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Abstract 

Precise regulation of the complex process of gene expression is essential for all 

aspects of life, and a large degree of this precision is mediated at the posttranscriptional 

level.  The global and individual mechanisms by which posttranscriptional control is 

coordinated to maintain or alter levels of gene expression as necessary are not fully 

understood.  Identification of the mRNA target sets of individual RNA binding proteins 

(RBPs) and characterization of the mechanisms by which RBPs regulate expression of 

individual mRNAs provide some insight into the global structure of the 

posttranscriptional environment.  However, few studies have integrated these findings 

into a global model of posttranscriptional control.  I have explored the structure and 

function of the posttranscriptional regulatory system through a combination of global 

modeling approaches, global studies of mRNA translation and decay, and mechanistic 

studies of the function of individual RBPs, specifically HuR and Pum1.   

By combining RBP-mRNA association data and transcription factor (TF) target 

data from separate global studies in yeast, I developed an integrated model of gene 

expression regulation.  Evaluation of this model indicates that posttranscriptional 

regulation may be responsible for substantially greater contributions to the overall gene 

expression program than transcriptional regulation.  Further, I identified a self-

regulatory feature of the posttranscriptional network that suggests a ‘regulators of 
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regulators’ structure may be a defining feature of posttranscriptional control of gene 

expression. 

Additionally, I explored the mechanisms and functional consequences of 

dynamic association between an RBP, HuR, and its target RNAs through a combination 

of modeling and experimental approaches, including polysome profile analysis and 

global measurement of RNA stability.  The model indicates that changes in total mRNA 

abundance are insufficient to fully explain the dynamics of association between HuR 

and its targets, suggesting a role for competition and cooperation with other RBPs.  I 

also determined that HuR may play a role in inhibition of translation in a dynamic 

immunological system (T cell activation).   

Finally, I performed a mechanistic analysis of the function of the Pum1 RBP and 

characterized the role of this protein in the translational regulation of several important 

target mRNAs through the use of luciferase reporter assays.  I also provided the first in 

vivo evidence of a role for specific regions of the Pum1 protein in the mediation of gene 

expression.  However, I was unable to verify previous in vitro reports of a role for Pum1 

in control of translation elongation on verified in vivo mRNA targets, suggesting that 

Pum1’s regulatory function may be context dependent. 

Ultimately, the approaches and findings in this study will provide a framework 

for the development of a global integrated model of posttranscriptional control.  

Through iterative development of models and experimentation, hypotheses can be 
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generated by these integrated models, tested in the laboratory, and the results of these 

experiments will then further improve the development of the models to improve future 

hypothesis generation.  An integrated approach of this type will be necessary to fully 

understand the highly complex and interconnected nature of the gene expression 

regulatory system. 
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1. Introduction 

1.1 Posttranscriptional Regulation of Gene Expression 

Gene expression is a varied and complex set of processes by which, ultimately, 

the genotype of an organism is manifested as a phenotype.  The importance of these 

processes has been apparent since Jacob and Monod introduced the first model for 

coordinated regulation of expression of a group of genes, the bacterial lac operon (Jacob 

and Monod 1961), a discovery which was ultimately rewarded with a Nobel prize.  

Highly specific regulation of the myriad complex processes involved in gene expression 

is required, both temporally and spatially, to enable all aspects of life, evolution, and 

survival (Orphanides and Reinberg 2002).  Historically, studies of the regulation of these 

processes have predominantly focused on the specific regulation of transcription (Keene 

2007), and the advent of microarray and deep sequencing technologies has enabled the 

rapid and inexpensive measurement of total RNA abundance in many biological 

systems.  However, numerous studies have shown a poor correlation between the 

steady-state levels of mRNAs (the transcriptome) and the abundance of the encoded 

proteins (the proteome)(Anderson and Seilhamer 1997, Futcher, Latter et al. 1999, Gygi, 

Rochon et al. 1999), indicating that additional levels of regulation must be involved in 

the overall process of gene expression. 

