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Low-temperature properties of crystalline solids can be under-
stood using harmonic perturbations around a perfect lattice, as in
Debye’s theory. Low-temperature properties of amorphous solids,
however, strongly depart from such descriptions, displaying en-
hanced transport, activated slow dynamics across energy barriers,
excess vibrational modes with respect to Debye’s theory (i.e., a
boson peak), and complex irreversible responses to small mechanical
deformations. These experimental observations indirectly suggest
that the dynamics of amorphous solids becomes anomalous at low
temperatures. Here, we present direct numerical evidence that
vibrations change nature at a well-defined location deep inside
the glass phase of a simple glass former. We provide a real-space
description of this transition and of the rapidly growing time- and
lengthscales that accompany it. Our results provide the seed for a
universal understanding of low-temperature glass anomalies within
the theoretical framework of the recently discovered Gardner
phase transition.
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Understanding the nature of the glass transition, which de-
scribes the gradual transformation of a viscous liquid into

an amorphous solid, remains an open challenge in condensed
matter physics (1, 2). As a result, the glass phase itself is not
well understood either. The main challenge is to connect the
localized, or “caged,” dynamics that characterizes the glass
transition to the low-temperature anomalies that distinguish
amorphous solids from their crystalline counterparts (3–7). Re-
cent theoretical advances, building on the random first-order
transition approach (8), have led to an exact mathematical de-
scription of both the glass transition and the amorphous phases
of hard spheres in the mean-field limit of infinite-dimensional
space (9). A surprising outcome has been the discovery of a
novel phase transition inside the amorphous phase, separating
the localized states produced at the glass transition from their
inherent structures. This Gardner transition (10), which marks
the emergence of a fractal hierarchy of marginally stable glass
states, can be viewed as a glass transition deep within a glass, at
which vibrational motion dramatically slows down and becomes
spatially correlated (11). Although these theoretical findings
promise to explain and unify the emergence of low-temperature
anomalies in amorphous solids, the gap remains wide between
mean-field calculations (9, 11) and experimental work. Here,
we provide direct numerical evidence that vibrational motion in
a simple 3D glass-former becomes anomalous at a well-defined
location inside the glass phase. In particular, we report the
rapid growth of a relaxation time related to cooperative vi-
brations, a nontrivial change in the probability distribution
function of a global order parameter, and the rapid growth of
a correlation length. We also relate these findings to observed
anomalies in low-temperature laboratory glasses. These re-
sults provide key support for a universal understanding of the

anomalies of glassy materials, as resulting from the diverging
length- and timescales associated with the criticality of the
Gardner transition.

Preparation of Glass States
Experimentally, glasses are obtained by a slow thermal or
compression annealing, the rate of which determines the lo-
cation of the glass transition (1, 2). We find that a detailed
numerical analysis of the Gardner transition requires the prep-
aration of extremely well-relaxed glasses (corresponding to
structural relaxation timescales challenging to simulate) to
study vibrational motion inside the glass without interference
from particle diffusion. We thus combine a very simple glass-
forming model––a polydisperse mixture of hard spheres––to
an efficient Monte Carlo scheme to obtain equilibrium con-
figurations at unprecedentedly high densities, i.e., deep in
the supercooled regime. The optimized swap Monte Carlo al-
gorithm (12), which combines standard local Monte Carlo
moves with attempts at exchanging pairs of particle diameters,
indeed enhances thermalization by several orders of magni-
tude. Configurations contain either N = 1,000 or N = 8,000
(results in Figs. 1–3 are for N = 1,000; results in Fig. 4 are for
N = 8,000) hard spheres with equal unit mass m and diame-
ters independently drawn from a probability distribution PσðσÞ∼ σ−3,
for σmin ≤ σ ≤ σmin=0.45. We similarly study a 2D bidisperse
model glass former and report the main results in SI Appendix.
We mimic slow annealing in two steps (Fig. 1). First, we

produce equilibrated liquid configurations at various densi-
ties φg using our efficient simulation scheme, concurrently
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obtaining the liquid equation of state (EOS). The liquid EOS
for the reduced pressure p= βP=ρ, where ρ is the number
density, β is the inverse temperature, and P is the system
pressure, is described by

pliquidðφÞ= 1+ f ðφÞ½pCSðφÞ− 1�, [1]

with pCSðφÞ from ref. 13

pCSðφÞ= 1
1−φ

+
3s1s2
s3

φ

ð1−φÞ2 +
s32
s23

ð3−φÞφ2

ð1−φÞ3 , [2]

where sk is the kth moment of PσðσÞ, and f ðφÞ= 0.005−
tanh½14ðφ− 0.79Þ� are fitted quantities. The structure of the
equilibrium configurations generated by the swap algorithm
has been carefully analyzed. Unlike for other glass formers (14, 15),
no signs of orientational or crystalline order were observed (16, 17).
Following the strategy of ref. 18, we also obtain the mode-coupling
theory dynamical cross-over φd = 0.594ð1Þ (SI Appendix). We have
not analyzed the compression of equilibrium configurations
with φg <φd, as done in earlier studies (19, 20), because struc-
tural relaxation is not well decoupled from vibrational dynamics,
although the obtained jammed states should have equivalent
properties.
Second, we use these liquid configurations as starting points for

standard molecular dynamics simulations during which the system
is compressed out of equilibrium up to various target φ>φg (21).
Annealing is achieved by growing spheres following the Lubachevsky–
Stillinger algorithm (21) at a constant growth rate γg = 10−3 (see SI
Appendix for a discussion on the γg -dependence). The average
particle diameter, σ, serves as unit length, and the simulation time is
expressed in units of

