
Interplay between percolation and glassiness in the random Lorentz gas

Giulio Biroli,1 Patrick Charbonneau,2, 3 Eric I. Corwin,4 Yi Hu,2, ∗

Harukuni Ikeda,5 Grzegorz Szamel,6 and Francesco Zamponi1

1Laboratoire de Physique de l’Ecole Normale Supérieure, ENS, Université PSL,
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The random Lorentz gas (RLG) is a minimal model of transport in heterogeneous media. It
also models the dynamics of a tracer in a glassy system. These two perspectives, however, are
fundamentally inconsistent. Arrest in the former is related to percolation, and hence continuous,
while glass-like arrest is discontinuous. In order to clarify the interplay between percolation and
glassiness in the RLG, we consider its exact solution in the infinite-dimensional d → ∞ limit, as
well as numerics in d = 2 . . . 20. We find that the mean field solutions of the RLG and glasses fall
in the same universality class, and that instantonic corrections related to rare cage escapes destroy
the glass transition in finite dimensions. This advance suggests that the RLG can be used as a toy
model to develop a first-principle description of hopping in structural glasses.

I. INTRODUCTION

The random version of the venerable Lorentz gas
(RLG) consists of a tracer navigating between a col-
lection of Poisson-distributed hard spherical obstacles.
Despite the apparent simplicity of the model, its phe-
nomenology is quite rich. As the obstacle density in-
creases, tracer diffusion is first delayed and then sup-
pressed altogether. In physical dimensions, d = 2, 3,
the localization transition provably coincides with that
of void space percolating [1, 2], and is hence continuous
and accompanied by an extended subdiffusive regime [3–
5]. The minimal complex nature of the RLG makes it
a standard model of transport in heterogeneous media
for systems as diverse as electrons in metals with impu-
rities [6] and proteins in cells [7, 8].

The RLG also plays a key role in the theory of glasses.
Its consideration was an important step toward formu-
lating the mode-coupling theory (MCT) of glasses [9–
12], and it has provided key insight into the role of pin-
ning particles in deeply supercooled liquids [13–16]. The
RLG is additionally related to a special limit of the non-
convex perceptron, which is a minimal model for glasses
and jamming [17]. Further insight into the model arises
from noting that the RLG can be construed as a spe-
cial limit of a hard sphere binary mixture [18–20], with
one component –the obstacles– being infinitely smaller
than the infinitely-dilute other –the tracer. (Exchanging
obstacle and tracer sizes recovers Fig. 1(a) [12].) The
RLG model should thus be part of the hard sphere glass
universality class, and thus similarly undergo a discon-
tinuous dynamical caging transition [21]. Interestingly,
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one could argue that, while in finite-dimensional glass
formers this dynamical transition is avoided because var-
ious intervening collective activated processes, including
nucleation [22] and facilitation [23], the RLG, which by
construction eliminates all such effects, should exhibit
this transition more crisply.

A paradox, however, follows from this reasoning
(Fig. 1(a)). On the one hand, the exact mapping of the
RLG to a percolation transition gives rise to a continu-
ous localization transition [3–5, 12]; on the other hand,
the analogy to glass formation gives rise to a discon-
tinuous caging transition, at least in the high dimen-
sional, d → ∞ limit where such description is exact, as
we show below. The simplest possible resolution of this
paradox, namely that the nature of the percolation tran-
sition might change in the d → ∞ limit, was recently
ruled out [24]. Could it then be that the large asymme-
try limit of binary hard spheres is singular? Or that the
d→∞ limit is pathological in some unexpected way?

In this Rapid Communication, we answer these ques-
tions and resolve the interplay between percolation and
glassiness in the RLG. In Section II, we first formulate
a mean-field theory (MFT) description of the RLG in-
dependent of the binary mixture analogy to validate its
premise, and then numerically obtain accurate percola-
tion thresholds in Sec. III, as well as static and dynami-
cal descriptions of caging in Sec. IV and V, respectively.
Most importantly, by considering spatial dimensions high
enough for glassiness to markedly impact the RLG dy-
namics, we uncover activated microscopic processes that
are expected to play a key role in glass formation and
yet have thus far eluded theoretical grasp. We thus con-
clude in Sec. VI that the RLG captures some of the key
activated processes in glasses, and is simple enough to be
treated analytically and numerically, thus opening the
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FIG. 1. (a) Two descriptions of RLG uncaging upon decreasing ϕ̂: (top) the MFT cage discontinuously disintegrates at ϕ̂d;
(down) cages merge continuously and form an infinite percolating cluster at ϕ̂p. (b) Finite-size scaling of ϕ̂p(N) in d = 2 to
9. (c) ϕ̂p(∞) in d = 2 to 9 (squares, from right to left) compared with the MFT ϕ̂d (dashed line). The red line denotes a
polynomial fit to the percolation thresholds, Eq. (3). Extrapolating this form strongly suggests that ϕ̂p(d→∞) 6= ϕ̂d.

way for a first-principle description of such processes.