More recently, it has become apparent that posttranscriptional regulation (PTR), 

or the regulation of RNA during the steps between transcription up to and including 



 

2 

translation, is one of these important additional levels of control of gene expression 

(Tenenbaum, Carson et al. 2000, Hieronymus and Silver 2004, Cheadle, Fan et al. 2005, 

Hao and Baltimore 2009).  The relative paucity of studies on posttranscriptional 

regulation, as compared to transcriptional regulation, is partly due to the fact that the 

field is much younger.  Additionally, posttranscriptional studies often require 

development of novel methods and experimental approaches, many of which will be 

discussed elsewhere in this document.  The recent growth of interest in microRNAs 

(miRNA) and their role in gene expression has provided a boost in the general scientific 

awareness of the posttranscriptional environment (Ambros, Bartel et al. 2003, Chen and 

Rajewsky 2007).  However, many of these studies fail to recognize that all steps of 

posttranscriptional regulation, including miRNA-mediated regulation, are controlled 

and coordinated by the action of RNA binding proteins (RBPs).  As illustrated in Figure 

1, RBPs are responsible for mediating gene expression at all steps of an mRNAs journey 

from transcription to translation.  In contrast, miRNA mediate two important 

cytoplasmic steps in the process of posttranscriptional regulation, mRNA stability and 

translation, however it is also important to note that this mediation requires the action of 

many RBPs, specifically Argonaute proteins and other members of the RISC complex 

(He and Hannon 2004, Bartel 2009). 
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Figure 1: RBPs Coordinate and Control All Steps of an mRNAs Life 

 

Although all steps of mRNA biogenesis and regulation are mediated by RBPs, 

this study focuses on the roles of two specific RBPs in the regulation of mRNA stability 

and translation.  However, a general overview of the cellular processes that regulate 

mRNA translation and decay will provide necessary background prior to exploring the 

roles of these particular RBPs.  The balance between mRNA decay and translation is 

largely responsible for determining the quantity of protein that is translated from a 

The life of an mRNA is regulated at multiple steps, both nuclear and 

cytoplasmic.  RBPs are responsible for this regulation at all steps.  It is also 

important to note that other important posttranscriptional regulatory factors, 

such as microRNAs, also require the action of RBPs to mediate their functions. 
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particular mRNA.  Following export from the nucleus, polyadenylated mRNA is 

recruited to or away from the translation and decay machinery by the action of a 

multitude of RBPs that recognize both general and specific sequence elements in the 

untranslated regions (UTRs) of the message.   

The actions of numerous proteins are required for a message to engage the 

translation machinery (Gebauer and Hentze 2004).  Generally, however, the 3’ Poly-A 

tail of an mRNA must be bound by the poly(A)-binding protein (PABP) and the 5’ cap of 

the RNA must be bound by the initiation complex, composed of several proteins, 

including eukaryotic initiation factors 4E and 4G (eIF4E and eIF4G).  The bound PABP 

and eIF4G can directly interact, which creates a circular RNA/protein complex.  The 

closely associated initiation factors and PABP recruit the small ribosomal subunit and 

additional eIFs to the 5’ end of the mRNA.  Further action of several eIFs allows the 

small ribosomal subunit to ‘scan’ for the start codon where it can then recruit the large 

ribosomal subunit and begin translation of the mRNA.  This process of translational 

initiation is generally believed to be the rate limiting step in the translation of most 

cellular RNAs (Gebauer and Hentze 2004, Kapp and Lorsch 2004), and numerous 

cellular factors have been identified as direct and indirect regulators of the process.  For 

example, a class of proteins called eukaryotic translation initiation factor 4E-binding 

proteins (4E-BPs) associate with eIF4E and prevent its interaction with eIF4G, inhibiting 

the formation of the initiation complex.  The binding of 4E-BPs to eIF4E is reversible, 
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through phosphorylation, and is altered in response to many cellular stimuli, including 

insulin, hypoxia, and oxidative stress (Fukuglta, Hogan et al. 1994, Patel, McLeod et al. 

2002).   

