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1 Abstract

Proteins perform a variety of biological tasks, and drive many of the dynamic processes that

make life possible. Computational structure-based protein design (CSPD) involves com-

puting optimal sequences of amino acids with respect to particular backbones, or folds, in

order to produce proteins with novel functions. In particular, it is crucial to be able to

accurately model protein-protein interfaces (PPIs) in order to realize desired functionalities.

Accurate modeling of PPIs raises two significant considerations. First, incorporating contin-

uous side-chain flexibility in the design process has been shown to significantly improve the

quality of designs. Second, because proteins exist as ensembles of structures, many of the

properties we wish to design, including binding affinity, require the computation of ensem-

ble properties as opposed to features of particular conformations. The bottleneck in many

design algorithms that attempt to handle the ensemble nature of protein structure, includ-

ing the Donald Lab’s K∗ algorithm, is the computation of the partition function, which is

the sum of the Boltzmann-weighted energies of all the conformational states of a protein or

protein-ligand complex. Protein design can be formulated as an inference problem on Markov

random fields (MRFs), where each residue to be designed is represented by a node in the

MRF and an edge is placed between nodes corresponding to interacting residues. Label sets

on each vertex correspond to allowed flexibility in the underlying design problem. The aim

of this work is to extend message-passing algorithms that estimate the partition function for

Markov random fields with discrete label sets to MRFs with continuous label sets in order to

compute the partition function for PPIs with continuous flexibility and continuous entropy.
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2 Computational Structure-Based Protein Design

The immense biomedical importance of proteins makes them attractive for use as therapeu-

tic agents and as targets for novel therapies. However, the sheer number of possibly relevant

protein structures in any biological situation renders exhaustive experimental analysis and

validation of every candidate protein impractical in most scenarios. In order to compre-

hensively explore the space of possible drugs and drug targets, it is thus necessary to use

computational methods to design and test biomedically relevant molecules in silico. This

section provides some background on existing protein design algorithms in order to help

explain the differences between algorithms using continuous-label MRFs and other design

algorithms.

Protein design algorithms attempt to identify optimal amino acid sequences to produce

target structures with specific and/or novel functionalities. Computational structure-based

protein design (CSPD) seeks to search over the space of protein structures and/or sequences,

and select optimal proteins according to parameters defined by a provided input model that

not only defines permissible amino acid sequences and conformations, but also provides

energy functions for analyzing and evaluating the optimality of particular protein structures.

Because the size of the resulting conformational space is exponential in the number of residue

positions on the protein being designed, exhaustive search of the space is impossible. This

demands the development of novel algorithms to efficiently identify promising structures;

these algorithms then find applications in various experimental designs, including predicting

resistance mutations [18] and designing inhibitors to rescue lost protein functionality in

diseases such as cystic fibrosis [20].

2.1 Conformation Optimization and the GMEC Model

The traditional formulation of the protein design problem takes as input a rigid protein

backbone and places amino acids along that backbone in energetically optimal conformations
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[6]. Thus, choosing amino acids for each position involves not only a choice of sequence but,

critically, a choice of structure. Though amino acid side chain motion is continuous in

solution, initial formulations of the protein design problem restrict possible conformations

of each amino acid side chain to a discrete set of rigid conformations. Each amino acid has

a set number of side chain dihedral angles, also called χ angles; rotameric assignments are

thus often represented as assignments to each χ angle of the residue.

These rotational isomers, or rotamers, in turn define the conformational space over which

protein design algorithms search [16]. Specifically, if there are n residues which are to be

designed or redesigned, and each residue has on average q conformations, then the confor-

mational space consists of nq conformations; that is, the overall conformational space is just

the Cartesian product of the conformational spaces (sets of rotamers) of each mutable amino

acid.

Thus the protein design problem can be reduced to a side-chain placement problem

that seeks to optimize an energy function that evaluates the energetic favorability of a

conformation over a set of discrete conformations. This permits the use of efficient provable

search techniques, including the combination of dead-end elimination (DEE) and A∗ search

[6]. This side-chain placement formulation saw early success in the full-sequence redesign of

a Zinc finger protein [5].

Determining optimal amino acid conformations is a key problem in CSPD, and inadequate

modeling of protein side-chain flexibility can cause algorithms to fail to identify biomedically

relevant protein structures. While modeling amino acid conformations as rigid structures

is computationally attractive, including continuous side-chain flexibility has proved to be

crucial for accurate designs. For example, the iMinDEE algorithm allows amino acid side

chains to minimize their energy within a square voxel with a length in each dimension of the

amino acid’s configuration space of 18 degrees; in turn, it computes lower bounds on protein

energies to enumerate optimal structures and design peptides [9]. This is the first axis along
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which we can characterize protein design algorithms: the inclusion of continuous flexibility

when modeling amino acid side-chain movements.

2.2 Computing Ensemble Properties of Proteins

Both of these formulations of the protein design problems, side-chain placement and iMinDEE,

seek to identify optimal structures by computing the global minimum energy conformation

(GMEC). In this manner protein function optimization is treated as protein structure opti-

mization, and the goal within the GMEC model is to identify the lowest-energy conformation

or structure. However, this formulation is inaccurate in a biological sense when attempting to

engineer proteins with novel functionality. Proteins exist as thermodynamic ensembles, and

binding affinities depend on the free energy of these ensembles as opposed to internal ener-

gies of particular conformations. This is to say that protein design algorithms that attempt

to optimize for binding need to take into condition entropic changes as well as enthalpic

changes, and understand the ensemble properties of sequences being considered [7]. This is

the second axis along which we may characterize protein design algorithms: the inclusion of

ensemble properties when trying to design novel functionality.

Computing protein ensembles (and the associated partition function) is significantly

harder than enumerating the lowest energy conformation; however, it is still possible to

compute provably accurate approximations to the partition function, as the K∗ algorithm

does. The algorithm computes an approximation to the binding constant of two proteins by

computing the ratio of partition functions between bound and unbound states. To approx-

imate each partition function, K∗ enumerates conformations in order of increasing energy

using the A∗ algorithm and stops once a provable ε-approximation to the partition function

has been computed [21].

The probability of a protein occupying a particular conformational microstate is propor-

tional to the negative exponential of the energy of that state; the probability p of a protein
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existing in the conformation c is expressible as

p(c) =
exp

(
−Ec/RT

)
Z

(1)

where Ec is the energy of the conformation c, R is the gas constant, T is the temperature

(the quantity β = 1/RT is also referred to as thermodynamic beta), and Z is a normalizing

constant called the partition function. That is, if C is the conformational space of the protein,

then Z is defined as:

Z =

∫
c∈C

exp
(
−Ec/RT

)
. (2)

Computation of the partition function is particularly significant in that being able to estimate

the partition function allows for the estimation of several other important thermodynamic

quantities, including binding constants, free energy, and entropy. Most immediately, the

binding constant between a protein and ligand can be approximated as the ratio of partition

functions in the bound and unbound state:

ka =
1

kd
=

ZPL
ZPZL

(3)

where ZPL is the partition function of the protein and ligand bound together, ZP is the

partition function of the unbound protein, and ZL is the partition function of the unbound

ligand.

The K∗ algorithm computes an approximation q∗ to Z based on discretization of the con-

formational space into a set of rigid conformations and enumeration of those conformations

in order of increasing energy. This is possible through the construction of a conformational

tree, with each level in the tree representing a particular residues and each node in the tree

representing a particular assignment to the corresponding residue. Thus, traversing from the

root of the tree to the leaves involves repeatedly assigning rotamers to each mutable residue,

meaning that each leaf represents a fully defined conformation. Thus, through repeated use
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of the A∗ search algorithm, protein conformations (leaves in the tree) can be enumerated in

order of increasing energy. Then, because the conformations to be enumerated will always

have lower Boltzmann weights than the conformations that have already been enumerated,

it is possible to bound the error between the approximation produced by the partial enu-

meration of the sequence and the “true” value of the sum of Boltzmann weights.