II. MEAN-FIELD THEORY DERIVATION

The MFT of glass-forming liquids, which becomes ex-
act in the d → ∞ limit [21], predicts the existence of a
dynamical (MCT-like) transition, at which the long-time
limit of the scaled mean squared displacement (MSD),

∆̂ = d∆, jumps from diverging diffusively to a finite
value. Because the infinitely-asymmetric binary fluid
mixture that coincides with the RLG in the d → ∞
limit might however be singular, we here sidestep this
reasoning by solving the model directly by cavity recon-
struction. Writing the explicit partition function for the
RLG and using the replica symmetric construction of
Refs. 21, 25, and 26, one obtains a self-consistent ex-
pression for ∆̂

1

2ϕ̂
= −∆̂

∫ ∞
−∞

dheh log q(∆̂/2, h)
∂q(∆̂/2, h)

∂∆̂
, (1)

at the dimensionally-rescaled packing fraction ϕ̂ =
ρVd/d, where ρ is the number density of obstacles, Vd
is the volume of d-dimensional unit sphere [26], and

q(∆̂, h) = {1 + erf[(h + ∆̂/2)/
√

2∆̂]}/2. Equation (1)
gives that a dynamical glass transition takes place at
ϕ̂d = 2.4034 . . ., half that for d→∞ hard spheres [25].

Considering that ∆̂ is an order parameter for both
the percolation and the glass transitions, one may ex-
pect the theory of glasses to also describe percolation
criticality. This is not the case. While the cage size is
expected to diverge logarithmically in mean-field perco-
lation [24], we here obtain that the cage size is twice

that of hard spheres, i.e., ∆̂ = 2∆̂HS(2ϕ̂), and thus also
presents a square-root singularity upon approaching ϕ̂d,
i.e., ∆̂(ϕ̂d)− ∆̂(ϕ̂) ∼

√
ϕ̂− ϕ̂d. In other words, the RLG

and hard spheres share a same MFT universality class
characterized by a discontinuous glass transition, that is
distinct from percolation.

III. PERCOLATION THRESHOLD

Although the percolation criticality is distinct from
that of the dynamical glass transition, one might
nonetheless wonder whether the former smoothly extrap-
olates to latter in the limit d → ∞. We thus consider
the scaling of the percolation threshold, ϕ̂p, with dimen-
sion to determine if it coincides with the MFT predic-
tion for ϕ̂d in the d → ∞ limit. In systems with N
Poisson-distributed obstacles in a d-dimensional box un-
der periodic boundary conditions, the void percolation
can be mapped onto the bond percolation of a network
built on the Voronoi tessellation of obstacles [27], assign-
ing to each edge of that tessellation the smallest obstacle
radius σ that can block it, and using a disjoint-set for-
est algorithm adapted from continuum-space analysis to
identify the percolated cluster [28, 29]. Optimizing the
periodic boundary conditions [26, 30] and the Voronoi
tessellation [26, 31, 32] enables us to obtain ϕ̂p(N) up
to d = 9. The thermodynamic ϕ̂p is then extracted by
fitting (Fig. 1(b))

|ϕ̂p(N)− ϕ̂p| ∼ N−1/dν , (2)

where ν is the percolation correlation length expo-
nent [26, 33].

For d ≤ 8, ϕ̂p < ϕ̂d, but ϕ̂p(d = 9) = 2.46(4) > ϕ̂d,
indicating that the order of the two switches between
d = 8 and 9. Fitting the results to a cubic form,

ϕ̂p = 3.42(8)−10.3(9)
1

d
+13(3)

(
1

d

)2

−9(4)

(
1

d

)3

, (3)

further gives ϕ̂p(d → ∞) = 3.42(8), which differs signif-
icantly from the MFT prediction (Fig. 1(c)). In other
words, while MFT is expected to be exact in d → ∞
limit, it fails to capture the percolation transition in that
same limit, which only heightens the paradox. For d < 8
the tracer is localized on both sides of ϕ̂d, and hence
the dynamical transition has no physical meaning, but a
densifying system in d > 8 might first encounter around
ϕ̂d (imperfect) local cages that collectively percolate and
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can be escaped via activated processes [34], before being
properly localized at the percolation threshold ϕ̂p.