In addition to translational silencing through mediators such as 4E-BPs, the cell 

can reduce the protein expression of an mRNA by targeting the message for 

degradation.  Similarly to translation, the pathways of mRNA decay require the 

coordinated action of many regulatory proteins, most of which are RBPs.  In general, the 

first step in degradation of a message is the removal of the Poly-A tail through the action 

of a deadenylase enzyme complex, the primary of which is the Ccr4p/Pop2p/Not 

complex in eukaryotes (Tucker, Staples et al. 2002, Parker and Sheth 2007, Goldstrohm 

and Wickens 2008).  Following deadenylation, mRNA can be digested through the 3’->5’ 

exonuclease action of a protein complex called the exosome, or, more frequently, the 5’ 

cap can be removed by the action of the Dcp1/Dcp2 decapping enzymes and the mRNA 

can then be degraded in the 5’->3’ direction by the Xrn1 nuclease (Parker and Sheth 

2007, Goldstrohm and Wickens 2008).   

Both deadenylation and decay function at a basal level on all mRNA within a 

cell.  However, the action of RBPs that recognize and bind specific sequences within 

their target messages can influence the recruitment of these enzymatic factors.  For 

example, PABP, in addition to its role in translation initiation, is believed to shield the 

Poly-A tail from the action of the deadenylase complex, thereby preventing degradation 
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of the mRNAs to which it is bound (Wormington, Searfoss et al. 1996, MILONE, 

WILUSZ et al. 2004).  HuR, an RBP that will be discussed in greater detail elsewhere in 

this document, has also been shown to promote the stability of its target messages (Fan 

and Steitz 1998, Levy, Chung et al. 1998, Peng, Chen et al. 1998), potentially by binding 

deadenylated mRNAs and preventing the action of the exonuclease machinery (Ford, 

Watson et al. 1999).  Other RBPs have been shown to promote the activity of the 

deadenylase and decay machinery.  For example, TTP, an RBP that binds similar RNA 

sequences as HuR, has been shown to recruit deadenylases (Ccr4), decapping enzymes 

(Dcp1), and nucleases (Xrn1) to its target mRNAs to trigger their rapid destruction 

(Lykke-Andersen and Wagner 2005).  Similarly, members of the PUF family of RBPs, 

which will also be discussed later in this document, recruit deadenylase complexes to 

trigger the decay of target mRNAs (Goldstrohm, Hook et al. 2006, Hook, Goldstrohm et 

al. 2007). 

1.2 Methods Used to Study Posttranscriptional Regulation 

The study of posttranscriptional regulation has necessitated the development of 

a variety of new methods to measure previously unknown aspects of gene regulation.  

An important first question in many posttranscriptional studies is the identification of 

the subset of mRNAs that can be regulated by a given RBP.  The majority of studies 

performing this analysis have utilized RNA ImmunoPrecipitation followed by 

microarray or deep sequencing analysis (RIP-Chip or RIP-Seq) (Tenenbaum, Carson et 
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al. 2000, Tenenbaum, Lager et al. 2002, Keene, Komisarow et al. 2006).  This procedure 

involves the biochemical isolation of an RBP of interest under conditions that preserve 

its association with its target mRNAs, which are subsequently purified and 

characterized by microarray or sequencing.  Numerous studies have utilized RIP and 

modified RIP procedures and identified sets of functionally related mRNAs that are co-

regulated by one or more RBPs (Mansfield and Keene 2009).  

 Importantly, while RIP identifies the mRNAs associated with a given RBP, it 

does so at the level of the message.  A complimentary experimental approach, 

Photoactivatable-Ribonucleoside-Enhanced Crosslinking and Immunoprecipitation 

(PAR-CLIP), has recently been developed as a method to characterize the specific site 

within an RNA to which an RBP is bound (Hafner, Landthaler et al. 2010, Markus, 

Markus et al. 2010).  PAR-CLIP involves the incorporation of 4-thiouridine (4SU) into 

cellular transcripts and the subsequent UV 365nm cross linking of these incorporated 

nucleotides to the adjacent RBPs.  Upon immunoprecipitation of the RBP, the cross-

linked RNA can then be nuclease digested to a small fragment, the specific site to which 

the RBP is bound, which is then identified through deep sequencing.  A recent study 

performed both RIP and PAR-CLIP on HuR and found that while the results of both 

experiments agree, PAR-CLIP is well suited to identifying all transient and possible 