In this manner an ε-approximation to Z can be computed without enumerating every

conformation. The iMinDEE/K∗ algorithm performs this same process; however, instead of

conformations being derived from rotameric assignments to each mutable residue, conforma-

tions are minimized prior to being included in the sum of Boltzmann weights. This allows

for the inclusion of continuous flexibility in the computation of ensemble properties. A cor-

respondingly modified ε-approximation to Z can be computed, and the ensuing upper/lower

bounds, are presented in [10].

The iMinDEE/K∗ algorithm incorporates continuous flexibility in that amino acid side

chains in any enumerated conformation are allowed to minimize before the Boltzmann-

weighted energy term is incorporated into the partition function approximation. However,

the approximation still necessitates taking a sum of Boltzmann weights over a discrete set

of conformations, resulting in the computation of a discrete representation of entropy.

In contrast, the algorithms involving MRFs with continuous label sets involve an energy

landscape that is truly continuous; the partition function approximation requires integration

of continuous functions over unary and pairwise conformational spaces (in this work that

computation is facilitated through the use of reproducing kernel Hilbert space representations

of functions). Thus the goal of using probabilistic graphical models is to allow the partition

function approximation to more accurately reflect the energy landscape by integrating the

exponential term over the conformational space instead of assuming a constant value for the

term. In turn the value for the approximation, instead of being a sum of constant values, is

computed as a sum of integrals; we say this approach includes continuous entropy, which is

distinct from the continuous flexibility used in algorithms such as iMinDEE/K∗.
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3 From Protein Design to Graphical Models

Translating protein design into the graphical model framework involves encoding each protein

design problem as an undirected graph G. As explained in [13], this involves creating a vertex

(or node) in the graph for each designable residue in the design problem. Additionally, edges

are added between nodes corresponding to residues that interact. Oftentimes this means that

the resulting graph is the complete graph, although sparse graphs in protein design have been

the topic of significant consideration [12]. Last, a label set representing the possible amino

acids and conformations at the corresponding residue in the protein is attached to each node

in the graph.

3.1 Constructing the MRF

Formally, a Markov random field is a set of random variables X = {x1, . . . , xn} that satisfy

a Markov property described by an undirected graph. That is, given a graph G = (V,E)

where each v ∈ V corresponds to a particular x ∈ X, X forms an MRF with respect to

G if it satisfies the global Markov property: any two subsets of variables are conditionally

independent given a separating subset. By the Hammersley-Clifford theorem, a probability

distribution with positive densities (such as a probability distribution over conformational

states corresponding to a protein structural ensemble) satisfies the Markov property with

respect to a graph G if and only if its density can be factorized over the cliques of the

graph. This is equivalent to saying that the distribution is a Gibbs random field. In the

field of protein design, when energy functions are often (including in this work) pairwise-

decomposable, these conditions hold.

Suppose we want to compute the partition function, given the following:

• A set of n mutable residues r1, . . . , rn

• A set of rotamers for each residue: qi is the set of rotamers for the i-th residue.

• Intra-rotamer energy functions θi, 1 ≤ i ≤ n
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• Inter-rotamer energy functions θij, 1 ≤ i ≤ n, 1 ≤ j ≤ n, i 6= j

Then, we can construct a pairwise MRF representing the protein design problem as

follows:

• Construct an undirected graph G with n vertices v1, . . . , vn

• Add an edge between vi and vj if ri and rj interact

• Let the label set Li of vi be a set of labels such that each label corresponds to a

rotameric assignment to the residue ri. That is, |Li| = |qi|.

• Define vertex potentials φi = exp(−θi/RT ) and edge potentials φij = exp(−θij/RT )

It is worth noting that these vertex potentials aren’t normalized by the partition function –

they are an non-normalized Gibbs measure.

These energy functions serve as a factorization of the distribution; if xi is a rotameric

assignment to the i-th residue the probability p(x1, . . . , xn) of the fully defined conformation

(x1, . . . , xn) is proportional to a product of Boltzmann weights

p(x1, . . . , xn) =
1

Z

∏
i,j

exp

(
−θ(xi, xj)

RT

)∏
i

exp

(
−θ(xi)
RT

)
(4)

where Z is the partition function. Importantly, the value of the partition function of the

Markov random field is also the value of the partition function of the protein. Thus, we may

use algorithms to approximate or compute the partition function in Markov random fields

to do the same for proteins.

3.2 A Toy Example

For example, consider an idealized protein design problem with two residues, the first of

which has one continuous domain of continuous flexibility and the second of which has two

such continuous domains, shown in Figure 1. Each of these residues only has one degree
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of freedom, corresponding to only having one χ angle, but in the design problem we are

considering subsets of the larger space of all possible χ angles.

Let φ1 : [51, 69]→ R be the potential function computed from the input model for amino

acid 1, and φ2 : [21, 39]∪ [81, 99]→ R be the similarly computed potential function for amino

acid 2. These domains correspond to voxels of continuous flexibility around rotamers at 60

degrees, 30 degrees, and 90 degrees, respectively. Last, let φ1,2 be the pairwise potential for

interactions between amino acid 1 and amino acid 2.

Figure 1: Idealized two-residue protein design problem.

So, in this case, we have two mutable residues, which we can call r1 and r2. We then

have rotamer sets q1 = [51, 69] and q2 = [21, 39] ∪ [81, 99], along with energy functions θ1

and θ2 and potential functions φ1 and φ2.

This will give us a two-node MRF, the graph of which is shown in Figure 2. This graph

has two nodes, v1 corresponding to r1 and v2 corresponding to r2. Because r1 and r2 interact,

we add an edge between v1 and v2. Next, we have L1 = [51, 69] and L2 = [21, 39] ∪ [81, 99].

The vertex potential on v1 is φ1, the vertex potential on v2 is φ2, and the edge potential is
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φ1,2. Now, we have a graphical model representing our protein design problem, and can use

MRF inference algorithms to compute properties of our protein.

1 2

Figure 2: Markov random field corresponding to the idealized two-residue protein design
problem in Figure 1.

In graphical models we generally have access only to a non-normalized Gibbs measure

over the MRF, and we want to compute the normalized distribution (which is the same

as computing Z). There are a number of well known algorithms to bound the log parti-

tion function (logZ); the two that are of interest here are the mean field approximation,

which provides a lower bound on logZ, and tree-reweighted belief propagation, which pro-

vides an upper bound on logZ. Both of these algorithms are message-passing algorithms,

which means that they pass messages between vertices until convergence, and then use those

messages to compute unary and pairwise marginals or pseudomarginals.
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4 Mean-Field Approximations

The mean-field approximation to the log partition function computes a lower bound on logZ

by considering only the space of fully factorizable distributions over the Markov random field.

Because this set is a subset of the space of all possible distributions, any value of logZ derived

from considering this smaller set is a lower bound on the maximum value of logZ over the

entire distribution space. Thus, by only considering a smaller set of tractable distributions,

we may compute without too much difficulty a lower bound on the log partition function.