IV. CAGE SIZES

In order to ascertain this scenario, the MFT descrip-
tion of caging needs first to be assessed. To do so, we
implement a cavity reconstruction scheme adapted from
Refs. [26, 34, 35], which can be viewed as the continuum-
space generalization of the Leath algorithm [36]. Specif-
ically, we define a hyperspherical shell, centered at the
origin, of inner radius σ and outer radius rmax, and pick
a number of obstacles N from the Poisson distribution
p(N) = NN

0 e
−N0/N ! with N0 = dϕ̂(rdmax−σd), which are

then placed uniformly at random within that shell. (The
choice of rmax is such that the cavity containing the origin
is closed.) This algorithm guarantees that the probabil-
ity of obtaining a cavity containing the origin, C, exactly
tracks the distribution of cavities at that same ϕ̂ in an
infinitely large system. A set of randomly distributed
points {Si}, within C can then be used to compute the
second moment of the coordinates,

∆(C) = 〈(Si − Sj)2〉 = 2(〈S2
i 〉 − 〈Si〉2), (4)

and then ∆ = EC[∆(C)]. Physically, this method pro-
vides the long-time limit of the MSD of a tracer with-
out explicitly running its dynamics, which is advanta-
geous because it eliminates putative dynamical bottle-
necks. However, because its computational cost increases
exponentially with d, for d ≥ 8 the explicit long-time
limit of the tracer dynamics needs to be computed to es-
timate ∆. The agreement between the two approaches
at intermediate d indicates that bottlenecks can be con-
fidently neglected in this regime.

For ϕ̂ � ϕ̂d, the (scaled) cage size nicely converges
to the MFT prediction as d increases (Fig. 2), and the
dominant correction is perturbative in 1/d. In this high-
density regime, the quantitative accordance with MFT is
robust down to physical dimensions. A generalized MFT
with perturbative corrections should thus offer accurate
predictions in all d, a clear opportunity for future theo-
retical studies.

By contrast, for ϕ̂ ∼ ϕ̂d, a regime dominated by per-
colation criticality—with ∆ diverging at ϕ̂p—is observed
(Fig. 2). The static cage size either crosses ϕ̂d smoothly
or is expected to diverge before reaching ϕ̂d from above,
depending on the relative order of ϕ̂d and ϕ̂p. These
strong discrepancies with respect to MFT found around
ϕ̂d hint at a complex interplay between glass and perco-
lation physics.

V. TRACER DYNAMICS

In order to disentangle the two, we consider the dy-
namical counterpart of the above static description. We
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FIG. 2. Scaling of the cage size with density for different
d. Results for d = 2 to 6 are obtained by random sampling,
and those for d ≥ 8 from the long-time caging dynamics. At
high densities, the MFT, d → ∞ prediction (dashed line)
is steadily approached as d increases, but in small densities
the percolation criticality dominates the growth of cage size.
Note that results in high dimension and small densities are
numerically inaccessible. (inset) The scaling collapse of the
deviation from the MFT prediction identifies the dominant
1/d correction.

first examine the tracer dynamics, following the ballistic
approach of Höfling et al. [5, 37], but setting the micro-
scopic timescale such that the short-time growth of the
MSD scales as ∆̂(t) = t̂2 when t̂ → 0 in all dimensions.
As expected from percolation theory [4, 24], in the long-
time limit either localization or diffusion is observed, for
ϕ̂ > ϕ̂p and ϕ̂ < ϕ̂p, respectively (Fig. 3(a,b)). An in-
termediate subdiffusive regime, which scales logarithmi-
cally with time for d ≥ 6 [24], also develops around the
percolation threshold, and fully dominates the dynam-
ics at ϕ̂ = ϕ̂p. Figure 3(c,d) considers more closely the
interplay between ϕ̂p < ϕ̂d. In d = 6, no hint of MFT-
like caging is observed around ϕ̂p, as expected. Because
ϕ̂p < ϕ̂d, percolation dominates the caging dynamics.
Hence, for ϕ̂ > ϕ̂p, logarithmic growth immediately fol-
lows the ballistic regime until a plateau is reached. By
contrast, in d = 10, where ϕ̂p > ϕ̂d, a weak dynami-
cal slowdown emerges at intermediate times for ϕ̂ ≥ ϕ̂d.
Such a pre-asymptotic effect is distinctly absent in lattice
systems [24]. However, conclusively determining whether
this slowdown is controlled by MFT caging or by some
other model-specific pre-asymptotic correction to perco-
lation criticality would require higher-dimensional sys-
tems than this computational scheme currently permits.

To pinpoint the origin of this weak dynamical slow-
down, we instead seek an observable more sensitive to
MFT-like caging. Recalling that percolation critical-
ity is dominated by rare large cages, while MFT is
evaluated via a saddle point that extracts the typical
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FIG. 3. Time evolution of the MSD in the ballistic dynamics
in (a-b) d = 6 and 10 under log-log scale, and (c-d) same
dimensions under log-lin scale. The long time dynamics is
diffusive for ϕ̂ < ϕ̂p or localized for ϕ̂ > ϕ̂p. In d ≥ 6, ∆̂
at ϕ̂p is expected to grow logarithmically. In (d), specifically,
the signature of intermediate dynamical slowdown emerges
before the logarithmic growth.

cage size, we choose to focus on the modal cage size,
i.e., ∆̂mode(t) = arg maxP (∆̂(t)) [26]. By construction,