RBP-mRNA interactions, while RIP identifies the stable interactions within the cellular 

environment (Mukherjee, Corcoran et al. 2011).   
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In addition to identifying RBP-mRNA interactions, posttranscriptional studies 

frequently rely on techniques specifically designed to evaluate functional outcomes of 

posttranscriptional regulation.  The characterization of the translation status of an 

mRNA has traditionally been performed with a technique known as polysome gradient 

analysis (Kuhn, DeRisi et al. 2001), in which cells are lysed under conditions that 

preserve ribosome occupancy on mRNA.  The lysates are separated through a density 

gradient (typically ~10-50% sucrose) by ultracentrifugation and fractions are 

subsequently collected.  Those messages that are engaged with multiple ribosomes 

(polysomes) migrate further in the gradient than free mRNA or mRNA associated with 

only one ribosome.  Thus, the abundance of an mRNA in a given region of the gradient 

is indicative of the translational status of that message; mRNAs undergoing active 

translation are engaged with many ribosomes, while translationally silenced messages 

are located in the upper (less dense) regions of the gradient.  Polysome analyses have 

yielded many important findings in a multitude of experimental systems.  For example, 

the Parker lab utilized polysome gradients to demonstrate that translationally silent 

mRNA stored in cytoplasmic structures known as P-bodies (which were previously 

believed to be sites of RNA decay from which messages could not exit) can be returned 

to active translation (Brengues, Teixeira et al. 2005).  Their findings highlight the 

dynamic nature of the posttranscriptional environment and have since been extended to 
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include a role for HuR and miRNAs in the recruitment of mRNA to and away from P-

bodies and translating polysomes (Bhattacharyya, Habermacher et al. 2006). 

As discussed previously, the regulation of mRNA degradation plays a major role 

in the outcome of a gene expression program.  Analysis of the stability of mRNA has 

played a major role in the field of posttranscriptional regulation.  These studies 

primarily utilize a small molecule inhibitor of transcription, Actinomycin D, to block 

RNA synthesis while taking a time course of samples following treatment to evaluate 

the rate at which an mRNA decays.  Actinomycin D (ActD) binds directly to DNA 

within the transcription complex and prevents elongation of the nascent RNA chain 

(Sobell 1985).  Although this treatment is toxic to the cell, short time course experiments 

(typically less than 8 hours) are quite feasible, as the cell is able to survive for some time 

without additional transcription.  Evaluation of the amount of a given transcript 

remaining at several time points following ActD treatment, typically through PCR or 

array-based methods, allows for the calculation of a half-life of survival for that mRNA 

(the time required for the amount of that mRNA present to be reduced by half).  Studies 

frequently utilize this method to evaluate the impact of mutations, overexpressions, or 

other cellular perturbations on the half-life of one or a few mRNAs.  However, some 

studies have characterized mRNA decay kinetics globally.  For instance, a study of 

activated T lymphocytes identified numerous groups of mRNAs that display similar 

rates of mRNA decay (Raghavan, Ogilvie et al. 2002, Raghavan, Dhalla et al. 2004).  
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Further characterization of these groups identified shared known regulatory elements in 

groups that displayed similar decay kinetics.  Similarly, studies in yeast demonstrated 

that the mRNAs encoding proteins with shared or similar functions displayed similar 

decay kinetics (Wang, Liu et al. 2002), suggesting that co-regulation of RNA decay of 

functionally related groups of messages is a highly conserved feature of 

posttranscriptional regulation.  

It is worthwhile to reemphasize the fact that these complex and interconnected 

steps of posttranscriptional regulation at the levels of translational control and 

regulation of mRNA decay are all mediated and controlled by the action of RBPs 

(Mansfield and Keene 2009).  These complex processes are functionally coordinated by 

the combinatorial control of many regulatory RBP-mRNA interactions (Parker and Sheth 

2007, Goldstrohm and Wickens 2008).  The specificity of recognition of an mRNA by an 

RBP can range from very broad, as in the case of PABP which binds most mRNAs 

(Görlach, Burd et al. 1994), to very specific, for instance SLBP, an RPB that specifically 

binds only the mRNAs encoding histone proteins (Wang, Whitfield et al. 1996).  This 

spectrum of binding specificity results from the interaction between specific protein 

domains and complementary sequence elements in the groups of target RNAs to which 

these protein domains can bind.  These RNA sequences (and structures) have been 

termed untranslated sequence elements for regulation (USERs) and enable the 
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coordinated regulation of a group of functionally related messages by one or more RBPs, 

a model termed the posttranscriptional operon (Keene and Tenenbaum 2002). 

