Apolipoprotein E Mimetic Promotes Functional and Histological Recovery in Lysolecithin-Induced Spinal Cord Demyelination in Mice.

Abstract

OBJECTIVE: Considering demyelination is the pathological hallmark of multiple sclerosis (MS), reducing demyelination and/or promoting remyelination is a practical therapeutic strategy to improve functional recovery for MS. An apolipoprotein E (apoE)-mimetic peptide COG112 has previously demonstrated therapeutic efficacy on functional and histological recovery in a mouse experimental autoimmune encephalomyelitis (EAE) model of human MS. In the current study, we further investigated whether COG112 promotes remyelination and improves functional recovery in lysolecithin induced focal demyelination in the white matter of spinal cord in mice. METHODS: A focal demyelination model was created by stereotaxically injecting lysolecithin into the bilateral ventrolateral funiculus (VLF) of T8 and T9 mouse spinal cords. Immediately after lysolecithin injection mice were treated with COG112, prefix peptide control or vehicle control for 21 days. The locomotor function of the mice was measured by the beam walking test and Basso Mouse Scale (BMS) assessment. The nerve transmission of the VLF of mice was assessed in vivo by transcranial magnetic motor evoked potentials (tcMMEPs). The histological changes were also examined by by eriochrome cyanine staining, immunohistochemistry staining and electron microscopy (EM) method. RESULTS: The area of demyelination in the spinal cord was significantly reduced in the COG112 group. EM examination showed that treatment with COG112 increased the thickness of myelin sheaths and the numbers of surviving axons in the lesion epicenter. Locomotor function was improved in COG112 treated animals when measured by the beam walking test and BMS assessment compared to controls. TcMMEPs also demonstrated the COG112-mediated enhancement of amplitude of evoked responses. CONCLUSION: The apoE-mimetic COG112 demonstrates a favorable combination of activities in suppressing inflammatory response, mitigating demyelination and in promoting remyelination and associated functional recovery in animal model of CNS demyelination. These data support that apoE-mimetic strategy may represent a promising therapy for MS and other demyelination disorders.

Department

Description

Provenance

Citation

Published Version (Please cite this version)

10.4172/2155-9562.S12-010

Publication Info

Gu, Zhen, Fengqiao Li, Yi Ping Zhang, Lisa BE Shields, Xiaoling Hu, Yiyan Zheng, Panpan Yu, Yongjie Zhang, et al. (2013). Apolipoprotein E Mimetic Promotes Functional and Histological Recovery in Lysolecithin-Induced Spinal Cord Demyelination in Mice. J Neurol Neurophysiol, 2014(Suppl 12). p. 10. 10.4172/2155-9562.S12-010 Retrieved from https://hdl.handle.net/10161/16045.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Vitek

Michael P. Vitek

Adjunct Associate Professor in Neurology

The overall interest of my laboratory is to identify the underlying causes of neurodegenerative diseases such as Alzheimer's disease. Once causes or experimental endpoints are determined, then strategies to find chemicals which can ameliorate pathophysiological events can be devised. In general, we are working to create transgenic animals and validate them as models of human disease.

Our specific approach has been to study the function of apolipoprotein-E (apoE) which Roses and colleagues found to a susceptibility factor for the presence of AD. Currently, our data are pointing to a relationship between apoE and oxidative stress where apoE appears to modulate nitric oxide production in a species specific manner. To further test this idea, we have created transgenic mice expressing the entire human NOS2 gene which will now be tested in various models of neurodegeneration and inflammation. Similarly, we are developing transgenic animals which express the human TAU gene. When properly stressed, these TAU-transgenic animals may display the neurofibrillary tangle pathology which is associated with neurodegeneration in a wide variety of neurological diseases.

If our transgenic animals prove to be validated models of human
disease, then the process to screen for chemicals which might alter the disease outcome in those models can begin in earnest. Should compounds be identified, then the various phases of clinical trials may proceed.

At present, my community service includes participation on the Alzheimer's Association Medical and Scientific Advisory Board and on the Neurological Sciences III Study Section for the National Institutes of Health extramural research program. I have previously served in a similar capacity for the American Health Assistance Foundation and the Long Island Alzheimer's Foundation. I have also had the pleasure to serve as a scientific consultant for various biotechnology companies.

Keywords: Neurodegeneration, Alzheimer's, Transgenic, Animal Models, Amyloid, Apolipoprotein-E, Molecular Biology, Biochemistry


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.