∆̂mode eliminates the contribution of rare large cages and
cage escapes, and thus effectively plays the same role
as the generalized MSD considered in recent glass stud-
ies [34, 38]. This observable is further amenable to a
dynamical version of the static cavity reconstruction. Al-
though this setup misses finite-yet-large cages, it provides
a sufficiently broad span of the cage-size distribution to
reliably identify ∆̂mode. It also extends the numerically
accessible dimensional range. Results up to d = 20 and
averaged over at least 2× 103 independent samples with
∆̂max = d·(rmax−σ)2 ≥ 14 are reported in Fig. 4. We find

that ∆̂mode plateaus quickly after the ballistic regime,
even near ϕ̂p, and that this plateau steadily approaches
the MFT caging prediction as d increases (Fig. 4(a)).
Note that a small finite-size corrections due to finite shell
thickness appear in d = 20, but remain within the statis-
tical error range [26]. Remarkably, the approach to the
MFT prediction exhibits a perturbative 1/d correction
(Fig. 4(b)),

∆̂ = ∆̂MFT −
kmode

d
, (5)

even fairly close to ϕ̂d. Because the correction prefac-
tor, kmode, increases as δϕ̂ = ϕ̂− ϕ̂d shrinks, we further
obtain that perturbative corrections to MFT become in-
creasingly pronounced upon approaching ϕ̂d. Two pro-
cesses beyond the d → ∞ MFT description, however,
also then appear: (i) the cage size distribution displays

a large-∆̂-tail, and (ii) a substantial fraction of tracers
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FIG. 4. Cages and cage escapes in d = 4 to 20 obtained
from dynamical cavity reconstructions. (a) Modal (solid line)
and mean (dashed line) squared displacements of tracers with
time at ϕ̂ = 2.7, along with the MFT prediction (dash-dotted
line). MSD curves terminate when 2% of tracers have escaped.
While the MSD drifts with time, the mode robustly plateaus.
(b) The plateau of ∆̂mode approaches the MFT prediction
as in Eq. (5) for various ϕ̂; (c) the scale of the perturbative
correction to the cage size grows upon approaching ϕ̂d, and
empirically fits kmode = 0.46/

√
δϕ̂ + 0.81. (d) Cage escape

probabilities for ∆̂esc = 4 in ϕ̂ = 2.5, 2.7 and 3 collapse under
an instantonic form with empirical prefactor Cesc = 0.4.

escape the shell. As a result, within the range of system
sizes and dimensions accessible in numerical simulations,
the mode no longer converges for ϕ̂ < 2.45.

In order to disentangle these two different physical
contributions and to resolve how the MFT description
emerges as d increases, we consider the first-passage time
of the tracer escaping from a center square distance, ∆̂esc.
For a fixed scaled density ϕ̂ > ϕ̂d, the onset of cage es-
capes is found to be exponentially delayed in time with
increasing dimension for d ≥ 8 (Fig. 4(d)). More pre-
cisely, the cumulative probability of a tracer escaping,
Pesc(t̂), at fixed ϕ̂ follows a scaling form

Pesc(t̂; δϕ̂) ∼ f̂(e−Cescdδϕ̂t̂; δϕ̂), (6)

with master function f̂(x; δϕ̂) and a prefactor

Cesc(∆̂esc) ≈ 0.4 that depends only weakly on the

choice of cutoff for ∆̂esc/∆̂mode ∼ O(1). In small
dimensions, however, cage escapes deviate from this
scaling form. Mean-field–like caging around ϕ̂d is then
so weak that higher-order corrections dominate.

We can now properly understand the logarithmic drift
of the MSD that appears at intermediate times when
ϕ̂p > ϕ̂d as being due to imperfect caging. As dimen-
sion increases, the MFT caging prediction is recovered
because the prefactor of the logarithm slowly vanishes.
Geometrically, most cages are open for ϕ̂d < ϕ̂ < ϕ̂p,



5

thus giving rise to void percolation, but escape paths out
of open cages steadily shrink with increasing d, giving
rise to more pronounced dynamical caging. This collapse
form further suggests that near ϕ̂d cage escapes are so
prevalent that they dominate the dynamics in any finite
d. Such hopping processes (exponentially suppressed in
d by contrast to 1/d perturbations) have long been de-
bated in glass physics [39–41], but this particular instan-
tonic correction to the MFT of glasses was previously
unknown. More than a mere correction, it is here found
to be the primary reason why the sharp mean-field dy-
namical glass transition becomes a crossover in finite d.

VI. CONCLUSION

We have analyzed the interplay between glassiness
and percolation in the RLG, and obtained quantitative
evidence of non-trivial finite-dimensional corrections to
MFT. More specifically, we have found that the static
cage size at high density and the typical dynamical cage
size at all densities show a perturbative, 1/d, correction
to the MFT d→∞ result, and that non-perturbative dy-
namical cage escapes are suppressed exponentially with d
around ϕ̂d. In the RLG, these finite-dimensional correc-
tions are dominant in physical dimensions, d = 2, 3. Our
work therefore reveals in a precise and concrete way the
important role played by activated processes in avoiding
the dynamical glass transition.