ffiffiffiffiffiffiffiffiffiffiffi
βmσ2

p
. To obtain thermal and disorder av-

eraging, this procedure is repeated over Ns samples (Ns ≈ 150 for
N = 1,000 and Ns = 50 for N = 8,000), each with different initial
equilibrium configurations at φg, and over Nth = 64− 19,440 in-
dependent thermal (quench) histories for each sample. Quantities
reported here are averaged over Ns ×Nth quench histories, unless
otherwise specified. The nonequilibrium glass EOSs associated

with this compression (dashed lines) terminate (at infinite pres-
sure) at inherent structures that correspond, for hard spheres, to
jammed configurations (blue triangles). To capture the glass EOSs,
we use a free-volume scaling around the corresponding jamming
point φJ

pglassðφ;φgÞ=
C

φJðφgÞ−φ
, [3]

where the constant C weakly depends on φg.
Our numerical protocol is analogous to varying the cooling rate––

and thus the glass transition temperature––of thermal glasses, and
then further annealing the resulting amorphous solid. Each value of
φg indeed selects a different glass, ranging from the onset of sluggish
liquid dynamics around the dynamical cross-over (1, 2), φd, to the
very dense liquid regime where diffusion and vibrations (β-relaxation
processes) are fully separated (2). For sufficiently large φg, we thus
obtain unimpeded access to the only remaining glass dynamics, i.e.,
β-relaxation processes (4).

Growing Timescales
A central observable to characterize glass dynamics is the mean-
squared displacement (MSD) of particles from position riðtwÞ

Δðt, twÞ= 1
N

XN

i=1

D
jriðt+ twÞ− riðtwÞj2

E
, [4]

averaged over both thermal fluctuations and disorder, where time t
starts after waiting time tw when compression has reached the tar-
get φ. The MSD plateau height at long times quantifies the average
cage size (SI Appendix). Because some of the smaller particles
manage to leave their cages, the sum in Eq. 4 is here restricted
to the larger half of the particle size distribution (SI Appendix).
When φ is not too large, φJφg, the plateau emerges quickly, as
suggested by the traditional view of caging in glasses (Fig. 2A).

Fig. 1. Two glass phases. Inverse reduced pressure–packing fraction (1=p v φ)
phase diagram for polydisperse hard spheres. The equilibrium simulation results
at φg (green squares) are fitted to the liquid EOS (Eq. 1, green line). The dy-
namical cross-over, φd, is obtained from the liquid dynamics. Compression
annealing from φg up to jamming (blue triangles) follows a glass EOS (fit to
Eq. 3, dashed lines). At φG (red circles and line) with a finite p, stable glass states
transform into marginally stable glasses. Snapshots illustrate spatial heteroge-
neity above and below φG, with sphere diameters proportional to the linear
cage size and colors encoding the relative cage size, ui (see the text).

A B

C D

Fig. 2. Emergence of slow vibrational dynamics. (A) Time evolution of Δðt, twÞ
for several tw and φ (from top to bottom, φ= 0.645, 0.67, 0.68, 0.684, 0.688),
following compression from φg = 0.643. For φJφG = 0.684, Δðt, twÞ displays
strong aging. (B) Comparison between Δðt, twÞ (points) and ΔABðt + twÞ (lines) for
the longest waiting time tw = 1,024. For φ<φG both observables converge to the
same value within the time window considered, but not for φ>φG. (C) The time
evolution of δΔðt, twÞ at tw = 2 displays a logarithmic tail, which provides a
characteristic relaxation time τ. (D) As φ approaches φG, τ grows rapidly for any tw.
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When the glass is compressed beyond a certain φG, however,
Δðt, twÞ displays both a strong dependence on the waiting time tw,
i.e., aging, and a slow dynamics, as captured by the emergence of
two plateaus. These effects suggest a complex vibrational dynamics.
Aging, in particular, provides a striking signature of a growing
timescale associated with vibrations, revealing the existence of a
“glass transition” deep within the glass phase.
To determine the timescale associated with this slowdown, we

estimate the distance between independent pairs of configurations by
first compressing two independent copies, A and B, from the same
initial state at φg to the target φ, and then measuring their relative
distance

ΔABðtÞ= 1
N

XN

i=1

D��rAi ðtÞ− rBi ðtÞ
��2E, [5]

so that ΔABðt→∞Þ ’ Δðt→∞, tw →∞Þ, as shown in Fig. 2B.
The two copies share the same positions of particles at φg,
but are assigned different initial velocities drawn from the Max-
well–Boltzmann distribution. The time evolution of the differ-
ence δΔðt, twÞ=ΔABðtw + tÞ−Δðt, twÞ indicates that whereas the
amplitude of particle motion naturally becomes smaller as φ
increases, the corresponding dynamics becomes slower (Fig.
2C). In other words, as φ grows particles take longer to explore
a smaller region of space. In a crystal, by contrast, δΔðt, twÞ
decays faster under similar circumstances. A relaxation time-
scale, τ, can be extracted from the decay of δΔðt, twÞ at large t,
whose logarithmic form, δΔðt, twÞ∼ 1− ln t=ln τ, is characteristic
of the glassiness of vibrations. As φ→φG, we find that τ dra-
matically increases (Fig. 2D), which provides direct evidence of
a marked cross-over characterizing the evolution of the glass
upon compression.

