Self-Assembled Resonance Energy Transfer Devices
Date
2013
Authors
Advisors
Journal Title
Journal ISSN
Volume Title
Repository Usage Stats
views
downloads
Abstract
This dissertation hypothesizes,
"It is possible to design a self-assembled, nanoscale, high-speed, resonance energy transfer device exhibiting non-linear gain with a few molecules."
The report recognizes DNA self-assembly, a relatively inexpensive and a massively parallel fabrication process, as a strong candidate for self-assembled RET systems. It successfully investigates into the design and simulations of a novel sequential self-assembly process employed to realize the goal of creating large, scalable, fully-addressable DNA nanostructure-substrate for future molecular circuitry.
As a pre-cursor to the final device modeling various RET wire designs for interconnecting nanocircuits are presented and their modeling and simulation results are discussed. A chromophore RET system using a biomolecular sensor as a proof-of-concept argument that shows it is possible to model and characterize chromophore systems as a first step towards device modeling is also discussed.
Finally, the thesis report describes in detail the design, modeling, characterization, and fabrication of the Closed-Diffusive Exciton Valve: a self-assembled, nanoscale (area of 17.34 nm2), high-speed (3.5 ps to 6 ps) resonance energy transfer device exhibiting non-linear gain using only 10 molecules, thus confirming the hypothesis. It also recognized improvements that can be made in the future to facilitate better device operation and suggested various applications.
Type
Department
Description
Provenance
Citation
Permalink
Citation
Thusu, Viresh (2013). Self-Assembled Resonance Energy Transfer Devices. Dissertation, Duke University. Retrieved from https://hdl.handle.net/10161/7251.
Collections
Except where otherwise noted, student scholarship that was shared on DukeSpace after 2009 is made available to the public under a Creative Commons Attribution / Non-commercial / No derivatives (CC-BY-NC-ND) license. All rights in student work shared on DukeSpace before 2009 remain with the author and/or their designee, whose permission may be required for reuse.