Social context-dependent singing-regulated dopamine.

Loading...
Thumbnail Image

Date

2006-08-30

Journal Title

Journal ISSN

Volume Title

Repository Usage Stats

179
views
172
downloads

Citation Stats

Abstract

Like the mammalian striatum, the songbird striatum receives dense dopaminergic input from the midbrain ventral tegmental area-substantia nigra pars compacta complex. The songbird striatum also contains a unique vocal nucleus, Area X, which has been implicated in song learning and social context-dependent song production. Area X shows increased neural firing and activity-dependent gene expression when birds sing, and the level of activation is higher and more variable during undirected singing relative to directed singing to other birds. Here we show in the first report of in vivo microdialysis in awake, behaving songbirds that singing is associated with increased dopamine levels in Area X. Dopamine levels are significantly higher with directed relative to undirected singing. This social context-dependent difference in dopamine levels requires the dopamine transporter, because local in vivo blockade of the transporter caused dopamine levels for undirected singing to increase to levels similar to that for directed singing, eliminating the social context-dependent difference. The increase in dopamine is presumably depolarization and vesicular release dependent, because adding of high K+ increased and removal of Ca2+ increased and decreased extracellular DA levels. Our findings implicate DA and molecules that control DA kinetics in singing behavior and social context-dependent brain function.

Department

Description

Provenance

Citation

Published Version (Please cite this version)

10.1523/JNEUROSCI.1335-06.2006

Publication Info

Sasaki, Aya, Tatyana D Sotnikova, Raul R Gainetdinov and Erich D Jarvis (2006). Social context-dependent singing-regulated dopamine. J Neurosci, 26(35). pp. 9010–9014. 10.1523/JNEUROSCI.1335-06.2006 Retrieved from https://hdl.handle.net/10161/11266.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Jarvis

Erich David Jarvis

Adjunct Professor in the Deptartment of Neurobiology

Dr. Jarvis' laboratory studies the neurobiology of vocal communication. Emphasis is placed on the molecular pathways involved in the perception and production of learned vocalizations. They use an integrative approach that combines behavioral, anatomical, electrophysiological and molecular biological techniques. The main animal model used is songbirds, one of the few vertebrate groups that evolved the ability to learn vocalizations. The generality of the discoveries is tested in other vocal learning orders, such as parrots and hummingbirds, as well as non-vocal learners, such as pigeons and non-human primates. Some of the questions require performing behavior/molecular biology experiments in freely ranging animals, such as hummingbirds in tropical forest of Brazil. Recent results show that in songbirds, parrots and hummingbirds, perception and production of song are accompanied by anatomically distinct patterns of gene expression. All three groups were found to exhibit vocally-activated gene expression in exactly 7 forebrain nuclei that are very similar to each other. These structures for vocal learning and production are thought to have evolved independently within the past 70 million years, since they are absent from interrelated non-vocal learning orders. One structure, Area X of the basal ganglia's striatum in songbirds, shows large differential gene activation depending on the social context in which the bird sings. These differences may reflect a semantic content of song, perhaps similar to human language.

The overall goal of the research is to advance knowledge of the neural mechanisms for vocal learning and basic mechanisms of brain function. These goals are further achieved by combined collaborative efforts with the laboratories of Drs. Mooney and Nowicki at Duke University, who study respectively behavior and electrophysiological aspects of songbird vocal communication.


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.