Global Fluctuations of the Order Parameter
This sharp dynamical cross-over corresponds to a loss of ergodicity
inside the glass, i.e., time and ensemble averages yield different
results. To better characterize this cross-over, we define a time-
scale τcage for the onset of caging [τcage ≈Oð1Þ; SI Appendix],
and the corresponding order parameters ΔAB ≡ΔABðτcageÞ and
Δ≡Δðτcage, tw = 0Þ.
The evolution of the probability distribution functions, PðΔABÞ and

PðΔÞ, as well as their first moments, hΔABi and hΔi, are presented in
Fig. 3 A and B for a range of densities across φG. For φ<φG, dy-
namics is fast, hΔABi and hΔi coincide, and PðΔABÞ and PðΔÞ are
narrow and Gaussian-like. For φ>φG, however, the MSD does not
converge to its long-time limit, hΔi< hΔABi, which indicates that
configuration space explored by vibrational motion is now broken
into mutually inaccessible regions. Interestingly, the slight increase of
hΔABi with φ in this regime (Fig. 3B) suggests that states are then
pushed further apart in phase space, which is consistent with the-
oretical predictions (11). When compressing a system across φG, its
dynamics explores only a restricted part of phase space. As a result,
ΔAB displays pronounced, non-Gaussian fluctuations (Fig. 3A).
Repeated compressions from a same initial state at φg may end up
in distinct states, which explains why ΔAB is typically much larger
and more broadly fluctuating than Δ (Fig. 3A). These results are
essentially consistent with theoretical predictions (9, 11), which
suggest that for φ>φG, PðΔABÞ should separate into two peaks
connected by a wide continuous band with the left-hand peak
continuing the single peak of PðΔÞ. The very broad distribution of
ΔAB further suggests that spatial correlations develop as φ→φG,
yielding strongly correlated states at larger densities.
To quantify these fluctuations we measure the variance χAB

and skewness ΓAB (SI Appendix and ref. 11) of PðΔABÞ (Fig. 3 C
and D). The global susceptibility χAB is very small for φ<φG and
grows rapidly as φG is approached, increasing by about two de-
cades for the largest φg considered (Fig. 3C). Whereas χAB
quantifies the increasing width of the distributions, ΓAB reveals a
change in their shapes. For each φg we find that ΓAB is small on
both sides of φG with a pronounced maximum at φ=φG (Fig.
3D). This reflects the roughly symmetric shape of PðΔABÞ around
hΔABi on both sides of φG and the development of an asymmetric
tail for large ΔAB around the cross-over, a known signature of
sample-to-sample fluctuations in spin glasses (22) and mean-field
glass models (11). Note that because the skewness maximum
gives the clearest numerical estimate of φG, we use it to de-
termine the values reported in Fig. 1.

Growing Correlation Length
The rapid growth of χAB in the vicinity of φG suggests the concom-
itant growth of a spatial correlation length, ξ. Its measurement

A

C D

B

Fig. 3. Global fluctuations of the order parameter. (A) Probability distribution
functions forΔAB andΔ above, at, and below the Gardner cross-over, φG = 0.670ð2Þ
for φg = 0.630. Vertical lines mark hΔi (solid) and hΔABi (dashed), which also rep-
resent the peak positions. (B) Comparing hΔi and hΔABi shows that the average
values separate for φJφG (Data are multiplied by 5k, where k= 0,1, . . . , 5 for
φ= 0.655, 0.643, . . . , 0.598, respectively.) Around φG, (C) the global susceptibility
χAB grows very rapidly, and (D) the skewness ΓAB peaks. Numerical estimates for φG

are indicated by vertical segments.

A B

Fig. 4. Growing correlation length. (A) Spatial correlator GLðrÞ (Eq. 6) for
different φ (from bottom to top, φ= 0.65, 0.67, 0.675, 0.677, 0.68, 0.682, 0.687)
annealed from φg = 0.640, with N= 8,000 (larger systems are used here to sig-
nificantly measure the growth of ξ). (B) Fitting GLðrÞ to Eq. 7 (lines inA) provides
the correlation length ξ, which grows with φ and becomes comparable to the
linear system size upon approaching φG = 0.682ð2Þ (dashed line).
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requires spatial resolution of the fluctuations of ΔAB, hence for
each particle i we define ui = ð��rAi − rBi

��2=hΔABiÞ− 1 to capture its
contribution to deviations around the average hΔABi. A first
glimpse of these spatial fluctuations is offered by snapshots of
the ui field (Fig. 1), which appear featureless for φ<φG, but
highly structured and spatially correlated for φJφG. More
quantitatively, we define the spatial correlator

GLðrÞ=
DP3

μ=1
P

i≠juiujδ
�
r−

���rAi,μ − rAj,μ
���
�E

DP3
μ=1

P
i≠jδ

�
r−

���rAi,μ − rAj,μ
���
�E , [6]

where ri,μ is the projection of the particle position along direction
μ. Even for the larger system size considered, measuring GLðrÞ is
challenging because spatial correlations quickly become long-
ranged as φ→φG (Fig. 4A). Fitting the results to an empirical
form that takes into account the periodic boundary conditions in
a system of linear size L,

GLðrÞ∼ 1
ra
e−ðr=ξÞ

b
+

1
ðL− rÞa e

−½ðL−rÞ=ξ�b, [7]

where a and b are fitting parameters, nonetheless confirms that ξ
grows rapidly with φ and becomes of the order of the simulation
box at φ>φG (Fig. 4B). Note that although probed using a dy-
namical observable, the spatial correlations captured by GLðrÞ
are conceptually distinct from the dynamical heterogeneity ob-
served in supercooled liquids (23), which is transient and disap-
pears once the diffusive regime is reached.

Experimental Consequences
The system analyzed in this work is a canonical model for colloidal suspensions
andgranularmedia.Hence, experiments along the lines presented here could be
performed to investigate more closely vibrational dynamics in colloidal and
granular glasses, using a series of compressions to extract Δ and ΔAB. Experi-
ments are also possible in molecular and polymeric glasses, for which the nat-
ural control parameter is temperature T instead of density. Let us therefore
rephrase our findings from this viewpoint. As the system is cooled, the super-
cooled liquid dynamics is arrested at the laboratory glass transition temperature
Tg. As the resulting glass is further cooled its phase space transforms, around a
well-defined Gardner temperature TG < Tg, from a simple state (akin to that of
a crystal) into a more complex phase composed of a large number of glassy
states (see SI Appendix for a discussion of the phase diagram as a function of T).

