The actin cytoskeleton as a barrier to virus infection of polarized epithelial cells.

Loading...
Thumbnail Image

Date

2011-12-21

Journal Title

Journal ISSN

Volume Title

Repository Usage Stats

51
views
16
downloads

Citation Stats

Abstract

Many diverse viruses target a polarized epithelial monolayer during host invasion. The polarized epithelium is adept at restricting the movement of solutes, ions, macromolecules, and pathogens across the mucosa. This regulation can be attributed to the presence of a junctional complex between adjacent cells and to an intricate network of actin filaments that provides support to the subapical membrane and stabilizes intercellular junctions. It is therefore not surprising that many viruses have evolved highly varied strategies to dissolve or modulate the cortical actin meshwork to promote infection of polarized cells. In this review, we will discuss the cell biological properties of the actin cytoskeleton in polarized epithelial cells and review the known mechanisms utilized by viral pathogens to manipulate this system in order to facilitate their infection.

Department

Description

Provenance

Citation

Published Version (Please cite this version)

10.3390/v3122462

Publication Info

Delorme-Axford, Elizabeth, and Carolyn B Coyne (2011). The actin cytoskeleton as a barrier to virus infection of polarized epithelial cells. Viruses, 3(12). pp. 2462–2477. 10.3390/v3122462 Retrieved from https://hdl.handle.net/10161/22597.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Coyne

Carolyn Coyne

George Barth Geller Distinguished Professor of Immunology

We study the pathways by which microorganisms cross cellular barriers and the mechanisms by which these barriers restrict microbial infections. Our studies primarily focus on the epithelium that lines the gastrointestinal tract and on placental trophoblasts, the cells that comprise a key cellular barrier of the human placenta. Our work is highly multidisciplinary and encompasses aspects of cell biology, immunology, and microbiology. Our long-term goals are to identify pathogen- and host-specific therapeutic targets to prevent or treat microbial infections and ultimately to alleviate the morbidity and mortality caused by these infections.


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.