Suppose we have a factorized distribution of the form

Pφφφ(χ) =
1

Z

∏
φ∈φφφ

φ(Uφ) (5)

where χ represents the set of all MRF nodes, the factors φ ∈ φφφ comprise the distribution, and

the variables Uφ ∈ Scope[φ] ⊆ χ are the scope (i.e. the domain) of each factor. Denote by

P̃φ the unnormalized distribution, that is, P̃φ(χ) =
∏
φ∈φφφ

φ(Uφ). Denote by ωXi the continuous

domain or label space corresponding to the node Xi. Each factor corresponds to a clique

of some size in the MRF; in our case, the only relevant factors will be factors over single

vertices and pairs of vertices.

4.1 Variational Optimization

We are interested in answering questions about Pφ, including queries about the partition

function Z. This can be done by searching over the space of distributions D that the MRF

can represent to find the distribution Q that matches Pφ, specifically by minimizing the

relative entropy (or K-L divergence) between Q and Pφ. The relative entropy between P1

and P2 is defined as

D(P1||P2) =

∫
χ

P1(x) ln
P1(x)

P2(x)
dx = EP1 [lnP1]− EP1 [lnP2] (6)
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where Ep[f ] denotes the expectation of the function f with respect to the distribution p,

that is, Ep[f ] =
∫
χ
p(x)f(x) dx.

Thus, we will attempt to solve the optimization problem

min
Q∈Q

D(Q||Pφ), (7)

which does not necessitate running any inference in Pφ. However, direct optimization of

D(Q||Pφ) is unwieldy.

Theorem 1. D(Q||Pφ) = lnZ − F (P̃φ, Q) where F (P̃φ, Q) is the energy functional

F (P̃φ, Q) = EQ
[
ln P̃ (χ)

]
+ HQ(χ) =

∑
φ∈φφφ

EQ[lnφ] + HQ(χ) (8)

and HQ(χ) is the entropy of the distribution Q over the domain χ.

Proof. First, note that

D(Q||Pφ) = EQ[ln(Q(χ))]− EQ[ln(Pφ(χ))]. (9)

Taking the natural log of the factorized form of Pφ gives us:

ln(Pφ(χ)) =
∑
φ∈φφφ

lnφ(Uφ)− lnZ. (10)

Additionally, the entropy of a distribution is simply the expectation of its negative natural

logarithm:

HQ(χ) = EQ[lnQ]. (11)

13



Plugging these into the equation for D(Q||Pφ) we get:

D(Q||Pφ) = −HQ(χ)− E

∑
φ∈φφφ

lnφ(Uφ)

+ EQ[lnZ] (12)

= −F (P̃φ, Q) + lnZ. (13)

The negative of the free energy functional F (P̃φ, Q) is referred to in the statistical physics

literature as the Helmholtz free energy. The functional is composed of two terms; the first is

called the energy term and involves the expectation of the logarithms of factors in φφφ, while

the second is called the entropy term and involves the entropy of Q. It is also worth noting

that because lnZ does not depend on Q, we can minimize D(Q||Pφ) by maximizing the free

energy functional.

4.2 The Mean Field Algorithm

Thus, we will focus ultimately on maximizing the free energy functional F (P̃φ, Q). Addition-

ally, because the K-L divergence is always nonnegative, lnZ ≥ F (P̃φ, Q), which means that

maximizing the free energy functional gives us a lower bound on the log partition function.

We will use the mean field approximation, a method in the family of structured variational

approaches, which aim to optimize the energy functional over a family Q of coherent or

tractable distributions. In general this family is not expressive enough to capture all of

the information in Pφ, but it will have the useful benefit of being simple enough to permit

inference.

The mean field algorithm attempts to minimize D(Q||Pφ) over the space of distributions

Q representable as the product of independent marginals:

Q(χ) =
∏
i

Q(Xi). (14)
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These distributions are clearly not particularly expressive; notably, they assume that the

distributions over the different factors in the network are all independent. However, they

are particularly tractable in that computing properties such as enthalpy and entropy are not

exponentially costly. In addition, we may write down the set of fixed-point equations that

characterize the stationary points of the mean-field optimization problem:

Theorem 2. The distribution Q(Xi) is a local maximum of the mean-field approximation

problem given {Q(Xj)}j 6=i if and only if

Q(xi) =
1

Z
exp

∑
φ∈φφφ

Eχ∼Q[lnφ|xi]

. (15)

Proof. See [14], Section 11.5.

Optimization via Lagrange multipliers leads to the message-passing mean-field approxi-

mation algorithm presented in Algorithm 1.

Algorithm 1 Mean-field approximation algorithm

procedure Mean-Field(φφφ, Q0)
Q← Q0

Unprocessed← χ
while Unprocessed 6= ∅ do

Choose Xi from Unprocessed
Qold(Xi)← Q(Xi)
for xi ∈ ωXi do

Q(xi)← exp

{ ∑
φ:Xi∈Uφ

E(Uφ−{Xi})∼Q[lnφ[Uφ, xi]]

}
Normalize Q(Xi) to sum to one
if Qold(Xi) 6= Q(Xi) then

Unprocessed← Unprocessed∪

( ⋃
φ:Xi∈Uφ

Uφ

)
Unprocessed← Unprocessed−{Xi}

return Q

Note that the update procedure of Q(Xi) in Algorithm 1 is to be done for each element

in the domain of Xi. The energy functional consists of two terms, an energy term and an
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entropy term. The energy term consists of a sum of terms of the form EUφ∼Q[lnφ] where we

need to evaluate:

EUφ∼Q[lnφ] =

∫
Uφ

Q(uφ) lnφ(uφ) (16)

=

∫
uφ

 ∏
Xi∈Uφ

Q(xi) lnφ(uφ)

 (17)

where uφ is a particular assignment to members of Uφ, i.e., an element in the Cartesian

product of each of their domains. Note that because we can compute Q(uφ) as the product

of marginals, the cost of evaluating the energy term is linear in the number of factors of

Pφ. In our case, each factor corresponds to a single node (i.e. a clique of size one), and the

product term in the integral is a product involving only one term.

Similarly, we can decompose the entropy term as:

HQ(χ) =
∑
i

HQ(Xi) (18)

=
∑
i

EXi∼Q[− ln(Q(Xi))] (19)

=
∑
i

∫
ω
Xi

−Q(x) ln(Q(x)) dx

 (20)

where ωXi is the continuous label space for the node Xi.

As a result, the energy functional for a fully factored distribution Q can be computed as

a sum of expectations over small numbers of variables, and the complexity of this expression

depends on the size of the factors in Pφ instead of the topology of the network. So, even in

networks that would require exponential time for computation of the partition function, the

energy functional can be manipulated and computed efficiently.

Thus, upon termination of the mean-field approximation algorithm, computation of the

free energy functional immediately gives us a lower bound on the log partition function.
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5 Tree-Reweighted Belief Propagation

Similar to the mean-field approximation, the basic idea of TRBP is to approximate the

original distribution (the “true” distribution) using a collection of tractable distributions

where the partition functions of each of the tractable distributions can be feasibly computed.

While SCMF simply picked one tractable distribution to use as a lower bound, TRBP instead

considers these distributions as a collection, and uses a distribution over this collection to

derive an upper bound on logZ using Jensen’s inequality.

The collection of MRFs associated with a given graph G with vertex set V and edge set

E constitutes an exponential family, any member of which is specified by an exponential

parameter comprised of elements which are weights for potential functions defined on the

graph cliques. Given a target distribution, the idea is to decompose that target distribution’s

exponential parameter as a convex combination of exponential parameters of a set of tractable

distributions, and exploit the convexity of that combination to obtain an upper bound on

the log partition function. Of course, choosing these this set of exponential parameters is a

nontrivial task; fortunately, there is a variational problem that can be solved to obtain these

parameters.

