of chemosynthetic ecosystems. She began her work in this field in 1982, joining the first biological expedition to hydrothermal vents on the East Pacific Rise. After earning a Master's degree in ecology from UCLA in 1985, she continued her graduate education in the MIT/Woods Hole Oceanographic Institution Joint Program in Biological Oceanography. There she joined numerous expeditions and published on diverse topics such as reproductive strategies and recruitment of vent invertebrates, vent food webs, and taxonomic descriptions of new species. In 1989, she described a novel photoreceptor in a vent invertebrate, which in turn led to discovery and characterization of a geothermal source of light at vents and investigations of its biological significance. On receiving her Ph.D. in 1989, Van Dover joined the group that operates the deep-diving submersible ALVIN. She qualified as pilot in 1990 and was pilot-in-command of 48 dives. Her work with ALVIN and other deep-submergence assets has taken her to nearly all of the known vent fields in the Atlantic and Pacific, as well as to deep-water seamounts, seeps, and other significant seafloor features. Her current research focuses primarily on the study of biodiversity, biogeography, and connectivity of invertebrates from chemosynthetic ecosystems and invertebrate functional anatomy.  in addition, she is active in developing pre-industrialization policy and management strategies for deep-sea resources. She has published more than 80 articles in peer-reviewed journals and is an active participant and Chief Scientist in NSF-and NOAA-sponsored field programs to deep-sea environments. 
In addition to research, Van Dover has authored a popular book for the lay audience about the deep sea and her experiences as an ALVIN pilot (Deep-Ocean Journeys; Addison-Wesley, 1997, a.k.a. The Octopus's Garden). She is also the author of the first textbook on hydrothermal vents (The Ecology of Deep-Sea Hydrothermal Vents; Princeton University Press, 2000). Van Dover is curator of Beyond the Edge of the Sea, a traveling exhibition of illustrations of deep-sea organisms and environments by artist Karen Jacobsen (http://oceanography.ml.duke.edu/discovery/) and is currently project lead for Science and Art at the Moment of Discovery, hosting 6 artists (water color, acrylic, experimental media, batik) on a deep-sea research expedition in June 2012.  Her work has been featured in Science News, Discover Magazine, The New York Times, and National Public Radio. Dr. Van Dover was named Virginia Outstanding Scientist in 2006 and is a Fulbright Scholar (France 2004), Fellow of the American Association for the Advancement of Science, and Distinguished Lecturer for the NSF Ridge 2000 Program. She is the inaugural recipient of the Mines Medal for exceptional leadership and innovation, a George Hammell Cook Distinguished Alumni Award (Cook College, Rutgers University), a Career Awardee from the National Science Foundation, and a William & Mary Alumni Fellowship Awardee for Outstanding Teaching. She is currently the Harvey W Smith Distinguished Professor of Biological Oceanography at Duke University, Chair of the Division of Marine Science and Conservation, and Director of the Duke University Marine Laboratory in Beaufort, N.C.


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.