The essential and downstream common proteins of amyotrophic lateral sclerosis: A protein-protein interaction network analysis.
Date
2017-01
Journal Title
Journal ISSN
Volume Title
Repository Usage Stats
views
downloads
Citation Stats
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a devastative neurodegenerative disease characterized by selective loss of motoneurons. While several breakthroughs have been made in identifying ALS genetic defects, the detailed molecular mechanisms are still unclear. These genetic defects involve in numerous biological processes, which converge to a common destiny: motoneuron degeneration. In addition, the common comorbid Frontotemporal Dementia (FTD) further complicates the investigation of ALS etiology. In this study, we aimed to explore the protein-protein interaction network built on known ALS-causative genes to identify essential proteins and common downstream proteins between classical ALS and ALS+FTD (classical ALS + ALS/FTD) groups. The results suggest that classical ALS and ALS+FTD share similar essential protein set (VCP, FUS, TDP-43 and hnRNPA1) but have distinctive functional enrichment profiles. Thus, disruptions to these essential proteins might cause motoneuron susceptible to cellular stresses and eventually vulnerable to proteinopathies. Moreover, we identified a common downstream protein, ubiquitin-C, extensively interconnected with ALS-causative proteins (22 out of 24) which was not linked to ALS previously. Our in silico approach provides the computational background for identifying ALS therapeutic targets, and points out the potential downstream common ground of ALS-causative mutations.
Type
Department
Description
Provenance
Subjects
Citation
Permalink
Published Version (Please cite this version)
Publication Info
Mao, Yimin, Su-Wei Kuo, Le Chen, CJ Heckman and MC Jiang (2017). The essential and downstream common proteins of amyotrophic lateral sclerosis: A protein-protein interaction network analysis. PloS one, 12(3). p. e0172246. 10.1371/journal.pone.0172246 Retrieved from https://hdl.handle.net/10161/22924.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.