Around TG, vibrational dynamics becomes increasingly heterogeneous
(Fig. 1), slow (Fig. 2), fluctuating from realization to realization (Fig. 3), and
spatially correlated (Fig. 4). The β-relaxation dynamics inside the glass thus
becomes highly cooperative (24, 25) and ages (26). The fragmentation of

phase space below TG also gives rise to a complex response to mechanical
perturbations in the form of plastic irreversible events, in which the system
jumps from one configuration to another (4, 6, 27). This expectation stems
from the theoretical prediction that the complex phase at T < TG is mar-
ginally stable (9), which implies that glass states are connected by very low
energy barriers, resulting in strong responses to weak perturbations (7).

A key prediction is that the aforementioned anomalies appear simulta-
neously around a TG that is strongly dependent on the scale Tg selected by
the glass preparation protocol. Annealed glasses with lower Tg are expected
to present a sharper Gardner-like cross-over, at an increasingly lower tem-
perature. Numerically, we produced a substantial variation of φg by using an
efficient Monte Carlo algorithm to bypass the need for a broad range of
compression rates. In experiments a similar or even larger range of Tg can be
explored (28), using poorly annealed glasses from hyperquenching (29) and
ultrastable glasses from vapor deposition (30–32). We expect ultrastable
glasses, in particular, to display strongly enhanced glass anomalies, consis-
tent with recent experimental reports (33–35). Interestingly, a Gardner-like
regime may also underlie the anomalous aging recently observed in indi-
vidual proteins (36).

Conclusion
Since its prediction in the mean-field limit, the Gardner transition
has been regarded as a key ingredient to understand the physical
properties of amorphous solids. Understanding the role of finite-
dimensional fluctuations is a difficult theoretical problem (37). Our
work shows that clear signs of an apparent critical behavior can be
observed in three dimensions, at least in a finite-size system, which
shows that the correlation length becomes at least comparable to the
system size as φ approaches φG. Although the fate of these findings in
the thermodynamic limit remains an open question, the remarkably
large signature of the effect strongly suggests that the Gardner phase
transition paradigm is a promising theoretical framework for a uni-
versal understanding of the anomalies of solid amorphous materials,
from granular materials to glasses, foams, and proteins.
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I. DYNAMICAL CROSSOVER DENSITY

We follow the strategy developed in Ref. [1] to determine the location of the dynamical (mode-coupling theory
– MCT) crossover ϕd. (i) We obtain the diffusion time τD = σ̄2/D, where D is the long-time diffusivity and the
average particle diameter, σ̄, is also the unity of length. At long times, the mean-squared displacement (MSD)

∆(t) = 1
N

∑N
i=1

〈
|ri(t)− ri(0)|2

〉
is dominated by the diffusive behavior ∆(t) = 2dDt = 2dσ̄2(t/τD) (Fig. S1a). Note

that we here ignore the dependence of ∆(t) on tw (compared with Eq. (1) in the main text), because we are interested
in equilibrium liquid states below ϕd, where no aging is observed. (ii) We determine the structural relaxation time
τα by collapsing the mean-squared typical displacement (MSTD) r2

typ(t/τα) in the caging regime (Fig. S1b), where

the typical displacement rtyp(t) is defined as rtyp(t) = limz→0
1
N

∑N
i=1 〈|ri(t)− ri(0)|z〉1/z. (iii) We find the density

threshold ϕSER = 0.56(1) for the breakdown of Stokes-Einstein relation (SER), D ∝ η−1, where η is the shear viscosity.
Because τD ∝ 1/D and τα ∝ η in this regime, the SER can be rewritten as τD ∼ τα (Fig. S1c). (iv) We fit the time
τD in the SER regime (ϕ < ϕSER) to the MCT scaling τD ∝ |ϕ − ϕd|−γ (or equivalently, D ∝ |ϕ − ϕd|γ) to extract
ϕd = 0.594(1) (Fig. S1d).
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FIG. S1. Determination of ϕd. Rescaled plots of the (a) MSD ∆(t) and (b) MSTD r2
typ(t) at (from right to left)

ϕ = 0.47, 0.50, 0.52, 0.54, 0.55, 0.56, 0.57, 0.58, 0.59, 0.60. Solid black lines capture the long-time diffusive behavior, ∆(t) =
2dσ̄2(t/τD) and r2

typ(t) = 2dσ̄2(t/τα), respectively. (c) The SER (line) breaks down around ϕSER = 0.56(1) (blue square),
where the results start to significantly deviate from the linear relation. (d) The power-law fit (line) of τD in the SER regime
gives ϕd = 0.594(1) and γ = 1.6.

II. DECOMPRESSION OF EQUILIBRIUM CONFIGURATIONS ABOVE THE DYNAMICAL
CROSSOVER ϕd

The equilibrium liquid configurations obtained from the Monte-Carlo swap algorithm are in the deeply supercooled
regime ϕg > ϕd, where the structural α-relaxation and thus diffusion are both strongly suppressed. As long as ϕg is
sufficiently far beyond ϕd, the MSD for ϕ ≥ ϕg exhibits a well-defined plateau, and the diffusive regime is not observed
in the MD simulation window (see Figs. 2a and 2b in the main text). To further reveal the separation between the α-
and β-relaxations, we decompress the equilibrium configuration and show that the resulting equation of state (EOS)
follows the free-volume glass EOS ( Eq. (3) in the main text) up to a threshold density, at which the system melts
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into a liquid (Fig. S2). This behavior suggests that our compression/decompression is slower than the β-relaxation
and much faster than the α-relaxation, such that the system is kept within a glass state. If the α-relaxation were
faster than the decompression, the state would follow the liquid EOS instead of the glass EOS under decompression.
Note that a similar phenomenon has been reported in simulations of ultrastable glasses [2, 3].

