The Dark Energy Survey Supernova Program: Cosmological biases from supernova photometric classification

dc.contributor.author

Vincenzi, M

dc.contributor.author

Sullivan, M

dc.contributor.author

Möller, A

dc.contributor.author

Armstrong, P

dc.contributor.author

Bassett, BA

dc.contributor.author

Brout, D

dc.contributor.author

Carollo, D

dc.contributor.author

Carr, A

dc.contributor.author

Davis, TM

dc.contributor.author

Frohmaier, C

dc.contributor.author

Galbany, L

dc.contributor.author

Glazebrook, K

dc.contributor.author

Graur, O

dc.contributor.author

Kelsey, L

dc.contributor.author

Kessler, R

dc.contributor.author

Kovacs, E

dc.contributor.author

Lewis, GF

dc.contributor.author

Lidman, C

dc.contributor.author

Malik, U

dc.contributor.author

Nichol, RC

dc.contributor.author

Popovic, B

dc.contributor.author

Sako, M

dc.contributor.author

Scolnic, D

dc.contributor.author

Smith, M

dc.contributor.author

Taylor, G

dc.contributor.author

Tucker, BE

dc.contributor.author

Wiseman, P

dc.contributor.author

Aguena, M

dc.contributor.author

Allam, S

dc.contributor.author

Annis, J

dc.contributor.author

Asorey, J

dc.contributor.author

Bacon, D

dc.contributor.author

Bertin, E

dc.contributor.author

Brooks, D

dc.contributor.author

Burke, DL

dc.contributor.author

Rosell, A Carnero

dc.contributor.author

Carretero, J

dc.contributor.author

Castander, FJ

dc.contributor.author

Costanzi, M

dc.contributor.author

Costa, LN da

dc.contributor.author

Pereira, MES

dc.contributor.author

Vicente, J De

dc.contributor.author

Desai, S

dc.contributor.author

Diehl, HT

dc.contributor.author

Doel, P

dc.contributor.author

Everett, S

dc.contributor.author

Ferrero, I

dc.contributor.author

Flaugher, B

dc.contributor.author

Fosalba, P

dc.contributor.author

Frieman, J

dc.contributor.author

García-Bellido, J

dc.contributor.author

Gerdes, DW

dc.contributor.author

Gruen, D

dc.contributor.author

Gutierrez, G

dc.contributor.author

Hinton, SR

dc.contributor.author

Hollowood, DL

dc.contributor.author

Honscheid, K

dc.contributor.author

James, DJ

dc.contributor.author

Kuehn, K

dc.contributor.author

Kuropatkin, N

dc.contributor.author

Lahav, O

dc.contributor.author

Li, TS

dc.contributor.author

Lima, M

dc.contributor.author

Maia, MAG

dc.contributor.author

Marshall, JL

dc.contributor.author

Miquel, R

dc.contributor.author

Morgan, R

dc.contributor.author

Ogando, RLC

dc.contributor.author

Palmese, A

dc.contributor.author

Paz-Chinchón, F

dc.contributor.author

Pieres, A

dc.contributor.author

Malagón, AA Plazas

dc.contributor.author

Reil, K

dc.contributor.author

Roodman, A

dc.contributor.author

Sanchez, E

dc.contributor.author

Schubnell, M

dc.contributor.author

Serrano, S

dc.contributor.author

Sevilla-Noarbe, I

dc.contributor.author

Suchyta, E

dc.contributor.author

Tarle, G

dc.contributor.author

To, C

dc.contributor.author

Varga, TN

dc.contributor.author

Weller, J

dc.contributor.author

Wilkinson, RD

dc.date.accessioned

2021-12-25T15:00:41Z

dc.date.available

2021-12-25T15:00:41Z

dc.date.updated

2021-12-25T15:00:40Z

dc.description.abstract

Cosmological analyses of samples of photometrically-identified Type Ia supernovae (SNe Ia) depend on understanding the effects of 'contamination' from core-collapse and peculiar SN Ia events. We employ a rigorous analysis on state-of-the-art simulations of photometrically identified SN Ia samples and determine cosmological biases due to such 'non-Ia' contamination in the Dark Energy Survey (DES) 5-year SN sample. As part of the analysis, we test on our DES simulations the performance of SuperNNova, a photometric SN classifier based on recurrent neural networks. Depending on the choice of non-Ia SN models in both the simulated data sample and training sample, contamination ranges from 0.8-3.5 %, with the efficiency of the classification from 97.7-99.5 %. Using the Bayesian Estimation Applied to Multiple Species (BEAMS) framework and its extension 'BEAMS with Bias Correction' (BBC), we produce a redshift-binned Hubble diagram marginalised over contamination and corrected for selection effects and we use it to constrain the dark energy equation-of-state, $w$. Assuming a flat universe with Gaussian $\Omega_M$ prior of $0.311\pm0.010$, we show that biases on $w$ are $<0.008$ when using SuperNNova and accounting for a wide range of non-Ia SN models in the simulations. Systematic uncertainties associated with contamination are estimated to be at most $\sigma_{w, \mathrm{syst}}=0.004$. This compares to an expected statistical uncertainty of $\sigma_{w,\mathrm{stat}}=0.039$ for the DES-SN sample, thus showing that contamination is not a limiting uncertainty in our analysis. We also measure biases due to contamination on $w_0$ and $w_a$ (assuming a flat universe), and find these to be $<$0.009 in $w_0$ and $<$0.108 in $w_a$, hence 5 to 10 times smaller than the statistical uncertainties expected from the DES-SN sample.

dc.identifier.uri

https://hdl.handle.net/10161/24139

dc.subject

astro-ph.CO

dc.subject

astro-ph.CO

dc.title

The Dark Energy Survey Supernova Program: Cosmological biases from supernova photometric classification

dc.type

Journal article

duke.contributor.orcid

Scolnic, D|0000-0002-4934-5849

pubs.organisational-group

Trinity College of Arts & Sciences

pubs.organisational-group

Physics

pubs.organisational-group

Duke

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2111.10382v1.pdf
Size:
1.87 MB
Format:
Adobe Portable Document Format