Global versus tract-specific components of cerebral white matter integrity: relation to adult age and perceptual-motor speed.

Loading...
Thumbnail Image

Date

2015-09

Journal Title

Journal ISSN

Volume Title

Citation Stats

Abstract

Although age-related differences in white matter have been well documented, the degree to which regional, tract-specific effects can be distinguished from global, brain-general effects is not yet clear. Similarly, the manner in which global and regional differences in white matter integrity contribute to age-related differences in cognition has not been well established. To address these issues, we analyzed diffusion tensor imaging measures from 52 younger adults (18-28) and 64 older adults (60-85). We conducted principal component analysis on each diffusion measure, using data from eight individual tracts. Two components were observed for fractional anisotropy: the first comprised high loadings from the superior longitudinal fasciculi and corticospinal tracts, and the second comprised high loadings from the optic radiations. In contrast, variation in axial, radial, and mean diffusivities yielded a single-component solution in each case, with high loadings from most or all tracts. For fractional anisotropy, the complementary results of multiple components and variability in component loadings across tracts suggest regional variation. However, for the diffusivity indices, the single component with high loadings from most or all of the tracts suggests primarily global, brain-general variation. Further analyses indicated that age was a significant mediator of the relation between each component and perceptual-motor speed. These data suggest that individual differences in white matter integrity and their relation to age-related differences in perceptual-motor speed represent influences that are beyond the level of individual tracts, but the extent to which regional or global effects predominate may differ between anisotropy and diffusivity measures.

Department

Description

Provenance

Citation

Published Version (Please cite this version)

10.1007/s00429-014-0822-9

Publication Info

Johnson, Micah A, Michele T Diaz and David J Madden (2015). Global versus tract-specific components of cerebral white matter integrity: relation to adult age and perceptual-motor speed. Brain structure & function, 220(5). pp. 2705–2720. 10.1007/s00429-014-0822-9 Retrieved from https://hdl.handle.net/10161/22536.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Madden

David Joseph Madden

Professor in Psychiatry and Behavioral Sciences

My research focuses primarily on the cognitive neuroscience of aging: the investigation of age-related changes in perception, attention, and memory, using both behavioral measures and neuroimaging techniques, including positron emission tomography (PET), functional magnetic resonance imaging (fMRI), and diffusion tensor imaging (DTI).

The behavioral measures have focused on reaction time, with the goal of distinguishing age-related changes in specific cognitive abilities from more general effects arising from a slowing in elementary perceptual processes. The cognitive abilities of interest include selective attention as measured in visual search tasks, semantic and episodic memory retrieval, and executive control processes.

The behavioral measures are necessary to define the cognitive abilities of interest, and the neuroimaging techniques help define the functional neuroanatomy of those abilities. The PET and fMRI measures provide information regarding neural activity during cognitive performance. DTI is a recently developed technique that images the structural integrity of white matter. The white matter tracts of the brain provide critical pathways linking the gray matter regions, and thus this work will complement the studies using PET and fMRI that focus on gray matter activation.

A current focus of the research program is the functional connectivity among regions, not only during cognitive task performance but also during rest. These latter measures, referred to as intrinsic functional connectivity, are beginning to show promise as an index of overall brain functional efficiency, which can be assessed without the implementation of a specific cognitive task. From DTI, information can be obtained regarding how anatomical connectivity constrains intrinsic functional connectivity. It will be important to determine the relative influence of white matter pathway integrity, intrinsic functional connectivity, and task-related functional connectivity, as mediators of age-related differences in behavioral measures of cognitive performance.

Ultimately, the research program can help link age-related changes in cognitive performance to changes in the structure and function of specific neural systems. The results also have implications for clinical translation, in terms of the identification of neural biomarkers for the diagnosis of neural pathology and targeting rehabilitation procedures.


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.