Analysis of clinical predictors of kidney diseases in type 2 diabetes patients based on machine learning.

Abstract

Background

The heterogeneity of Type 2 Diabetes Mellitus (T2DM) complicated with renal diseases has not been fully understood in clinical practice. The purpose of the study was to propose potential predictive factors to identify diabetic kidney disease (DKD), nondiabetic kidney disease (NDKD), and DKD superimposed on NDKD (DKD + NDKD) in T2DM patients noninvasively and accurately.

Methods

Two hundred forty-one eligible patients confirmed by renal biopsy were enrolled in this retrospective, analytical study. The features composed of clinical and biochemical data prior to renal biopsy were extracted from patients' electronic medical records. Machine learning algorithms were used to distinguish among different kidney diseases pairwise. Feature variables selected in the developed model were evaluated.

Results

Logistic regression model achieved an accuracy of 0.8306 ± 0.0057 for DKD and NDKD classification. Hematocrit, diabetic retinopathy (DR), hematuria, platelet distribution width and history of hypertension were identified as important risk factors. Then SVM model allowed us to differentiate NDKD from DKD + NDKD with accuracy 0.8686 ± 0.052 where hematuria, diabetes duration, international normalized ratio (INR), D-Dimer, high-density lipoprotein cholesterol were the top risk factors. Finally, the logistic regression model indicated that DD-dimer, hematuria, INR, systolic pressure, DR were likely to be predictive factors to identify DKD with DKD + NDKD.

Conclusion

Predictive factors were successfully identified among different renal diseases in type 2 diabetes patients via machine learning methods. More attention should be paid on the coagulation factors in the DKD + NDKD patients, which might indicate a hypercoagulable state and an increased risk of thrombosis.

Department

Description

Provenance

Citation

Published Version (Please cite this version)

10.1007/s11255-022-03322-1

Publication Info

Hui, Dongna, Yiyang Sun, Shixin Xu, Junjie Liu, Ping He, Yuhui Deng, Huaxiong Huang, Xiaoshuang Zhou, et al. (2022). Analysis of clinical predictors of kidney diseases in type 2 diabetes patients based on machine learning. International urology and nephrology. 10.1007/s11255-022-03322-1 Retrieved from https://hdl.handle.net/10161/26435.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Xu

Shixin Xu

Assistant Professor of Mathematics at Duke Kunshan University

Shixin Xu is an Assistant Professor of Mathematics whose research spans several dynamic and interconnected fields. His primary interests include machine learning and data-driven models for disease prediction, multiscale modeling of complex fluids, neurovascular coupling, homogenization theory, and numerical analysis. His current projects reflect a diverse and impactful portfolio:

  • Developing predictive models based on image data to identify hemorrhagic transformation in acute ischemic stroke.
  • Conducting electrodynamics modeling of saltatory conduction along myelinated axons to understand nerve impulse transmission.
  • Engaging in electrochemical modeling to explore the interactions between electric fields and chemical processes.
  • Investigating fluid-structure interactions with mass transport and reactions, crucial for understanding physiological and engineering systems.

These projects demonstrate his commitment to addressing complex problems through interdisciplinary approaches that bridge mathematics with biological and physical sciences.


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.