1.3 HuR and Posttranscriptional Regulation 

The first description of the posttranscriptional operon model was based on 

analysis of the sets of mRNA targets of a Hu-family RBP, HuB (Tenenbaum, Carson et 

al. 2000).  Hu/ELAV RBPs are an evolutionarily conserved family of proteins with 

essential roles in development, cellular response to stress, and immune function 

(Abdelmohsen, Lal et al. 2007, Hinman and Lou 2008).  In vertebrates, three Hu proteins, 

HuB, HuC, and HuD, are expressed solely in neurons, display a predominantly 

cytoplasmic subcellular localization, and have been shown to play vital roles in memory, 

neuronal plasticity, and neuronal development (Hinman and Lou 2008).  The fourth 

vertebrate Hu family member, HuR, is ubiquitously expressed, primarily nuclear in 

localization, although it is known to shuttle between the nucleus and cytoplasm, and has 

been shown to play a multitude of roles in cellular response to stress, apoptosis, 

differentiation, and inflammation.  Further, dysregulation of HuR has been 

demonstrated in a variety of human cancers, indicating an important role in the control 

of cellular proliferation (Simone and Keene 2013).  

The functions of Hu family proteins are mediated through their ability to 

recognize and bind to sets of mRNAs and effect changes in the posttranscriptional 

regulation of these messages (Hinman and Lou 2008).  Hu proteins are members of a 
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large class of RBPs that contain a protein domain called the RNA recognition motif 

(RRM), which in the case of Hu proteins is the protein domain that binds to AU-rich 

sequences (AREs) in the untranslated regions of target mRNAs (Query, Bentley et al. 

1989, Maris, Dominguez et al. 2005).  Generally, binding of Hu proteins to target mRNAs 

results in increased mRNA stability, translation, or both.  However, the specific 

mechanisms by which this effect is mediated remain unclear.  The predominant 

hypothesis suggests that by occupying AREs, which are traditionally considered 

destabilizing elements, Hu proteins prevent the binding of other ARE-binding proteins 

whose functions involve negative regulation of stability or translation (Hinman and Lou 

2008).  As discussed previously, several known ARE-binding proteins, including TTP 

and AUF1, have been shown to directly recruit members of the deadenylation and decay 

pathways (Goldstrohm and Wickens 2008).  Thus, it is reasonable to hypothesize that 

steric hindrance by Hu proteins binding to these ARE sequences simply prevents the 

pro-decay mediators from interacting with target messages.  Similarly, several recent 

studies have demonstrated that Hu proteins differentially influence the polyadenylation 

of target mRNAs in the nucleus, potentially by interfering with the ability of specific 

splicing and polyadenylation regulators from binding to the pre-mRNA (Zhu, Zhou et 

al. 2007, Mansfield and Keene 2012).  

Although the binding of HuR to its target messages has been characterized as 

occurring at AREs, the specific features of an ARE that enable HuR binding remain 
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controversial.  Early work identified numerous regions to which Hu family proteins 

bound with high affinity (Gao, Carson et al. 1994), and further explorations led to the 

proposition that the sequence recognized by Hu proteins might be a form of an ARE 

pentamer or nonamer (AUUUA or AUUUAUUUA).  However, numerous additional 

studies indicated that the site recognized by Hu proteins could not be classified as a 

short simple motif.  To this end, a study from the Gorospe lab endeavored to 

characterize a secondary structural RNA motif in HuR target mRNAs (Lopez de Silanes, 

Zhan et al. 2004) utilizing a covariance model approach originally designed to identify 

novel tRNA genes (Eddy and Durbin 1994).  Interestingly, their study identified a 

structural motif that is highly enriched in the 3’ UTRs of known HuR target mRNAs.  