5.1 The Marginal Polytope

Suppose we have an indexing I of all the cliques in the graph; in this case, we denote the

factor associated with the α-th clique as φα, and the set φφφ of all such factors defines a vector-

valued mapping from the total label domain of the MRF to Rd, where d is the number of

factors associated with the MRF. Associated with φφφ is a vector θ ∈ Rd, known as the

exponential parameter. The exponential family associated with φφφ consists of the following

family of MRFs parameterized by θ:

p(x; θ) = exp{〈θ, φ(x)〉 − Φ(θ)} (21)
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Φ(θ) = log

(∫
exp{〈θ, φ(x)〉}

)
(22)

where 〈x, y〉 denotes the standard inner product.

Brute-force computation of Φ(θ) requires an integration over an exponentially large num-

ber of terms, which is impractical. Thankfully, the log partition function is convex as a

function of the exponential parameters. Another important quantity is the conjugate dual

function of Φ, defined by the optimization problem

Φ∗(µ) = sup
θ∈Rd
{〈θ, µ〉 − Φ(θ)} (23)

where µ ∈ Rd is a vector of dual variables. It can be shown that for a given dual vector µ∗

this supremum is either equal to +∞ or is realized at a vector θ∗ such that for each α the

following holds:

µ∗α = Eθ∗ [φα(x)] =

∫
p(x; θ∗)φα(x) (24)

Since these conditions involve taking an expectation, the components of µ∗ must be realiz-

able mean parameters; specifically, µ∗ must belong to the relative interior of the marginal

polytope, defined as:

Marg(φ) = {µ ∈ Rd | ∃ p s.t. Ep[φ(x)] = µ}. (25)

This is to say we can think of µ∗ as the expectation of θ∗ under some distribution p.

It is worth taking a moment to discuss the importance of the marginal polytope. The

duality between Φ and Φ∗ defines a bijection between exponential parameters and mean

parameters; thus, optimization over the space of exponential parameters amounts to opti-

mization over the space of mean parameters. This provides us another way of interpreting

SCMF and TRBP. The mean-field approximation performs an optimization over a subset

of the marginal polytope (fully factorizable distributions), thus providing a lower bound on

logZ. In contrast, tree-reweighted belief propagation performs an optimization over a super-
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set of the marginal polytope, as the pseudomarginals derived upon convergence only satisfy

local marginalization properties, thereby providing an upper bound on logZ.

5.2 Jensen’s Inequality

We will principally be concerned with pairwise MRFs, in which the collection φφφ consists solely

of functions associated with individual nodes and single edges. The upper bounds on the log

partition function are convex combinations of tree-structured distributions; specifically, we

will only consider spanning trees of the graph.

Let T be the set of all spanning trees in the graph corresponding to our pairwise MRF; for

each spanning tree T ∈ T , let θ(T ) be an exponential parameter that respects the structure

of the tree T . In order for the distribution p(x; θ(T )) to be tree-structured, θ(T ) must belong

to the constraint set

E(T ) = {θ(T ) | θα(T ) = 0 ∀ α ∈ I \ I(T )} (26)

where θα refers to the component of θ that weights the α-th clique. Let Θ be the full

collection of tree-structured exponential parameter vectors; Θ is required to belong to the

constraint set

E = {Θ | θ(T ) ∈ E(T ) ∀ T ∈ T } =
⋃
T∈T

E(T ). (27)

In order to produce the convex combinations we wish, we use a probability distribution

~ρ over the set of spanning trees

~ρ =

ρ(T ), T ∈ T | ρ(T ) ≥ 0,
∑
T∈T

ρ(T ) = 1

 . (28)

We define the support of such a distribution supp(~ρ) as the set of trees to which ~ρ assigns

strictly positive probability. A convex combination of exponential parameter vectors is given
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by taking an expectation with respect to ~ρ:

E~ρ[θ(T )] =
∑
T∈T

ρ(T )θ(T ). (29)

Recall that we are attempting to decompose a target distribution θ into a convex combi-

nation; thus we are interested in collections of exponential parameters in which we can find

convex combinations equal to θ. We define the feasible parameter set

A(θ) =
{

(θ, ~ρ) | E~ρ[θ(T )] = θ
}
. (30)

The convexity of Φ lets us apply Jensen’s inequality to any convex combination (θ, ~ρ) ∈ A(θ)

in order to derive an upper bound on Φ:

Φ(θ) = Φ(E~ρ[Φ(θ(T ))]) (31)

≤ E~ρ[Φ(θ(T ))] (32)

≤
∑
T∈T

p(T )Φ(θ(T )). (33)

Note that this bound is a function both of the distribution ~ρ and the collection θ of tree-

structured exponential parameters.

5.3 A Message-Passing Algorithm

First, we will consider how to optimize this upper bound with a fixed ~ρ. Consider the

constrained optimization problem


min
θ∈E

E~ρ[Φ(θ(T ))]

such that E~ρ[θ(T )] = θ.

(34)
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A notable obstacle to directly attempting to solve this problem is that the exponential

parameter θ has dimension equal to the number of spanning trees in the MRF, which can

be intractably large.

Fortunately, the Lagrangian of this problem gives rise to a set of dual variables inter-

pretable as pseudomarginals on the nodes and edges of the graph, so called because they

need only satisfy local marginalization and normalization constraints. We use τ to refer to

the set of pseudomarginals, which are density functions over unary and pairwise label spaces

of the graph. We denote by τs(j) the value of the pseudomarginal at the point j, and by ωs

the label space of the node s. The single node entropy Hs is defined as:

Hs(τs) = −
∫
ωs

τs(j) log τs(j) (35)

and the joint pseudomarginal entropy Ist is defined as:

Ist(τst) =

∫
ωs×ωt

τst(j, k) log
τst(j, k)∫

k∈ωt τst(j, k)
∫
j∈ωs τst(j, k)

. (36)

Then, we define the function Q(τ, ~ρe):

Q(τ, ~ρe) = −
∑
s∈V

Hs(τs) +
∑

(s,t)∈E

ρstIst(τst) (37)

where ~ρe is a vector of edge appearance probabilities such that ρst ∈ ~ρe corresponds to the

probability that the edge (s, t) appears in a spanning tree randomly selected according to the

distribution ~ρ. The spanning tree polytope T(G) consists of the set of all edge appearance

probability vectors that represent permissible distributions of spanning trees over G. In

this way we can avoid dealing explicitly with individual spanning trees and solely consider

the probability any particular edge appears in a spanning tree chosen according to the

distribution ~ρ.
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We also write down the inner product between τ and θ as:

〈t, θ〉 =
∑
s∈V

∫
ωs

τs(j)θs(j) dj +
∑

(s,t)∈E

∫
ωs

∫
ωt

τs,tj,kθst(j, k) dj dk. (38)

In turn, the following theorem provides an upper bound on Φ [24]:

Theorem 3. For each fixed ~ρ, the value of the best upper bound on the log partition function

can be found by solving the variational problem:

Φ(θ) ≤ max
τ
〈τ, θ〉 −Q(τ ; ~ρe). (39)

The TRBP algorithm consists of an iterative message-passing framework in which mes-

sages between nodes in the graph are repeatedly updated until convergence is achieved. We

define Mk
ts as the message from node t to node s at the k-th iteration of the algorithm; the

initial messages M0 = {M0
ts} can be initialized to arbitrary positive real numbers. During

each iteration, the messages are updated as follows:

Mn+1
ts (xs) = α

∫
ωt

exp

(
θst(xs, Xt)

ρst
+ θt(Xt)

) ∏
v∈Γt−{s}

(Mn
vt(Xt))

ρvt

(Mst(Xt))1−ρts
dXt (40)

where Γt is the set of neighbors of the node t and α is a normalization constant chosen such

that
∫
ωs
Mn+1

ts (Xs) dXs = 1.