0.0

0.02

0.04

0.06

0.08

1/
p

0.5 0.55 0.6 0.65 0.7
ϕ

compression, γg = 10−3

decompression, γg = −10−4

liquid EOS
glass EOS

FIG. S2. Compression and decompression (negative γg) of an initial equilibrium configuration at ϕg = 0.643.

III. PARTICLE SIZE EFFECTS

Suppressing the α-relaxation and diffusion is crucial to our analysis. Besides pushing ϕg to higher densities, we find
that it is useful to filter out the contribution of smaller particles, which are usually more mobile, from the calculation
of the observables. For example, the MSD of the particles in the smaller half of the particle size distribution grows
faster and diffuses sooner than that of those in the larger half (Fig. S3). The diffusion of smaller particles, however,
vanishes as ϕg increases, which suggests that the effect is not essential to the underlying physics but an artifact of
our choice of system. For example, Fig. S4 shows that the particles in the smaller half of the particle size distribution
have very similar aging behavior as the particles in the larger half (compared with Fig. 2a). For this reason, ∆(t, tw)
and ∆AB(t, tw) in this work are always calculated using only the larger half of the particle distribution.
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FIG. S3. The MSD ∆(t, tw = 128) of larger (circles) and smaller (dashed lines) half particles, for (a) ϕg = 0.619 and (b)
ϕg = 0.643.

IV. DISTRIBUTION OF SINGLE PARTICLE CAGE SIZES

It is well known that, at the jamming point in finite dimensions, not all particles are part of the mechanically rigid
network. Particles that are excluded from this network rattle relatively freely within their empty pores, hence the
name “rattlers”. Because these localized excitations are not included in the infinite-dimensional theory, one could
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FIG. S4. Time evolution of ∆(t, tw) of the smaller half of the particles for several tw and ϕ, following compression from
ϕg = 0.643.

wonder whether the particles destined to become rattlers at jamming might play a role in our determination of the
Gardner transition at finite dimensions. We argue here that it is not the case. Indeed, as shown in previous studies
(see e.g. [4]), the effect of rattlers becomes important only for reduced pressure p & 104. The Gardner line detected
in this work covers much lower reduced pressures, 30 . pG . 500, which allows us to ignore rattlers.

Further support for this claim can be obtained by considering the probability distribution function of individual
particle cage sizes ∆AB

i =
〈
|rAi − rBi |2

〉
th

calculated from many samples (with 〈. . .〉th the thermal averaging) at the

Gardner point and above it (Fig. S5), for one of the densest ϕg. Both distributions show a single peak with a power-
law tail (which is consistent with previous work [5]). If rattlers gave a second peak, then they should be removed in
our analysis, but this is not the case here.
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i
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ϕ = 0.687

FIG. S5. Distribution of particle cage sizes near the Gardner point, ϕG = 0.682, and above, ϕ = 0.687, for N = 8000 and
ϕg = 0.640.

V. CAGING TIMESCALE

We define a timescale τcage to characterize the onset of caging. The ballistic regime of the MSD at different ϕ is
described by a master function ∆(t, tw)/∆m ∼ ∆ballistic(t/τm), independent of waiting time tw, where the microscopic
parameters τm and ∆m correspond to the peak of the MSD (see Fig. S6a). To remove the oscillatory peak induced by
the finite system size, we introduce τcage slightly larger than, but proportional to τm, so that τcage corresponds to the
beginning of the plateau. The same collapse is obtained for any tw; as a result, τcage is independent of tw. Above ϕG,
τcage is the time needed for relaxing the fastest vibrations. The dependence of τcage on ϕg is summarized in Fig. S6b.
Note that τcage ∼ O(1) with weak variation for all considered state points.

By contrast, the mean-squared distance between two copies, ∆AB(t), depends only weakly on t (see Fig. 2b in
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the main text). Our choice of t = τcage therefore does not affect substantially the value of ∆AB ≡ ∆AB(τcage)
(Fig. 3 in the main text). Note that, ∆AB basically describes the asymptotic long time behavior of ∆(t), i.e,
∆AB ≈ ∆AB(t→∞) ' ∆(t→∞, tw →∞).
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FIG. S6. (a) Rescaled MSD, ∆(t, tw = 0), for ϕg = 0.643, where the solid vertical line corresponds to the caging onset time
τcage. (b) Dependence of τcage on ϕ for different ϕg.

VI. ABSENCE OF CRYSTALLIZATION AND OF THERMODYNAMIC ANOMALIES AT THE
GARDNER DENSITY

It is quite obvious that, because the system is not diffusing away from the original liquid configuration at ϕg during
the simulation time window, no crystallization can happen in the glass regime. Indeed, when crossing ϕG no sign of

incipient crystallization or formation of comparable anomaly appears in the pair correlation function. Also, d(1/p)
dϕ is

essentially constant in the glass regime; nothing special happens to this quantity at ϕG. The crossover would thus
remain invisible if we only considered the compressibility and not more sophisticated observables.

