Latent Space Diffusion

Loading...
Thumbnail Image

Date

2015

Journal Title

Journal ISSN

Volume Title

Repository Usage Stats

503
views
256
downloads

Abstract

Social networks represent two different facets of social life: (1) stable paths for diffusion, or the spread of something through a connected population, and (2) random draws from an underlying social space, which indicate the relative positions of the people in the network to one another. The dual nature of networks creates a challenge - if the observed network ties are a single random draw, is it realistic to expect that diffusion only follows the observed network ties? This study takes a first step towards integrating these two perspectives by introducing a social space diffusion model. In the model, network ties indicate positions in social space, and diffusion occurs proportionally to distance in social space. Practically, the simulation occurs in two parts: positions are estimated using a latent space model, and then the predicted probabilities of a tie from that model - representing the distances in social space - or a series of networks drawn from those probabilities - representing routine churn in the network - are used as weights in a weighted averaging framework. Using a school friendship network, I show that the model is more consistent and, when probabilities are used, the model converges faster than diffusion following only the observed network ties.

Description

Provenance

Citation

Citation

Fisher, Jacob Charles (2015). Latent Space Diffusion. Master's thesis, Duke University. Retrieved from https://hdl.handle.net/10161/9999.

Collections


Except where otherwise noted, student scholarship that was shared on DukeSpace after 2009 is made available to the public under a Creative Commons Attribution / Non-commercial / No derivatives (CC-BY-NC-ND) license. All rights in student work shared on DukeSpace before 2009 remain with the author and/or their designee, whose permission may be required for reuse.