These messages can be used to define a set of unary and joint message-derived pseu-

domarginals. Denoting the probability of the edge (i, j) ∈ E as ρij, the singleton pseudo-

marginal τs can be computed as:

τs(xs) ∝ exp(θs(xs))
∏
v∈Γs

(Mvs(xs))
ρvs (41)
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and the joint pseudomarginal τst can be written as:

τst(xsxt) ∝ ψst(xs, xt; θ)

∏
v∈Γs−{t}

(Mvs(xs))
ρvs

(Mts(xs))1−ρst

∏
v∈Γt−{s}

(Mvt(xt))
ρvt

(Mst(xt))1−ρts
(42)

where

ψst(xs, xt; θ) = exp

(
θst(xs, xt)

ρst
+ θs(xs) + θt(xt)

)
. (43)

The utility of this construction is provided by the following theorem:

Theorem 4. For any valid ~ρ, the message-derived pseudomarginals attain the global optimum

of the variational problem posed in Theorem 3 when derived from a fixed point M∗ of the

message update procedure.

Proof. See [24].

Thus, given a probability distribution ~ρ over the set of spanning trees, repeated iteration

of the message update procedure until convergence allows us to compute an optimal upper

bound on the log partition function.

Now, we consider the problem of constructing and optimizing a distribution over the

spanning trees of G. We can represent any such distribution as a set of edge appearance

probabilities through the vector ~ρe. In particular, if ~ρ is the uniform distribution over all

spanning trees of G, then the edge appearance probability of the edge (i, j) ∈ E is equivalent

to the resistance distance rij between the vertices i and j, which can be computed as:

rij = rji = Mii +Mij −Mij −Mji (44)

where M is the Moore-Penrose inverse (pseudoinverse) of the graph Laplacian L [3].

These edge appearance probabilities can in turn be optimized in an iterative update

scheme as follows. First, compute the minimum spanning tree S over G where the weight on

the edge (i, j) is the negative mutual information Nij between the nodes i and j, computable
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as:

Nij =

∫
ωs

∫
ωt

θst(xs, xt) log
θst(xs, xt)

θs(xs)θt(xt)
dxt dxs. (45)

We use this tree S to define a descent direction vector ~s, consisting of weights on each edge

such that the weight on any edge is 1 if and only if that edge appears in S. Note that

|~s| = |~ρe| = |E|. Then, if (~ρe)
n is the edge probability vector at the nth iteration, set

(~ρe)
n+1 = α~s+ (1− α)(~ρe)

n where α is a step size parameter. For further details see [24].

Thus the optimization of the upper bound on the log partition function ultimately consists

of two steps: optimization of the distribution over spanning trees, followed by optimization

of the pseudomarginals via message-passing.
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6 Reproducing Kernel Hilbert Spaces

In MRFs with discrete label spaces (dMRFs), distributions over unary or pairwise confor-

mational spaces are easily represented as vectors with each component corresponding to a

particular label in the label space. However, in MRFs with continuous label spaces (cMRFs),

these distributions cannot be represented as vectors. To put it another way, the space of

distributions over a discrete label space with dimension n is isomorphic to the unit ball in

Rn with the `1 norm. In contrast, the space of distributions over a continuous label space

is an infinite-dimensional space of functions. Thus, in order to perform message-passing

algorithms that involve manipulations of distributions over the MRF label spaces, we need

a mechanism of manipulating distributions over a continuous space that is as expressive as

possible without being computationally cumbersome. In order to do this we will be using

reproducing kernel Hilbert space representations of distributions.

6.1 Constructing the RKHS

First, we provide some background as to how reproducing kernel Hilbert spaces are con-

structed. Given some continuous domain Ω, a kernel k is a symmetric function Ω× Ω→ R

and is called a positive definite kernel if, for any square-integrable functions f1 and f2 the

following holds: ∫
Ω

∫
Ω

f1(x)k(x, y)f2(y) dx dy ≥ 0. (46)

One example of a positive-definite kernel is the Gaussian kernel with variance σ:

k(x, y) = exp

(
−||x− y||

2

σ2

)
. (47)

For any x ∈ Ω, we denote by φx the function Ω→ R such that φx(y) = k(x, y); we call this

the feature map at the point x.
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A reproducing kernel is a kernel that satisfies the reproducing kernel property:

k(x, x′) = 〈k(x, ·), k(·, x′)〉 = 〈φx, φx′〉 (48)

where φx is the feature map at the point x. The Gaussian kernel, for example, is a repro-

ducing kernel.

In order to construct the RKHS associated with a kernel k, we consider the set F0 of all

linear combinations of feature maps of points in Ω. That is, let

F0 =

f(y) =
n∑
i=1

αiφxi(y) | n ∈ N, αi ∈ R, xi ∈ Ω

 . (49)

Endowing F0 with the operations of addition

(f + g)(x) = f(x) + g(x) (50)

and scalar multiplication

(λf)(x) = λf(x), λ ∈ R, (51)

and introducing the inner product between two elements of the space f =
∑n

i=1 αiφxi and

g =
∑m

i=1 βiφyi (αi, βi ∈ R ∀ i) as:

〈f, g〉 =
n∑
i=1

m∑
j=1

αiβjk(xi, yj) (52)

makes F0 an inner product space.

We can construct the corresponding RKHS F via the set of equivalence classes of Cauchy

sequences in F0. Let C[Ω] be the collection of all Cauchy sequences in F0. Define an

equivalence relation ∼ via

(xn) ∼ (yn)⇔ lim
n→∞

d(xn, yn) = 0 (53)
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where d(xn, yn) =
√
〈xn, yn〉2. Then, F is the set of all equivalence classes of C[Ω] with

respect to ∼ [11].

This is to say that if we have a reproducing kernel k over some domain Ω then the

corresponding RKHS F is the linear span of the set of all feature maps of k. By the Moore-

Aronszajn theorem every reproducing kernel uniquely specifies a corresponding RKHS and

vice-versa [2]. Thus, it is worth considering the relationship between the linear span of a

particular kernel and the space of all functions over its domain.

We first consider the mean map µf of a function f :

µf =

∫
Ω

φxf(x) dx. (54)

where φx is the feature map of the kernel k at the point x. If this map is injective, i.e.

µf 6= µg ⇒ f 6= g, then we say that the kernel k is characteristic. If C(Ω) is the space of all

continuous bounded functions on Ω, if φx is continuous for all x, and if the corresponding

RKHS F is dense in C(Ω), then the kernel k is considered universal. The Gaussian kernel,

for example, is both characteristic and universal. One of the benefits of characteristic kernels

is that the linear span of feature maps of that kernel is dense in the space of real-valued

continuous functions over Ω with the supremum norm, meaning that the linear span of

feature maps is a reasonably expressive approximation to the broader function space we are

interested in representing [23].

6.2 RKHS Representations of Functions

We now consider how to construct RKHS representations of functions. We consider the

problem of approximating a function f over a domain Ω as a linear combination of n feature

maps, where n is a chosen parameter. Let k be a kernel on Ω, and denote by φx the feature

map at the point x ∈ Ω. We wish to compute a linear combination g of feature maps that

allows us to best approximate the values of f on Ω.
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First, if we are given a set of n feature maps φx1 , . . . , φxn such that g =
n∑
i=1

αiφxi where

αi ∈ R, then we can compute the optimal αi values to approximate f as the unique solution

to the linear system
n∑
i=1

K(xi, xj)αi = f(xj), 1 ≤ j ≤ n[25]. (55)

So, in order to optimally represent f , we need to identify the n feature maps that will

allow us to best approximate f over Ω, and then compute the associated linear coefficients.