VII. TIME EVOLUTION OF δ∆(t, tw) AND TIMESCALES

The relaxation timescale τ (Fig. 2d in the main text) was extracted from fitting the long-time behavior of δ∆(t, tw)
to a logarithmic scaling formula δ∆(t, tw) ∝ 1 − ln t/ ln τ , following the strategy discussed in previous works [6, 7].
This particular choice of functional form makes it easier to obtain reliable fits for the whole window of parameters tw
and ϕ. A more conventional scaling function, such as

δ∆(t, tw) ∼ t−aG exp

[
−
(
t

τ ′

)bG]
, (S1)

has a stronger theoretical motivation, but at the cost of requiring more fitting constants. Data is nonetheless also well
described by this functional form, as we show in Fig. S7a, where the solid lines are obtained from fits to the functional
form Eq. (S1) and the dashed lines are the logarithmic fits from Fig. 2c in the main text.

One can also fit Eq. (S1) to extract a new estimate of the timescale τ ′. In doing so, we obtain results essentially
proportional to our previous estimate of τ (Fig. S7b). In this sense, both scalings appear to be equivalent (at least for
low ϕg and tw where both fits can be done). More quantitatively, one can also attempt a fit of the two characteristic
times to a power-law divergence,

τ ∝ (ϕτG − ϕ)
−γG , (S2)

as is expected in the vicinity of a critical point (Fig. S7b). Again, we obtain values within the error bars of the
parameters. In particular, γG = 1.3(3) and ϕτG = 0.685(1), which is completely compatible with our best estimate for
the Gardner point, ϕG = 0.684(1), at this ϕg.

MCT further suggests that there should be a relation γG = 1/aG between the exponent γG obtained from the fit
of Eq. (S2) and the exponent aG from the fit of Eq. (S1). At this point, we could not fit the data using a constant
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value of aG for all densities. Instead, the exponent decreases as ϕ increases (see Fig. S7c), and becomes increasingly
incompatible with γG extracted from the fit Eq. (S2). Although this fact seems to be inconsistent with the mean-field
theory, the same behavior of aG(ϕ) (also quantitatively) was recently reported in a similar study in a mean-field
model of hard spheres (HS) over comparable timescales [6]. This inconsistency might thus be related to the inherent
difficulty of fitting the exponent a using Eq. (S1).
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FIG. S7. (a) Time evolution of δ∆(t, tw) for tw = 2 and ϕg = 0.643. The data was fitted to δ∆(t, tw) ∼ t−aG exp[−(t/τ ′)bG ]
(solid lines) and to the fitting form discussed in the main text, δ∆(t, tw) ∝ 1− ln t/ ln τ (dashed lines). The scalings provide a
characteristic relaxation time, τ ′ and τ , respectively, for each ϕ. (b) The two estimates behave similarly around ϕG = 0.684(1),
and both can be fit to a power-law, τ ∝ (ϕτG − ϕ)−γG . (c) Comparison between γ−1

G (gray gives the uncertainty region) and aG

obtained from the scaling function Eq. (S1). Results appear incompatible with the MCT prediction aG = γ−1
G , but a similar

behavior was observed in a mean-field model [6]. It may thus be due to the difficulty of fitting aG in the critical regime.

VIII. TIME DEPENDENCE OF THE SKEWNESS AND DETERMINATION OF THE GARDNER
DENSITY

In this section, we explicitly show that the position of the peak of the skewness ΓAB , which is used to extract the
location of the Gardner point ϕG (Fig. 3d in the main text), is independent of the choice of timescale, τcage. Promoting

the skewness to a time-dependent quantity, ΓAB(t) =
〈
w3
AB(t)

〉
/
〈
w2
AB(t)

〉3/2
, with wAB(t) = ∆AB(t) − 〈∆AB(t)〉,

confirms that the peak position of ΓAB(t) is nearly invariant of t, although the peak height does have a small time
dependence.
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FIG. S8. Time dependence of the caging skewness ΓAB(t) for ϕg = 0.643. The peak position, which gives ϕG (dashed vertical
line), is invariant of t.
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IX. SYSTEM-SIZE DEPENDENCE OF THE SUSCEPTIBILITY AT THE GARDNER TRANSITION

From a theoretical viewpoint, whether the mean-field Gardner transition persists in finite dimensions is still under
debate [8]. In this work, we have shown the existence of a crossover (reminiscent of the mean-field Gardner transition)
at two system sizes, N = 1000 and N = 8000. However, the proof of the existence of the Gardner transition in
the thermodynamic limit would require a systematic use of finite-size scaling techniques [9], which is beyond the
scope of this paper. Previous studies further suggest that this kind of analysis might be extremely challenging. For
example, symmetry arguments suggest that the Gardner transition should be in the same universality class as the de
Almeida-Thouless line in mean-field spin-glasses in a field [8], whose finite-dimensional persistence is still the object
of active debate even after intensive numerical scrutiny [10–13]. One way to test whether our data are compatible
with a true phase transition is by checking that the caging susceptibility at the transition point, χG ≡ χAB(ϕ = ϕG),
appears to divergence at N → ∞. Considering that χG must be finite in a finite system (as shown it Fig. 3c for
N = 1000), the divergence requires that χG increases with N . We can see that this requirement is fulfilled in Fig. S9,
which compares susceptibilities for N = 1000 and 8000.

20

40

60

80

100

120

χ
G

0.59 0.6 0.61 0.62 0.63 0.64 0.65 0.66
ϕg

N = 1000
N = 8000

FIG. S9. System size dependence of the caging susceptibility χG at the Gardner transition, where χG is plotted as a function
of the initial density ϕg for two different system sizes.