Following their work, our laboratory performed RIP-Chip analysis of HuR in a T cell 

activation system and identified a dynamic set of mRNA targets of HuR (Mukherjee, 

Lager et al. 2009).  As shown in Figure 2, the Gorospe structural HuR binding motif is 

highly enriched in our set of mRNA targets as well (red stars). 
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Figure 2: Enrichment of COVE Model Statistics in HuR Associated mRNAs 

 

However, we were somewhat skeptical of the ability of HuR to bind a structural 

motif, as many studies have clearly characterized the RRM as a single-stranded RNA 

binding domain (Maris, Dominguez et al. 2005).  Thus, I reevaluated the enrichment of 

The set of HuR associated mRNAs was searched for the Gorospe HuR structural 

binding motif (COVE model).  The prevalence of the motif and associated 

statistics were compared by hypergeometric testing to randomly generated sets 

of RNA sequence as background.  The tested model statistics include: Fraction 

with HuR COVE Model Hit, which indicates the number of individual mRNAs 

in the dataset with a COVE model match; Average Number of HuR COVE 

Model Hits, which represents the arithmetic mean of the number of COVE 

model matches per mRNA; Average Sum, Maximum, and Average HuR COVE 

Model Hit Score indicate the sum, maximal, or mean of all scores generated by 

the COVE model matches across all mRNAs in the dataset.  Red stars indicate 

the enrichment of the various statistics in the HuR target set and the green bars 

represent the background distribution generated by the hypergeometric 

sampling. 
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the covariance model in a set of sequences generated by randomly shuffling the 

sequences of the HuR target UTRs while preserving the frequency of all dinucleotide 

pairs.  The preservation of dinucleotide frequencies in a sequence randomization 

maintains the degree of secondary structure in an RNA while removing any specific 

sequence or structural motifs (Workman and Krogh 1999).  As shown in Figure 3, the 

enrichment of the covariance model statistics remains significant in the shuffled 

sequences, indicating that HuR does not bind a specific structure, but instead can bind to 

a group of messages that display similar folding free energy distributions (Mukherjee, 

Lager et al. 2009).   
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Figure 3: Enrichment of COVE Model Statistics in HuR Associated mRNAs, 

Dinucleotide Shuffled Background 

 

Recently, a combined PAR-CLIP and RIP-Chip study and a background 

corrected PAR-CLIP study from our lab have further characterized the specifics of HuR-

The set of HuR associated mRNAs was searched for the Gorospe HuR structural 

binding motif (COVE model).  The prevalence of the motif and associated 

statistics were compared by hypergeometric testing to randomly generated sets 

of RNA sequence with the distribution of dinucleotides in each random set of 

sequences maintained.  The tested model statistics include: Fraction with HuR 

COVE Model Hit, which indicates the number of individual mRNAs in the 

dataset with a COVE model match; Average Number of HuR COVE Model Hits, 

which represents the arithmetic mean of the number of COVE model matches 

per mRNA; Average Sum, Maximum, and Average HuR COVE Model Hit Score 

indicate the sum, maximal, or mean of all scores generated by the COVE model 

matches across all mRNAs in the dataset.  Red stars indicate the enrichment of 

the various statistics in the HuR target set and the green bars represent the 

background distribution generated by the hypergeometric sampling. 
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mRNA binding (Mukherjee, Corcoran et al. 2011, Friedersdorf and Keene 2014).  

Together, these studies have demonstrated that HuR may bind a large proportion of the 

mRNAs within a cell, but only a subset of the bound messages represent stable 

interactions.  Additionally, a comprehensive biochemical and computational analysis of 

HuR-mRNA recognition has indicated that the structural conformation of potential ARE 

sequences, which can be altered by the action of other RBPs or short RNAs, plays a 

major role in the ability of HuR to bind its target messages (Meisner, Hackermüller et al. 

2004).  Together, the studies of HuR-mRNA binding and mechanisms of action indicate 

that the complex and important role of HuR in posttranscriptional regulation remains 

only partially understood, and further application of both mechanistic and global 

studies will be required to fully characterize this well-studied RBP. 

