Scaling Limit: Exact and Tractable Analysis of Online Learning Algorithms with Applications to Regularized Regression and PCA
Abstract
We present a framework for analyzing the exact dynamics of a class of online learning algorithms in the high-dimensional scaling limit. Our results are applied to two concrete examples: online regularized linear regression and principal component analysis. As the ambient dimension tends to infinity, and with proper time scaling, we show that the time-varying joint empirical measures of the target feature vector and its estimates provided by the algorithms will converge weakly to a deterministic measured-valued process that can be characterized as the unique solution of a nonlinear PDE. Numerical solutions of this PDE can be efficiently obtained. These solutions lead to precise predictions of the performance of the algorithms, as many practical performance metrics are linear functionals of the joint empirical measures. In addition to characterizing the dynamic performance of online learning algorithms, our asymptotic analysis also provides useful insights. In particular, in the high-dimensional limit, and due to exchangeability, the original coupled dynamics associated with the algorithms will be asymptotically "decoupled", with each coordinate independently solving a 1-D effective minimization problem via stochastic gradient descent. Exploiting this insight for nonconvex optimization problems may prove an interesting line of future research.
Type
Department
Description
Provenance
Citation
Permalink
Collections
Scholars@Duke

Jonathan Christopher Mattingly
Jonathan Christopher Mattingly grew up in Charlotte, NC, where he attended Irwin Avenue Elementary and Charlotte Country Day. He graduated from the NC School of Science and Mathematics and received a BS is Applied Mathematics with a concentration in physics from Yale University. After two years abroad with a year spent at ENS Lyon studying nonlinear and statistical physics on a Rotary Fellowship, he returned to the US to attend Princeton University, where he obtained a PhD in Applied and Computational Mathematics in 1998. After 4 years as a Szego assistant professor at Stanford University and a year as a member of the IAS in Princeton, he moved to Duke in 2003. He is currently a professor of mathematics and statistical science.
His expertise is in the longtime behavior of stochastic system including randomly forced fluid dynamics, turbulence, stochastic algorithms used in molecular dynamics and Bayesian sampling, and stochasticity in biochemical networks.
Since 2013 he has also been working to understand and quantify gerrymandering and its interaction of a region's geopolitical landscape. This has lead him to testify in a number of court cases including in North Carolina, which led to the NC congressional and both NC legislative maps being deemed unconstitutional and replaced for the 2020 elections.
He is the recipient of a Sloan Fellowship and a PECASE CAREER award. He is also a fellow of the IMS, the AMS, SIAM and AAAS. He was awarded the Defender of Freedom award by Common Cause for his work on Quantifying Gerrymandering.
Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.