X. COMPRESSION-RATE DEPENDENCE

In this section, we consider how our overall analysis depends on the compression rate γg used for preparing samples.
In principle, a proper γg should be such that particles have sufficient time to equilibrate their vibrations but not
to diffuse. In other words, the timescale associated with compression, τg ∼ 1/γg, should lie between the α− and
β−relaxation times, τβ < τg < τα. For our system, we observe that when 10−3 ≤ γg ≤ 10−4 and ϕ < ϕG, both
∆(t, tw) and ∆AB(t) reach flat plateaus that are essentially independent of γg (see Figs. S10a and b). Thus in this
range of compression rates, restricted equilibrium within a glass state is reached, while keeping the α−relaxation
sufficiently suppressed. When ϕ > ϕG, however, ∆(t, tw) and ∆AB(t) display γg-dependent aging effects consistent
with a growing timescale in the Gardner phase. As a result, the order parameters ∆ and ∆AB , which are defined at
the time scale of τcage ∼ O(1), slightly depend on γg when ϕ & ϕG (see Fig. S10c). This mild γg-dependence has
relatively little impact on our analysis of ϕG. In particular, the location of the peak position of the caging skewness,
based on which we determine the value of ϕG, is independent of γg within the numerical accuracy (see Fig. S10d).
Note that γ−1

g plays a role akin to the waiting time tw. Varying γg is thus equivalent to varying tw (see Fig. 2a and
Fig. S10a).

XI. SPATIAL CORRELATION FUNCTIONS AND LENGTHS

In this section, we provide a more detailed presentation of the spatial correlations of individual cages and of their
associated length scales. We consider both point-to-point and line-to-line spatial correlation functions, and show
that the characteristic lengths obtained from both grow consistently around ϕG. We also highlight the advantage of
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FIG. S10. Compression-rate dependence. (a-b) MSD ∆(t, tw = 0) and ∆AB(t) for different compression rates and densities for
ϕg = 0.643. The mean caging order parameters 〈∆〉 and 〈∆AB〉 are marked by crosses, circles, and squares for γg = 10−2, 10−3

and 10−4, respectively. (c) For 10−3 ≤ γg ≤ 10−4, 〈∆〉 and 〈∆AB〉 are nearly independent of γg when ϕ < ϕG (ϕG is denoted
by the dashed blue line), and weakly dependent on γg when ϕ > ϕG. (d) The peak position of the skewness, ϕG = 0.684(1), is
independent of γg within the numerical accuracy.

the line-to-line correlation function, which is used in the main text. Note that the results presented here are all for
N = 1000, while in the main text results for the line-to-line correlation are reported for N = 8000.

The susceptibility χAB = N
〈∆2

AB〉−〈∆AB〉2
〈∆AB〉2 discussed in the main text is directly associated with the unnormalized

point-to-point spatial correlation function computed between two copies, A and B,

G0
P(r) =

1

N

〈∑

i 6=j
uiujδ

(
r − |rAi − rBj |

)
〉
, with ui =

|rAi − rBi |2
〈∆AB〉

− 1. (S3)

This definition gives
∫

dr G0
P(r) = χAB . Because in an isotropic fluid G0

P(r) is a rotationally invariant function, we
define the normalized radial correlation

GP(r) =

〈∑
i 6=j uiujδ

(
r − |rAi − rBj |

)〉

〈∑
i6=j δ

(
r − |rAi − rBj |

)〉 , (S4)

where r = |r| and the denominator is essentially the pair-correlation function between two clones,

g(r) =
V

N(N − 1)

〈∑

i 6=j
δ
(
r − |rAi − rBj |

)
〉
. (S5)

In a similar way, we define the normalized line-to-line spatial correlation function

GL(r) =

〈∑3
µ=1

∑
i 6=j uiujδ

(
r − |rAi,µ − rAj,µ|

)〉

〈∑3
µ=1

∑
i 6=j δ

(
r − |rAi,µ − rAj,µ|

)〉 , (S6)
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FIG. S11. The normalized line-to-line correlation functions GL(r) are fitted to Eq. (S8), for ϕg = 0.609, 0.619, 0.630, 0.643
(a-d).

where ri,µ is the projection of the particle position along the direction µ. This last definition is also Eq. (6) in the
main text.

Both spatial correlation functions should capture the growth of vibrational heterogeneity around ϕG and are ex-
pected to decay at long distances as

G(r)→ 1

ra
F

(
r

ξ

)
, (S7)

where the damping function, F (x), could in principle be different at large x for GP(r) and GL(r). The function
F (r/ξ) is normally assumed to have an exponential or a stretched exponential form [14]. Equation (S7) suggests that
χAB = 4π

∫
dr r2−aF (r/ξ) ∝ ξ3−a, which means that the observed growth in χAB around ϕG (Fig. 3c in the main

text) should also be observed for ξ, but with a different exponent.
Although GP(r) is the commonly used spatial correlation function, we find that GL(r) traditionally used in lattice

field theories [15] is more convenient to extract ξ. To illustrate why, we plot GL(r) in Fig. S11 and GP(r) in Fig. S12
for different ϕg. Compared to GP(r), the line-to-line correlation function GL(r) has the following advantages: (i)
oscillations at small r are removed, which better reveals the power-law scaling r−a; (ii) it is easier to incorporate the

periodic boundary condition by simply adding a symmetric term F
(
L−r
ξ

)
to (S7), where L is the linear size of the

system; and (iii) the tail of GL(r) decays faster than that of GP(r), which implies a better separation between the
power-law regime, r−a, and the tail, F (r/ξ). The tail of GL(r) is indeed well described by a stretched exponential,
while GP(r) has a slower exponential decay.
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FIG. S12. The normalized point-to-point correlation functions GP(r) are fitted to the form Eq. (S9), for ϕg =
0.609, 0.619, 0.630, 0.643 (a-d).

