NOISE-INDUCED STRONG STABILIZATION

dc.contributor.author

Leimbach, M

dc.contributor.author

Mattingly, JC

dc.contributor.author

Scheutzow, M

dc.date.accessioned

2025-01-01T23:12:36Z

dc.date.available

2025-01-01T23:12:36Z

dc.date.issued

2022-01-01

dc.description.abstract

We consider a 2-dimensional stochastic differential equation in polar coordinates depending on several parameters. We show that if these parameters belong to a specific regime then the deterministic system explodes in finite time, but the random dynamical system corresponding to the stochastic equation is not only strongly complete but even admits a random attractor.

dc.identifier.issn

2189-3756

dc.identifier.issn

2189-3764

dc.identifier.uri

https://hdl.handle.net/10161/31855

dc.relation.ispartof

Pure and Applied Functional Analysis

dc.rights.uri

https://creativecommons.org/licenses/by-nc/4.0

dc.title

NOISE-INDUCED STRONG STABILIZATION

dc.type

Journal article

duke.contributor.orcid

Mattingly, JC|0000-0002-1819-729X

pubs.begin-page

1383

pubs.end-page

1404

pubs.issue

4

pubs.organisational-group

Duke

pubs.organisational-group

Trinity College of Arts & Sciences

pubs.organisational-group

Mathematics

pubs.organisational-group

Statistical Science

pubs.publication-status

Published

pubs.volume

7

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2009.10573v2.pdf
Size:
1.02 MB
Format:
Adobe Portable Document Format
Description:
Accepted version