While there is a method of computing an optimal set of feature maps (these correspond

to eigenfunctions of a particular integral operator) [25], in practice we simply perform a

uniform gridding of the conformational space we are interested in. This gridding is feasible

in large part because the message-passing algorithms we will be using only consider unary and

pairwise conformational spaces, as opposed to the exponentially large overall conformational

space of the protein.

6.3 The Mean Map

Given an RKHS representation of a function, we now consider how we manipulate the func-

tion representation; specifically, we will mainly be concerned with either taking expectations

of functions or computing integrals over volumes of space. Both of these operations can be

done using the mean map mentioned earlier.

Computing the mean map via the integral in Equation 54 is often excessively costly.

Thus, a sampling-based approximation to the mean map, called the empirical mean map,

is often used. Let p be a probability distribution over a domain Ω. Suppose we sample

x1, . . . , xm i.i.d. from Ω according to p. We define the empirical mean map µ̂p as:

µ̂p =
m∑
i=1

1

m
φxi . (56)

The i.i.d. sampling can be performed as follows. Suppose Ω = [0, a]n where a <∞. Let

S = [0, b]n where b ≤ a be a subset of Ω. If X is a random variable distributed according
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to f , we can compute P (X ∈ S). First, let ν be the uniform distribution on Ω with mean

embedding µν , and let σ be the uniform distribution on S with mean embedding µσ. Then,

P (X ∈ S) ≈ bn〈µσ, f〉
an〈µν , f〉

. (57)

Assuming we have a RKHS representation of f , taking the inner products is relatively

easy. Then, we can sample from f by uniformly sampling a point q from [0, 1]n, and then

searching Ω to find the point x such that |f(x)−q| ≤ ε for some sufficiently small ε. Because

CDFs are monotonically increasing functions, we can, for example, perform a binary search

over Ω to compute the relevant x. This search isn’t done over the entire conformational

space, but just the domain of the function we are trying to fit, which will typically involve

only single residue conformational spaces.

The mean map has the useful property that the expectation of any function f ∈ F can

be calculated by taking the inner product in F : 〈µp, f〉 = Ep[f ] ∀ f ∈ F .

It is worth noting that if p is just the uniform distribution on Ω, then µp can be estimated

by uniformly sampling Ω. Then, for any function f on Ω we have

〈µpf〉 = Ep[f ] =

∫
Ω

f(X)p(X)dX =
1

|Ω|

∫
Ω

f(X)dX. (58)

Note here that the value of the inner product is the integral of the function over the domain

divided by the size of the domain, which can be easily calculated. This is to say that the

reproducing kernel Hilbert space structure, specifically the nature of the mean map, lets

us efficiently compute integrals of functions over the domain. This is particularly useful for

message-passing algorithms such as TRBP, which involve an integration during each message

update.
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7 Results and Discussion

Both SCMF and TRBP were implemented in the Donald lab’s open-source protein design

software suite OSPREY, and were used to calculate bounds on logZ for synthetic examples as

well as protein systems found in the Protein Data Bank (PDB). In general partition function

computations are not performed on the entire protein, but rather on a subset of amino acid

residues deemed to be important for design considerations; computing the partition function

while including every single residue, even in the rigid case, is computationally unfeasible.

Data from running the SCMF and TRBP algorithms on a test set of 30 proteins is presented,

along with an examination in greater detail of the computational results from one of those

proteins.

7.1 Bounds on logZ

Partition function computations were performed on test set of 30 protein structures, which

included the protein structures with PDB IDs 1A0R, 1AMU, 1B6C, 1B74, 1GWC, 1TP5,

2HNU, 2HNV, 2P49, 2P4A, 2Q1E, 2Q2A, 2RF9, 2RFD, 2RFE, 2RL0, 2WZP, 2XGY, 2XQQ,

2XXM, 3BU8, 3BUA, 3CAL, 3EB6, 3GXU, 3K3Q, 3MA2, 3RJQ, 3U7Y, and 4LAJ. Partition

function bounds were computed for each of these proteins, with six residues in the protein

chosen as flexible. Thus the conformational space corresponding to the computed partition

function for any given protein is the space of all possible conformations of the six chosen

amino acids. A list of all protein structures, PDB IDs, and mutable residues is shown in

Table 1. Six-node MRFs were then set up for each partition function problem, and both

SCMF and TRBP were used to compute upper and lower bounds (respectively) on logZ.

Lower bounds on logZ, upper bounds on logZ, and the value of logZ according to

iMinDEE/K∗ are shown in Figure 3; values are listed in Table 2. The iMinDEE/K∗ algo-

rithm computes an ε-approximation to the partition function, where ε is a parameter set by

the user prior to the beginning of the computation. For the purposes of these computations
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ε was set to 0.68, in accordance with earlier work by the Donald lab using this same test

set of proteins [17]. Calculation of the logZ upper bound for proteins with PDB IDs 1A0R,

1GWC, 2P4A, 3EB6, and 3RJQ failed to converge; thus, the upper bound for these proteins

is not graphed in Figure 3. In general the lower bounds produced by SCMF ranged from

approximately 7 to 15, while the upper bounds ranged from approximately 25 to 30.

Table 1: List of PDB IDs, protein structure names, and
mutable residues for every test design performed.

PDB ID Protein Structure Name Mutable Residues
1A0R Heterotrimeric complex of

posducin/transducin beta-gamma
ASN-313, TRP-332,
LEU-605, GLU-696

1AMU Phenylalanine-activating domain of
gramicidin synthetase 1 in a complex with
amp and phenylalanine

GLU-374, ASP-413,
ILE-429, GLU-441

1B6C Crystal structure of the cytoplasmic domain
of the type I TGF-Beta receptor in complex
with FKBP12

ASP-37, TRP-59,
LEU-195, LEU-196

1B74 Glutamate racemase from Aquifex pyrophilus PHE-57, LEU-220,
LEU-222, PHE-224

1GWC The structure of a tau class glutathione
s-transferase from wheat, active in herbicide
detoxification

HID-53, CYS-67, PHE-100,
TYR-104

1TP5 Crystal structure of PDZ3 domain of PSD-95
protein complexed with a peptide ligand
KKETWV

PHE-325, ASN-326,
GLU-422, THR-423

2HNU Crystal Structure of a Dipeptide Complex of
Bovine Neurophysin-I

THR-194, LEU-269,
ILE-309, HIE-317

2HNV Crystal Structure of a Dipeptide Complex of
the Q58V Mutant of Bovine Neurophysin-I

LYS-255, ASP-267,
LYS-336, GLU-349

2P49 Complex of a camelid single-domain vhh
antibody fragment with RNASE A at 1.4A
resolution: native mono 1 crystal form

ASN-66, TYR-68,
TYR-140, ILE-153

2P4A X-ray structure of a camelid affinity matured
single-domain vhh antibody fragment in
complex with RNASE A

LEU-135, SER-141,
VAL-381, SER-386

2Q1E Altered dimer interface decreases stability in
an amyloidogenic kappa1 Bence Jones
protein.