We extract ξL from fitting GL(r) at different ϕ (see Fig. S13a) to the functional form

GL(r) ∼ r−ae
−
(
r
ξL

)b
+ (L− r)−ae

−
(
L−r
ξL

)b
. (S8)

These fits also allow us to extract the exponents a and b, which we find to have a strong dependence on ϕ, as shown
in Fig. S13c and d. The oscillations of GP(r) at low values of r, however, make impossible an accurate extraction of
a from fitting. For this reason, we impose a′ ∼ 1 (an intermediate value of a in Fig. S13c) and b′ = 1, and extract ξP
from fitting GP(r) to

GP(r) ∼ r−1e
− r
ξP . (S9)

The results for this second correlation length are shown in Fig. S13b. Both estimators are expected to measure the
same object, that is, both ξL and ξP should be proportional to the true correlation length, ξ. The actual values obtained
from both fits must, however, be regarded merely as indicators of the correlation growth, because the extraction of ξ
is rather inaccurate. The linear size of simulation box should be several times larger than the correlation length ξ to
obtain accurate estimations.

The growth in the heterogeneity of the system can be visualized by looking at the spatial fluctuations of ∆AB.
Figure S14 shows the typical cages of all the particles at different ϕ along the compression process. The cage of
particle i (i = 1, . . . , N) is represented as a sphere of diameter Di = α|rAi − rBi | centered in rAi . The normalization α

fixes the average cage size, 1
N

∑N
i Di = σ = 1, for the sake of visualization.
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FIG. S13. The correlation lengths (a) ξL and (b) ξP (in the main text ξ = ξL) as functions of ϕ for a few different ϕg. The
exponents (c) a and (d) b obtained from fitting GL(r) with Eq. (S8).

XII. PHASE DIAGRAM FOR THERMAL GLASSES

In order to connect our 1/p − ϕ phase diagram for HS (Fig. 1 in the main text) with traditional presentations of
thermal glass results (see, e.g, Fig. 1 in Ref. [16]), we present an alternate version of that phase diagram (Fig. S15).
In this different representation, we plot the specific volume 1/ϕ as the y axis and the ratio between temperature and
pressure T/P = 1/(ρp) as the x axis. It essentially describes how the specific volume changes with the temperature,
at constant pressure, in different phases. We expect this phase diagram to be qualitatively reproducible in thermal
glass experiments.

XIII. BIDISPERSE HARD DISK RESULTS AND ANALYSIS

We also study a two-dimensional bidisperse model glass former [17], using the same approach as for HS described
the main text. The system consists of an equimolar binary mixture of N = 1000 hard disks (HD) with diameter
ratio σ1 : σ2 = 1.4 : 1. In this case, we do not use the swap algorithm. Equilibrium configurations are obtained by
slow relaxations during MD runs, so that particles all diffuse, i.e., ∆(t) ≥ 10σ2

1 . For each ϕg, Ns = 100 samples are
obtained. The liquid EOS is fitted to

p2d
liquid(ϕ) = 1 + f2d(ϕ)[p2d

CS(ϕ)− 1], (S10)

where

p2d
CS(ϕ) = 1 + 2ϕ

1− c1ϕ
(1− ϕ)2

(S11)

is the 2d Carnahan-Starling (CS) form, and

f2d(ϕ) = 1 + c2(1 + c3ϕ
c4) (S12)

is a fitted function with parameters c1 = 0.52, c2 = 1.0, c3 = 2.7, and c4 = 14. The estimated dynamical crossover is
ϕd = 0.790(1). The d = 2 version of ϕG is obtained from the peak of the caging skewness of the bigger particles. The
results are summarized in Table S2 and the phase diagram is reported in Fig. S16.
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(a) (b)

(c) (d)

FIG. S14. Snapshots of vibrational heterogeneity at different ϕ (a-d, ϕ = 0.63, 0.65, 0.67, 0.68) for ϕg = 0.630. Upon approaching
ϕG = 0.670(2), vibrations become increasingly heterogeneous. The particle cages are represented as spheres centered at the
N particle positions of one of the simulated configurations. The sphere diameter at the position of the i-th particle, rAi , is
proportional to |rAi − rBi |, the distance between its positions in two clones. The color stands for the deviation around the

average ui =
|rAi −rBi |

2

〈∆AB〉
− 1. For the sake of visualization, all ui > 1 are plotted as ui = 1.

XIV. SUMMARY OF NUMERICAL RESULTS

We summarize numerical values of our main results for HS in Table S1 and for HD in Table S2.

TABLE S1. Numerical values of ϕJ and ϕG for polydisperse HS.

ϕg ϕJ ϕG

0.598 0.670(1) 0.622(4)

0.609 0.672(1) 0.638(2)

0.619 0.677(1) 0.655(2)

0.630 0.682(1) 0.670(2)

0.643 0.690(1) 0.684(1)

0.655 0.697(1) 0.694(1)
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FIG. S15. Phase diagram for thermal glasses. The data from Fig. 1 (main text) are rescaled to 1/ϕ versus T/P = 1/(ρp).
Supercooled liquid states are equilibrated at the glass transition temperature Tg (green squares) below the dynamical crossover
temperature Td (gold star), and are annealed (dashed lines) to their zero-temperature ground states (blue triangles). The stable
glasses transform into marginally stable glasses at the Gardner temperature TG (red circles and line).
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FIG. S16. Phase diagram for bidisperse HD. Symbols are the same as in Fig. 1 of the main text. The 2d liquid EOS Eq. (S10)
is used.

TABLE S2. Numerical values of ϕJ and ϕG for bidisperse HD.

ϕg ϕJ ϕG

0.792 0.852(1) 0.815(5)

0.796 0.853(1) 0.830(2)

0.80 0.855(1) 0.835(2)

0.804 0.856(1) 0.843(2)

0.808 0.857(1) 0.847(2)
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