The Dark Energy Survey Supernova Program: Cosmological biases from supernova photometric classification
dc.contributor.author | Vincenzi, M | |
dc.contributor.author | Sullivan, M | |
dc.contributor.author | Möller, A | |
dc.contributor.author | Armstrong, P | |
dc.contributor.author | Bassett, BA | |
dc.contributor.author | Brout, D | |
dc.contributor.author | Carollo, D | |
dc.contributor.author | Carr, A | |
dc.contributor.author | Davis, TM | |
dc.contributor.author | Frohmaier, C | |
dc.contributor.author | Galbany, L | |
dc.contributor.author | Glazebrook, K | |
dc.contributor.author | Graur, O | |
dc.contributor.author | Kelsey, L | |
dc.contributor.author | Kessler, R | |
dc.contributor.author | Kovacs, E | |
dc.contributor.author | Lewis, GF | |
dc.contributor.author | Lidman, C | |
dc.contributor.author | Malik, U | |
dc.contributor.author | Nichol, RC | |
dc.contributor.author | Popovic, B | |
dc.contributor.author | Sako, M | |
dc.contributor.author | Scolnic, D | |
dc.contributor.author | Smith, M | |
dc.contributor.author | Taylor, G | |
dc.contributor.author | Tucker, BE | |
dc.contributor.author | Wiseman, P | |
dc.contributor.author | Aguena, M | |
dc.contributor.author | Allam, S | |
dc.contributor.author | Annis, J | |
dc.contributor.author | Asorey, J | |
dc.contributor.author | Bacon, D | |
dc.contributor.author | Bertin, E | |
dc.contributor.author | Brooks, D | |
dc.contributor.author | Burke, DL | |
dc.contributor.author | Rosell, A Carnero | |
dc.contributor.author | Carretero, J | |
dc.contributor.author | Castander, FJ | |
dc.contributor.author | Costanzi, M | |
dc.contributor.author | Costa, LN da | |
dc.contributor.author | Pereira, MES | |
dc.contributor.author | Vicente, J De | |
dc.contributor.author | Desai, S | |
dc.contributor.author | Diehl, HT | |
dc.contributor.author | Doel, P | |
dc.contributor.author | Everett, S | |
dc.contributor.author | Ferrero, I | |
dc.contributor.author | Flaugher, B | |
dc.contributor.author | Fosalba, P | |
dc.contributor.author | Frieman, J | |
dc.contributor.author | García-Bellido, J | |
dc.contributor.author | Gerdes, DW | |
dc.contributor.author | Gruen, D | |
dc.contributor.author | Gutierrez, G | |
dc.contributor.author | Hinton, SR | |
dc.contributor.author | Hollowood, DL | |
dc.contributor.author | Honscheid, K | |
dc.contributor.author | James, DJ | |
dc.contributor.author | Kuehn, K | |
dc.contributor.author | Kuropatkin, N | |
dc.contributor.author | Lahav, O | |
dc.contributor.author | Li, TS | |
dc.contributor.author | Lima, M | |
dc.contributor.author | Maia, MAG | |
dc.contributor.author | Marshall, JL | |
dc.contributor.author | Miquel, R | |
dc.contributor.author | Morgan, R | |
dc.contributor.author | Ogando, RLC | |
dc.contributor.author | Palmese, A | |
dc.contributor.author | Paz-Chinchón, F | |
dc.contributor.author | Pieres, A | |
dc.contributor.author | Malagón, AA Plazas | |
dc.contributor.author | Reil, K | |
dc.contributor.author | Roodman, A | |
dc.contributor.author | Sanchez, E | |
dc.contributor.author | Schubnell, M | |
dc.contributor.author | Serrano, S | |
dc.contributor.author | Sevilla-Noarbe, I | |
dc.contributor.author | Suchyta, E | |
dc.contributor.author | Tarle, G | |
dc.contributor.author | To, C | |
dc.contributor.author | Varga, TN | |
dc.contributor.author | Weller, J | |
dc.contributor.author | Wilkinson, RD | |
dc.date.accessioned | 2021-12-25T15:00:41Z | |
dc.date.available | 2021-12-25T15:00:41Z | |
dc.date.updated | 2021-12-25T15:00:40Z | |
dc.description.abstract | Cosmological analyses of samples of photometrically-identified Type Ia supernovae (SNe Ia) depend on understanding the effects of 'contamination' from core-collapse and peculiar SN Ia events. We employ a rigorous analysis on state-of-the-art simulations of photometrically identified SN Ia samples and determine cosmological biases due to such 'non-Ia' contamination in the Dark Energy Survey (DES) 5-year SN sample. As part of the analysis, we test on our DES simulations the performance of SuperNNova, a photometric SN classifier based on recurrent neural networks. Depending on the choice of non-Ia SN models in both the simulated data sample and training sample, contamination ranges from 0.8-3.5 %, with the efficiency of the classification from 97.7-99.5 %. Using the Bayesian Estimation Applied to Multiple Species (BEAMS) framework and its extension 'BEAMS with Bias Correction' (BBC), we produce a redshift-binned Hubble diagram marginalised over contamination and corrected for selection effects and we use it to constrain the dark energy equation-of-state, $w$. Assuming a flat universe with Gaussian $\Omega_M$ prior of $0.311\pm0.010$, we show that biases on $w$ are $<0.008$ when using SuperNNova and accounting for a wide range of non-Ia SN models in the simulations. Systematic uncertainties associated with contamination are estimated to be at most $\sigma_{w, \mathrm{syst}}=0.004$. This compares to an expected statistical uncertainty of $\sigma_{w,\mathrm{stat}}=0.039$ for the DES-SN sample, thus showing that contamination is not a limiting uncertainty in our analysis. We also measure biases due to contamination on $w_0$ and $w_a$ (assuming a flat universe), and find these to be $<$0.009 in $w_0$ and $<$0.108 in $w_a$, hence 5 to 10 times smaller than the statistical uncertainties expected from the DES-SN sample. | |
dc.identifier.uri | ||
dc.subject | astro-ph.CO | |
dc.subject | astro-ph.CO | |
dc.title | The Dark Energy Survey Supernova Program: Cosmological biases from supernova photometric classification | |
dc.type | Journal article | |
duke.contributor.orcid | Scolnic, D|0000-0002-4934-5849 | |
pubs.organisational-group | Trinity College of Arts & Sciences | |
pubs.organisational-group | Physics | |
pubs.organisational-group | Duke |