Having identified these two types of corrections to
MFT that go beyond the traditional instantonic pic-
ture [22] and facilitation [23], we should now be able
to identify activated processes for more realistic models
of glasses and obtain first-principle description of non-
perturbative corrections to MFT for finite-dimensional
disordered systems. Our results also offer a putative
first-principle pathway for relating local structure and
dynamics in glass-forming liquids [42].
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Appendix A: Notation

In order to investigate the interplay beetween the per-
colation and glassiness in the RLG, we first need to rec-
oncile the two set of notations. The central quantity
for both is the number density of obstacles, ρ, which
allows to define a unitless volume fraction of obstacles
Φ = ρVdσ

d, where Vd is the d-dimensional volume of a
unit sphere and σ is the obstacle radius. For the RLG,
the obstacle radius is commonly set to σ = 1 while the
tracer radius σtracer is infinitesimal, and hence naturally
we can define Φ = ρVd. Without loss of generality, and
by analogy to the Mari-Kurchan model [12, 34, 45], we
can equivalently choose σ = σtracer = 1/2, which nat-
urally defines ϕ = Φ2−d. For high-dimensional scaling
convenience, we further define the rescaled packing frac-
tion

ϕ̂ = Φ/d = 2dϕ/d. (A1)

Similarly, the cage size, ∆, defined as the infinite-time
limit of mean squared displacement (MSD) of the tracer,

can be rescaled as ∆̂ = d ·∆. For reference, Table I pro-
vides the correspondence between notations commonly
used in the scientific literature about the RLG.

TABLE I. Common notations for packing fraction and cage
size

Quantity Equivalence
ρ [12] n [5]
Φ [12]

ϕ [12, 21]
ϕ̂ [12, 21, 34]

∆ [34] δr2/σ2 [5]

∆̂ ∆ [21], Ad2 [46]

Appendix B: Mean-field Theory Derivation

As mentioned in the main text, the RLG cage size in
the d→∞ limit can be obtained by applying the replica
technique to a cavity computation. We here provide de-
tails about this derivation. The setup consists of N hard
spherical obstacles of radius σ placed uniformly at ran-
dom at positions Ri within a volume V centered around
the origin. The free volume available to a tracer placed
at the origin is thus

Z =

∫
dx

N∏
i=1

θ(|x−Ri| > σ) , (B1)

where θ(x) denotes the Heaviside function. The repli-
cated partition function in the thermodynamic, N →∞,
limit at fixed obstacle density ρ = N/V is

Zn =

∫
dx

[∫
|R|>σ dR

∏n
a=1 θ(|xa −R| > σ)∫
|R|>σ dR

]N
, (B2)
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and the free energy is

F = −logZ = − lim
n→0

∂nZn. (B3)

For this system, we expect two phases:

• In the liquid phase, the (replicated) tracers are
not confined close to the origin. Each replica thus
decorrelates over the whole volume and

Zn ∼ V n
(
V − (n+ 1)Vσ

V − Vσ

)N
∼ V ne−nρVσ ,

Fliq = − log V + ρVσ ,

(B4)

where Vσ is the volume of a sphere of diameter σ.

• In the glass phase, with high probability the ori-
gin is contained within a cage. Many other cages
exist in the volume, but a tracer starting at the ori-
gin remains confined within that cage. Note that
the cage at the origin is metastable, because far-
away cages thermodynamically dominate the mea-
sure, hence the choice of a cavity computation.

In the glass phase, we can write, after introducing a
fictitious coordinate x0 = 0,

Zn =

∫
dx

{∫
dR [

∏n
a=0 θ(|xa −R| > σ)]

V − Vσ

}N
=

∫
dx

{
1 +

∫
dR [

∏n
a=0 θ(|xa −R| > σ)− 1] + Vσ

V − Vσ

}N
=

∫
dx

{
1 +
−
∫

dRθ(mina∈[0,n] |xa −R| < σ) + Vσ

V − Vσ

}N
= eρVσ

∫
dx e−ρ

∫
dRθ(mina∈[0,n] |xa−R|<σ)

= eρVσCn+1,d

∫
dq̂ e

d−n−1
2 log det q̂+ρfn+1({0,x}),

(B5)

where overlap variables have been changed to rotationally
invariant quantities, q̂ab = xa ·xb as in Ref. 21, Eq.(2.96),
and

fn(x) = −
∫

dRθ( min
a∈[1,n]

|xa −R| < σ), (B6)

as in Ref. 47, Eq.(30).
Following the approach of Refs. 21 and 25 for evaluat-

ing Zn by saddle point integration for d→∞, we obtain

logZn = cnst +
d

2
log det q̂ + dϕ̂ḡn

= cnst +
d

2
log

(n∆̂r − (n− 1)
∆̂

2

)(
∆̂

2

)n−1


+ dϕ̂
(
fn+1(∆̂r, ∆̂) + 1

)
,

(B7)