LEU-266, GLN-309,
LEU-423, THR-426
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2Q2A Crystal structures of the arginine-, lysine-,
histidine-binding protein ArtJ from the
thermophilic bacterium Geobacillus
stearothermophilus

PHE-144, GLU-145,
GLU-394, ASN-397

2RF9 Crystal structure of the complex between the
EGFR kinase domain and a Mig6 peptide

SER-337, GLN-350,
SER-888, GLN-911

2RFD Crystal structure of the complex between the
EGFR kinase domain and a Mig6 peptide

PHE-352, TYR-358,
TYR-920, ILE-929

2RFE Crystal structure of the complex between the
EGFR kinase domain and a Mig6 peptide

PHE-352, TYR-358,
LYS-925, MET-928

2RL0 Crystal structure of the fourth and fifth
fibronectin F1 modules in complex with a
fragment of staphylococcus aureus fnbpa-5

PHE-156, THR-193,
PHE-649, GLU-651

2WZP Structures of lactococcal phage p2 baseplate
shed light on a novel mechanism of host
attachment and activation in siphoviridae

TRP-207, THR-242,
SER-630, ASN-614

2XGY Complex of rabbit endogenous lentivirus
(relik)capsid with cyclophilin a

HIE-76, LEU-89, PHE-189,
HIE-255

2XQQ Human dynein light chain (DYNLL2) in
complex with an in vitro evolved peptide
(Ac-SRGTQTE).

THR-4, THR-6, ASN-61,
PHE-62

2XXM Crystal structure of the hiv-1 capsid protein
c-terminal domain in complex with a camelid
vhh and the cai peptide.

THR-2, PHE-3, TYR-169,
ARG-173

3BU8 Crystal Structure of TRF2 TRFH domain
and TIN2 peptide complex

GLN-105, ASP-117,
SER-257, PHE-258

3BUA Crystal Structure of TRF2 TRFH domain
and APOLLO peptide complex

GLN-84, SER-119,
LEU-506, THR-507

3CAL Crystal structure of the second and third
fibronectin F1 modules in complex with a
fragment of staphylococcus aureus fnbpa-5

THR-3, ILE-40, THR-100,
THR-101

3EB6 Structure of the cIAP2 RING domain bound
to UbcH5b

VAL-559, MET-561,
GLU-1109, ASP-1112

3GXU Crystal structure of Eph receptor and ephrin
complex

GLN-43, ILE-135,
GLN-618, TRP-625

3K3Q Crystal Structure of a Llama Antibody
complexed with the C. Botulinum Neurotoxin
Serotype A Catalytic Domain

SER-100, ASP-102,
TYR-349, PHE-357

3MA2 Complex membrane type-1 matrix
metalloproteinase (MT1-MMP) with tissue
inhibitor of metalloproteinase-1 (TIMP-1)

ASP-274, GLN-281,
TYR-338, GLU-367

3RJQ Crystal structure of anti-HIV llama VHH
antibody A12 in complex with C186 gp120

HIE-105, ASP-113,
SER-629, LYS-695
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3U7Y Structure of NIH45-46 Fab in complex with
gp120 of 93TH057 HIV

ASN-280, THR-467,
ARG-561, TRP-602

4LAJ Crystal structure of HIV-1 YU2 envelope
gp120 glycoprotein in complex with
CD4-mimetic miniprotein, M48U1, and llama
single-domain, broadly neutralizing,
co-receptor binding site antibody, JM4

LYS-421, MET-434,
TYR-632, THR-702

In general it was not possible to get convergence of the logZ upper bounds past a certain

level of precision; initial testing seemed to indicate that the bound would not converge to a

particular value but would rather oscillate indefinitely within a window of approximately 0.3

in either direction, but would never settle. Thus, the convergence criterion was set to 0.5, so

if the bounds in any two consecutive iterations were within 0.5 of each other the algorithm

was terminated. This phenomenon was initially surprising, but after some consideration

we found a possible explanation. Belief propagation and other variational methods are

traversals of manifolds representing spaces of distributions [1]. If these distributions are

over discrete spaces, the manifolds have finite dimension. TRBP and SCMF, in turn, are

performing gradient descent and ascent, respectively, with respect to the partition function

over a manifold of distributions. In our case, this manifold has infinite dimension, but

because our representations of continuous functions are necessarily finite, we are in a sense

only able to approximate the gradient at each iteration. In turn, near the optimum of the

function at which convergence will be expected, the algorithm may be unable to properly

step along the gradient without stepping over the optimum and worsening the bound on

logZ. The algorithm will then attempt to step back, but imprecisely, and the process will

repeat.

Table 2: logZ lower and upper bounds and K∗ scores for
all test proteins. In cases where TRBP failed to converge,
no upper bound is listed.

Protein logZ lower bound logZ upper bound logZ from K∗

1A0R 10.61 - 11.37
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1AMU 11.89 29.84 13.23
1B6C 9.34 25.86 11.97
1B74 10.04 27.36 20.63

1GWC 9.77 - 13.15
1TP5 10.93 27.58 13.61
2HNU 9.43 29.45 11.88
2HNV 11.91 29.61 6.96
2P49 11.99 24.19 16.74
2P4A 8.66 - 12.24
2Q1E 10.61 27.10 13.32
2Q2A 11.97 24.81 12.81
2RF9 11.77 28.39 10.19
2RFD 11.79 26.80 17.77
2RFE 11.56 28.43 15.85
2RL0 10.62 26.63 12.18
2WZP 10.01 25.93 13.59
2XGY 10.01 25.86 15.80
2XQQ 9.24 29.32 10.18
2XXM 11.72 27.94 17.14
3BU8 10.94 30.80 6.65
3BUA 11.01 30.54 13.54
3CAL 10.04 29.44 11.11
3EB6 10.17 - 16.98
3GXU 11.95 28.15 17.28
3K3Q 10.73 28.07 15.18
3MA2 12.93 27.48 11.74
3RJQ 10.11 - 10.88
3U7Y 10.80 26.13 8.90
4LAJ 12.94 29.25 17.05

The bounds produced by algorithms on cMRFs are frequently quite loose; however, it is

difficult to determine the cause of this. While the bounds produced by SCMF and TRBP are

valid bounds upon convergence of the messages in that the value of the partition function is

guaranteed to be no less than the lower bound and no greater than the upper bound, there are

no guarantees with regards to the quality of those bounds; additionally, TRBP is not guar-

anteed to converge, but rather only provides valid upper bounds upon convergence. In the

case of protein design, this is quite possibly due to the nature of the inference algorithms.

Specifically, the mean-field approximation solely considers fully-factorizable distributions,
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Figure 3: Bounds on logZ for protein structures computed by SCMF and TRBP, along with
calculated iMinDEE/K∗.

and tree-reweighted belief propagation passes messages over pairwise Markov random fields.

However, the iMinDEE/K∗ algorithm performs full n-body minimization over the entire pro-

tein structure, and in this way explicitly includes higher-order terms in the partition function

calculation process. It is possible that incorporating higher-order interactions into design

algorithms will enable more accurate bounds on logZ; such a trend has been demonstrated

in previous work by the Donald lab [19].

In general, the SCMF lower bound was closer to the logZ value calculated by iMinDEE/K∗

than the TRBP upper bound; the lone exception to this has PDB ID 1B74. Since SCMF

bounds logZ by solely considering distributions that can be factorized into a product of

marginals, this would seem to suggest that for this protein the biophysical interactions are

such that the overall Boltzmann distribution is not easily expressible as a product of single-

residue distributions. However, in general, the closer accuracy of SCMF seems to indicate

that protein design problems can be well-approximated by “reducing” complex high-order
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distributions to products of marginal distributions or lower-order factors. This strategy has

been employed in the past for optimization of the rigid-rotamer GMEC model of protein

design [22].

Interestingly, for 5 proteins (2HNV, 2RF9, 3BU8, 3MA2, and 3U7Y) the lower bound

produced by SCMF is greater than the value calculated via iMinDEE/K∗. This is possibly

due to the manner in which pairwise energy functions used by iMinDEE/K∗ are calculated.

