NOISE-INDUCED STRONG STABILIZATION
dc.contributor.author | Leimbach, M | |
dc.contributor.author | Mattingly, JC | |
dc.contributor.author | Scheutzow, M | |
dc.date.accessioned | 2025-01-01T23:12:36Z | |
dc.date.available | 2025-01-01T23:12:36Z | |
dc.date.issued | 2022-01-01 | |
dc.description.abstract | We consider a 2-dimensional stochastic differential equation in polar coordinates depending on several parameters. We show that if these parameters belong to a specific regime then the deterministic system explodes in finite time, but the random dynamical system corresponding to the stochastic equation is not only strongly complete but even admits a random attractor. | |
dc.identifier.issn | 2189-3756 | |
dc.identifier.issn | 2189-3764 | |
dc.identifier.uri | ||
dc.relation.ispartof | Pure and Applied Functional Analysis | |
dc.rights.uri | ||
dc.title | NOISE-INDUCED STRONG STABILIZATION | |
dc.type | Journal article | |
duke.contributor.orcid | Mattingly, JC|0000-0002-1819-729X | |
pubs.begin-page | 1383 | |
pubs.end-page | 1404 | |
pubs.issue | 4 | |
pubs.organisational-group | Duke | |
pubs.organisational-group | Trinity College of Arts & Sciences | |
pubs.organisational-group | Mathematics | |
pubs.organisational-group | Statistical Science | |
pubs.publication-status | Published | |
pubs.volume | 7 |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- 2009.10573v2.pdf
- Size:
- 1.02 MB
- Format:
- Adobe Portable Document Format
- Description:
- Accepted version