where irrelevant constants have been dropped and the
rescaled squared displacement and density, ∆̂ and ϕ̂, re-
spectively, are defined as in Section A. By taking the
replica symmetric solution, ∆̂r = ∆̂, the expression can
then be reduced to a one-dimensional integral [21], such
that

fn+1(∆̂) =

∫ ∞
−∞

dheh(q(∆̂/2, h)n+1 − 1), (B8)

where q(∆̂, h) = (1 + erf(h+∆̂/2√
2∆̂

))/2. Note that in

the original hard sphere derivation, in which all par-
ticles oscillate, the large variance term has the form
∆̂ = (∆̂tracer + ∆̂obstacle)/2. By contrast, obstacles are

fixed in the RLG, and hence ∆̂ = ∆̂tracer/2.
Under the replica symmetric assumption, the free en-

ergy is then

logZn = cnst +
dn

2
log ∆̂ + dϕ̂(

∫ ∞
−∞

dheh

(q(∆̂/2, h)n+1 − 1) + 1).

(B9)

Solving for ∂ logZn

∂∆̂
= 0 provides the cage size that opti-

mizes the free energy,

n

2∆̂
= −ϕ̂

∫ ∞
−∞

dheh(n+ 1)q(∆̂/2, h)n
∂q(∆̂/2, h)

∂∆
.

(B10)

Noting that
∫∞
−∞ dheh ∂q

∂∆̂
= 0 and taking the limit n→ 0,

the cage size and the obstacle density are then related by

1

2ϕ̂
= −∆̂

∫ ∞
−∞

dheh log q(∆̂/2, h)
∂q(∆̂/2, h)

∂∆̂
. (B11)

Appendix C: Void Percolation Threshold
Computation

This section details the algorithm used for detecting
the void percolation threshold of the RLG. We first place
N obstacles uniformly at random within a d-dimensional
box under periodic boundary conditions. Conventional
cubic boxes, Zd, are used in d ≤ 6, while the Wigner-
Seitz cell of the checkerboard, Dd, lattice, the E8 lattice
and Λ9 lattice (densest lattice packing in d = 8 and 9)
are used in 4 ≤ d ≤ 7, 8 and 9, respectively. A Voronoi
tessellation of the obstacles allows us to map the void
percolation problem onto that of the bond percolation
of edges in that tessellation. Each edge is weighted by
the circumscribed radius of the facet in the Delaunay
triangulation that is dual to this edge, which defines the
minimum radius of the obstacles that can block this edge.
Because the number of Voronoi vertices and edges grows
exponentially with dimension, memory use must be care-
fully handled. First, we build the tessellation point by
point [48]. Specifically, for each obstacle, pi, we calculate
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the convex hull [32] of the inverse coordinates of the other
obstacles, after translating pi at the origin. The vertices
of this convex hull then correspond to the neighbors of
pi in the Voronoi tessellation [31]. Second, edges with
a sufficiently small weight remain blocked in a percolat-
ing network and are dropped on-the-fly, while building
the tessellation. Orders of magnitude in memory use are
therefore gained, thus enabling the analysis of sufficiently
large systems, even in the highest dimension considered.

The percolation threshold is then determined by an al-
gorithm akin to that used for the continuum-space perco-
lation of obstacles [28, 29]. This approach is applied on a
disjoint-set forest data structure. A disjoint-set consists
of a number of nodes, each of which corresponding to a
Voronoi vertex. Each node maintains a parent pointer
and the displacement vector to its parent, tracing back
to a unique root node in the set. Each disjoint-set thus
corresponds to a cavity in the system. Voronoi edges are
first sorted in descending order, and then the neighboring
vertices of each edge are iteratively considered. If the two
vertices, X1 and X2, do not yet belong to a same cavity,
they are merged; otherwise, percolation is checked by:

1. Calculating the displacement vector between X1

and X2 (under minimal image convention) r0 =
X1 −X2;

2. Calculating the displacement vector from X1 and
X2 to the root, r1 and r2, respectively;

3. Comparing if r1 − r2 6= r0.

If the displacements calculated from the two methods
differ (necessarily, by integers), then the cavity must span
across the periodic boundary and form a cycle. Percola-
tion is deemed to take place when there exist such cycles
in all dimensions, which reduces sample-to-sample vari-
ations compared to other percolation criteria [12]. From
the standard percolation universality class [3], we know
that the percolation threshold in a finite system of N ob-
stacles converges to the thermodynamic, N → ∞, limit,
with asymptotic scaling

Φp(N)− Φp(∞) ∼ N−1/dν , (C1)

where ν is the correlation length exponent, ν =
4/3, 0.8774, 0.6852, 0.5723 for d = 2 to 5 [33] and 1/2
for d ≥ 6. Our percolation threshold detection algorithm
increases the range of accessible system sizes by orders of
magnitude, which makes this fitting robust in all dimen-
sions considered in this work. Formally, the neighbors of
an obstacle obeys the Poisson distribution without bias
if the system size (inscribed radius of the periodic box)
is greater than the maximum neighbor-distance of obsta-
cles. In high dimension, this condition requires increas-
ingly large number of obstacles in a system. Empirically
we find the asymptotic scaling is still recovered in smaller
systems, within the range of numerical uncertainty, when
the next-nearest periodic image of neighboring obstacles
are included in the construction of Voronoi tessellation.