The computed pairwise energy function, used both by iMinDEE/K∗ and SCMF/TRBP, is a

lower bound on the interaction energy between the two amino acids [19]. This is done so that

iMinDEE/K∗ can use that energy as a lower bound during the conformation enumeration

process [10].

The actual inter-residue interaction energy function is only known after the process of full

energy minimization is performed; in fact, computing the true function requires integrating

out the energetic contributions of all other amino acids in the protein. Thus, the energy

functions used by SCMF/TRBP are lower bounds on the energy; in turn, this means that

the exponential of the negative energy is upper bounded over the entire conformational

domain. Thus, the value of the partition function is overestimated as well; this overestimation

phenomenon also provides a possible explanation of why the SCMF lower bounds were

generally closer to the value of logZ computed by iMinDEE/K∗ than the TRBP upper

bounds.

Additionally, there is a second possible explanation for this phenomenon. Consider a

protein design problem with a protein and a ligand, each with one residue allowed to be

flexible. Suppose additionally that the energy of the bound state is always −2, while the

energy of the unbound state of both the protein and the ligand is always −1. Last, suppose

that the flexible residue in both the protein and ligand has one χ-angle, which can vary

between 0◦ and 20◦. Let ZAB be the partition function for the bound complex, ZA be the

partition function for the unbound protein, and ZB be the partition function for the unbound

ligand. From the perspective of iMinDEE/K∗, the binding constant would be approximated
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as follows:

ka =
1

kd
(59)

=
ZAB
ZAZB

(60)

≈ e2

(e)(e)
(61)

≈ 1. (62)

Integrating over the conformational domain, in turn, gives us:

ka =
1

kd
(63)

=
ZAB
ZAZB

(64)

=

∫ 20

0

∫ 20

0
e2∫ 20

0
e
∫ 20

2
e

(65)

=
400e2

(20e)(20e)
(66)

= 1. (67)

The binding constants here agree with each other, and yet while iMinDEE/K∗ approximates

ZAB as e2, integrating over the conformational domain gives us ZAB = 400e2. This is to say

that integrating over a continuous domain gives us a different answer than taking the sum

of the minima over each domain. While it would be useful to test this out on our proteins,

the bounds on the partition function generated by SCMF and TRBP are too loose to allow

us to compute the binding constant to any reasonable degree of precision.

7.2 HIV Envelope Glycoprotein gp120

In general we use RKHS representations of functions throughout the message passing al-

gorithm process in order to represent messages, energy functions, and probability density
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functions. For example, consider the results for a partition function computation of the

structure of the HIV envelope glycoprotein gp120 in complex with a llama antibody frag-

ment (PDB ID: 4LAJ). The conformational domain of four residues was considered: Lys-421,

Met-434, Tyr-632, and Thr-702. A view of the interface, with these residues highlighted, is

shown in Figure 4. For this particular system, the lower bound on logZ was 12.94, while the

upper bound on logZ was 29.25; the value of logZ computed by iMinDEE/K∗ was 17.05.

Figure 4: View of the interface between HIV glycoprotein gp120 and an antibody fragment.
The Threonine residue at position 702 is shown in dark red; other residues whose confor-
mational spaces were considered are shown in light red. The rest of the HIV glycoprotein is
shown in purple, and the rest of the antibody fragment is shown in green.

The marginal density computed by SCMF for one region of the unary conformational

space of the Threonine residue at position 702 is shown in Figure 5, and the corresponding

pseudomarginal computed by TRBP is shown in Figure 6. In general the probability at each

point in the conformational domain is quite low, most directly because the conformational

space has total area 364 square degrees, and even a uniform distribution over the space would
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have low probability densities at each point in the domain. The SCMF marginal exhibits sig-

nificant nonconvexity, with peaks at roughly (−180◦,−170◦), (−175◦,−175◦), (−180◦,−155◦),

and (−155◦,−170◦). In contrast, the TRBP marginal features one extremely prominent peak

at (−180◦,−155◦). Notably this peak is present in both marginals, although much less promi-

nently in the SCMF marginal density. There is a secondary TRBP peak at (−175◦,−170◦),

which is itself reasonably close to one of the peaks in the SCMF density. While it is not

immediately clear how the difference in these two marginals contributes to the upper- and

lower- bounding properties, it is interesting to note that the SCMF marginal seems to spread

out the probability mass relative to the TRBP marginal.

Figure 5: Marginal density computed for one region of the conformational space of the
Threonine residue at position 702, HIV envelope protein gp120 in complex with an antibody
fragment (PDB ID: 4LAJ).
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Figure 6: Pseudomarginal computed for one region of the conformational space of the Thre-
onine residue at position 702, HIV envelope protein gp120 in complex with an antibody
fragment (PDB ID: 4LAJ).

It is tempting to view the plots in Figures 5 and 6 as plots of Boltzmann-weighted

probability distributions; however, strictly speaking, this would be inaccurate, as the TRBP

pseudomarginal only needs to satisfy local marginalization constraints. There is evident

non-convexity within the SCMF marginal, suggesting that the energy landscapes involved

in protein design problems are rugged even within the individual voxel spaces defined by

the iMinDEE algorithm. Thus, treating all points within a voxel as contribution uniformly

to the partition function, as minimization-based algorithms do, may not be accurate. This

non-convexity also highlights the important of effective conformation minimization processes

in design algorithms. Given the difficulty and slow speed of accurate n-body minimization
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in the conformation enumeration process, this only serves to further highlight the potential

of variational approaches for computing ensemble properties of protein structure.

One significant opportunity for further work is the absence of a multi-sequence bound,

or any clear method of introducing sub-linearity into the computation process. This is

to say that if one is considering k possible sequences and wishes to identify the sequence

with the largest partition function, with cMRFs it is necessary to perform all the relevant

computations for each different sequence. In contrast, algorithms that are sub-linear in the

number of sequences often use a multi-sequence bound in order to enable the use of A∗

search over a sequence space to reduce computation time [17]. Ultimately this means that

the algorithms as presented in this thesis will likely scale poorly to scenarios where a protein

designer is attempting to choose the best of several hundred or thousand sequences; in such

cases the development of a sub-linear version of TRBP and SCMF for the continuous-domain

case will likely be needed. In particular, this would necessitate the computation of a lower

bound on the partition function for any protein sequence. For example, suppose a designer

is considering 3 residue positions and the first two are defined. We would wish to compute

a lower bound on the partition function for any sequence with those first two residues no

matter how the third is chosen.

7.3 Discussion

Computation of ensemble properties and inclusion of continuous flexibility have been shown

to significantly improve the accuracy of protein design predictions. However, the cost of

both of these features is significantly increased computation time: ensemble properties in-

volve calculations and optimizations over significantly larger spaces than single-conformation

computations, while continuous flexibility involves an expensive process of conformation

enumeration and minimization. Here we have attempted to solve these problems by us-

ing inference algorithms on Markov random fields with continuous label spaces in order to

avoid enumeration or consideration of individual conformations, while simultaneously using
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message-passing algorithms to bound the partition function while minimizing computation

time. The algorithms as implemented often produced bounds that were quite loose, although

they were consistent with each other; it is not entirely clear if tightening these bounds is a

matter of significant software engineering, or if the kinds of graphical models produced by

protein design problems are not amenable to variational inference of the kind discussed in

this work. Additionally, the algorithms in this work are not intrinsically sub-linear, meaning

that they will scale poorly to scenarios where large numbers of possible protein sequences are

being considered. However, this work does make two contributions that lay the groundwork

for future projects: (1) a demonstration of the feasibility of performing inference on Markov

random fields with continuous label spaces, and (2) computations of ensemble properties

with both continuous flexibility and continuous entropy.
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