The resulting percolation threshold are listed in Table II.
Note that our results reveal a systematic bias in the nu-
merical treatment of Ref. [12] for d ≥ 4, because it in-
cluded pre-asymptotic system sizes in the fit.

TABLE II. Numerical estimates of the void percolation
threshold

d Φp ϕ̂p

2 1.1276(9) 0.5638(5)
3 3.510(2) 1.1698(8)
4 6.248(2) 1.5621(5)
5 9.170(8) 1.834(2)
6 12.24(2) 2.040(4)
7 15.46(5) 2.209(7)
8 18.64(8) 2.330(9)
9 22.1(4) 2.46(4)

Appendix D: Numerical Cavity Reconstruction
Scheme

At high density, the RLG model is amenable to cavity
reconstruction, which allows to compute efficiently the
properties of the localized regime within a spherical shell
of radius rmax. The number of obstacles N to be placed
within that shell is first picked at random from the Pois-
son distribution

p(N) =
NN

0 e
−N0

N !
, (D1)

where N0 = dϕ̂(rdmax − σd) is the average number of ob-
stacles for the system size and density considered. These
N obstacles are then placed uniformly at random within
a hypersphere shell of inner radius σ = 1 and outer ra-
dius rmax > σ. Because N is chosen in accordance to the
fluctuation of the Poisson random field in a finite volume,
this construction guarantees that the probability of ob-
taining a cavity containing the origin, C, exactly tracks
the distribution of cavities at that same ϕ̂ in an infinitely
large system. The properties of this cavity can then be
sampled using either static or dynamical algorithms.

1. Static Sampling

For a purely geometric sampling of the cavity proper-
ties, a Delaunay triangulation (into d-simplicial cells) of
the obstacles within that cavity is built using CGAL’s dD
Triangulation library [49]. The cavity is then constructed
by a graph search with cells as vertices and facets as
edges. Starting from the cell that contains the origin, an
edge (facet) is connected if the circumcenter of two cells
are in same side, or the circumcenter are on opposite
sides and the circumradius of the facet is greater than σ.
All visited cells are added to the cavity. The cavity is
valid if the displacement of any sites in the cavity to the
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origin is less than rmax − σ. Care must be taken choos-
ing rmax, such that this condition is met. Like in the
Leath algorithm for lattice percolation [36], cavities are
evenly sampled in a site base, that is, the probability of
generating a cavity of volume Vcavity is proportional to
VcavityP (Vcavity), where P (Vcavity) is the probability of
having a cavity of volume Vcavity in the thermodynamic
limit.

Sastry et al. proved that the visited cells constructed
this way contain and only contain the void space that
belongs to the same cavity [35]. They also introduced an
exact algorithm to determine the cavity volume through
a recursive division of d-simplices. Because the exact de-
composition of a cavity into simple primitives is quite
involved in general dimension, we consider instead a ran-
dom sampling algorithm. The basic idea is to generate
uniformly distributed random points (samples) within
the cavity and to use these samples to approximate the
cavity volume and other physical quantities. The high
level description of the principal algorithm is as follows:

Algorithm 1 Sampling a cavity

for Ci in visited cells do
Vi ← SimplexVolume(Ci)
Increment Vcells

end for
for j = 1 to Nsamples do

Randomly choose a simplex Ck in {Ci} with probability
Vk/Vcells

Place a random sample S ← SampleSimplex(Ck)
if S in the void space then

Add S to the void sample list and increment Nvoids

end if
end for

Note that the volume of a d-simplex defined by the
vertices {p0, p1, ..., pd} is

Vsimplex =

∣∣∣∣ 1

d!
det(p1 − p0, p2 − p0, ..., pd − p0)

∣∣∣∣ . (D2)

Obtaining uniform samples in a d-simplex is equivalent
to generating d + 1 random spacing with unit sum [50,
p. 568]. To generate d+1 random spacings ,x0, ..., xd, one
first generates d independent and uniformly distributed
random variables y1, ..., yd in [0, 1) and sort them in place,
in addition to y0 = 0 and yd+1 = 1, then xi = yi+1 − yi,
and the random sample S =

∑d
i=0 xipi.

Determining whether S is in the void space requires a
nearest-neighbor query of the obstacles. Although the
nearest obstacle of S is most likely to be one of the
vertices of Ci, outliers are possible. To accelerate the
computation, one may pre-compute the point-to-simplex
distances of these possible obstacles other than the sim-
plex vertices, and store those with distance less than σ
as candidate nearest neighbors.

As the obstacle density increases, the fraction and size
of the voids become increasingly small, which makes this
sampling approach inefficient. We then instead find the

vertices of the cavity, build the triangulation over these
vertices, and then run the cavity sampling algorithm in
the new triangulation. Note that a simplex generated this
way may lie completely in occupied space, or even con-
tain the voids of other cavities. The later case should be
rare and in fact is not observed in practice. One should
nonetheless test for this case and drop occupied or in-
valid simplices from thus sampling. With this simple op-
timization, the fraction of void samples (Nvoids/Nsamples)
typically varies from a half to nearly one.

From the Nvoids samples out of Nsamples within the
cavity, we approximate the cavity volume

Vcavity = Vcells
Nvoids

Nsamples
. (D3)

where Vcells is the total volume of visited cells. From the
set of samples within the void space, {Si}, we can also ap-
proximate the infinite-time mean squared displacement
of a tracer in this cavity as

∆cavity = 〈(Si − Sj)2〉 = 2(〈S2
i 〉 − 〈Si〉2). (D4)

The self van Hove function, Gs(r, t), which is defined as
the probability of finding a tracer at displacement r at
time t, can be computed in the t→∞ limit, when every
site is equally probable, for a single cavity as

Gs,cavity(r) = Gs,cavity(r, t→∞) ∼
∑
i 6=j

δ(|Si − Sj | − r)

(D5)
and is normalized as

∫∞
0
Gs(r)dr = 1. Note that the

summation is over sites i 6= j, in order to eliminate the
artificial peak at r = 0 due to the discretization scheme.
Finally, the expected V , ∆ and Gs(r) are the arithmetic
mean over all randomly generated cavities.

2. Dynamical Sampling

For the tracer dynamics, we implemented a high-
dimensional generalization of the simulation scheme of
Höfling et al. [5, 37].

For the cage escape analysis, obstacles are first gen-
erated according to the cavity reconstruction scheme,
which allows the vicinity of ϕ̂d in dimensions as high as
d = 20 to be reached. A tracer is then placed at the origin
and ballistic dynamics is run. The simulation terminates
when tmax is reached or when the tracer escapes the shell,
i.e., r(t) > rmax−σ, whichever comes first. The maximal

valid tracer square displacement ∆̂max = d× (rmax− σ)2

defines the simulation shell thickness. For a given t, mul-
tiple time intervals are sampled and averaged to obtain
the dynamical cage size ∆(t) for a specific realization of
disorder. The mode cage size at time t is defined as the
maximum likelihood value in the distribution of time de-
pendent cage sizes, ∆̂mode(t) = arg maxP (∆̂(t)) (Fig. 5
(a)). The escape event time, tesc at ∆esc is calculated as
the first-passage time of the tracer square displacement
from the origin being ∆esc.
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FIG. 5. (a) Dynamical cage size distribution in ϕ̂ = 2.7 at t̂ = 216 in various dimensions. The modal cage size ∆̂mode is denoted

by asterisks. (b, c) ∆̂mode(t) in ϕ̂ = 2.7 and (b) d = 16 and (c) d = 20 obtained for systems with different shell thickness ∆̂max.

Colored dashed lines denote the plateau value of ∆̂mode and also plotted in insets. The black dotted line denotes the mean-field
prediction.

By construction, the cavity reconstruction scheme ex-
hibits no finite-size correction as long as the cage is
closed. The obstacles are indeed then generated accord-
ing to the Poisson distribution, as in an infinite-size sys-
tem. For imperfectly closed cages, however, finite-size
corrections arise because the tracer escapes that cage at
different times, depending on the shell thickness. While
the MSD is sensitive to the rare samples that exhibit
large displacement, we find that finite-size corrections to
∆̂mode only become larger than statistical noise for fairly
small system sizes, e.g., ∆̂max ≤ 8 in ϕ̂ = 2.7 and d = 16.
A significant fraction of tracers can then escape on a time
comparable to reaching the plateau height, and hence
∆̂mode(t) shrinks with time. In all other cases, the mode
reaches a plateau that persists for multiple time decades.
We thus extract the plateau value of ∆̂mode by taking the
average of ∆̂mode(t̂) from t̂ = 50 to 105. The magnitude
of the finite-size effect is comparable with the statisti-

cal noise of extracting the modal cage size from different
realization of sample cages. It is worth note that, be-
cause in the highest approachable dimension, d = 20, a
smaller simulation shell size, ∆̂max = 14, is used than in
d ≤ 16, the difference between the plateau heights, which
scales like 1/d, then becomes statistically indistinguish-
able (Fig. 4(a) in the main text).

To assure better accuracy, we randomly choose 4000
samples out of the total, evaluating the modal cage size
and repeat multiple times. This bootstrap sampling gives
the expected ∆̂mode and the confidence interval of the ap-
proximation shown in Fig. 4(b) in the main text. Results
are then fitted with linear form with zero intercept. We
chose this intercept in order to obtain clearer results for
Fig. 4(c). If the intercept is fitted as well, its value de-
viates at most ±5% from the origin, which is well within
the accuracy of the fitted data.
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