1.4 Pum and Posttranscriptional Regulation 

Perhaps the most studied family of RBPs, particularly in non-mammalian 

eukaryotic systems, is the PUF family, a highly conserved family of RBPs, with members 

in most eukaryotic systems.  The defining characteristic of a PUF protein is the presence 

of a PUF homolog domain (HD, also referred to as the PUM-HD) (Zamore, Williamson 

et al. 1997), a domain composed of eight repeated 36 amino acid motifs (the PUM repeat) 

(Zamore, Williamson et al. 1997, Zhang, Gallegos et al. 1997).  Interestingly, despite the 

high degree of conservation of the HD, other regions of PUF family proteins are not 

highly conserved between species.  Functional and structural studies have clearly 
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demonstrated the binding of the HD to RNA targets of PUF proteins (Wang, Zamore et 

al. 2001), many features of which will be discussed later in this section. 

PUF family proteins display important roles in a variety of cellular functions.  

The ancestral function of the protein family is believed to be the maintenance of stem 

cell self-renewal and proliferation (Wickens, Bernstein et al. 2002, Spassov and Jurecic 

2003).  In addition to a role in stem cell maintenance, the single PUF family member in 

Drosophila, Pumilio, is required for proper development of germ cells (Forbes and 

Lehmann 1998) and for anterior/posterior patterning in the developing embryo (Murata 

and Wharton 1995).  Similarly, the C. elegans PUF proteins FBF1 and FBF2 are required to 

maintain germ line stem cell self-renewal (Crittenden, Bernstein et al. 2002).  Yeast 

studies have provided further evidence for the role of PUF proteins in stem cell 

maintenance.  Specifically, yeast strains possessing deletions of the Puf5 gene are unable 

to divide as many times as normal strains before dying (Wickens, Bernstein et al. 2002).   

As discussed in the first section of this introduction, many regulatory RBPs bind 

functionally related subsets of cellular mRNAs (Keene and Lager 2005).  A particularly 

striking example of such a posttranscriptional operon is yeast Puf3.  RIP-Chip analysis of 

Pufs 1-5 in yeast identified distinct and only partially overlapping subsets of target 

messages for each of the five related proteins (Gerber, Herschlag et al. 2004).  Strikingly, 

Puf3 was found to bind nuclear-encoded mitochondrial messages almost exclusively, 
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and further studies (García-Rodríguez, Gay et al. 2007) demonstrated that Puf3 directly 

regulates mitochondrial biogenesis. 

Additional characterization of the groups of mRNAs bound by various PUF 

family proteins (Gerber, Herschlag et al. 2004, Gerber, Luschnig et al. 2006, Galgano, 

Forrer et al. 2008, Morris, Mukherjee et al. 2008, Jiang, Guo et al. 2012) has illuminated 

an interesting feature of this family of RBPs, the posttranscriptional rewiring of PUF 

operons.  Although the interactions between the PUM-HD and the RNA sequence it 

recognizes, the Pum binding element (PBE), have remained conserved throughout 

evolution, the specific groups of mRNAs containing PBEs have changed.  Thus, 

Drosophila Pumilio can bind and regulate a group of mRNAs with completely different 

functions than a yeast Puf protein or a human Pum protein.  Similar evolutionary 

mechanisms have been described for reuse of protein domains and transposable DNA 

elements (Jiang, Guo et al. 2012), thus it is unsurprising that the posttranscriptional level 

of gene regulation also displays the ability to evolve new regulatory functions and 

mechanisms. 

In contrast to the pro-stability and translation mechanisms of the previously 

discussed Hu proteins, PUF family proteins are predominantly negative regulators of 

both mRNA stability and translation (Wickens, Bernstein et al. 2002, Spassov and Jurecic 

2003, Quenault, Lithgow et al. 2011).  Drosophila Pumilio and C. elegans FBF bind to the 

hunchback and fem-3 mRNAs, respectively, and prevent their translation.  In Drosophila, 
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this repression is mediated through the additional protein factors Nanos and Brat, which 

interact directly with the Pumilio protein and bind the 5’ cap of the hunchback mRNA, 

thereby preventing eIF4E binding and translational initiation (Vardy and Orr-Weaver 

2007).  In C. elegans, FBF represses the translation of fem-3 through interaction with the 

C. elegans Nanos protein (Zhang, Gallegos et al. 1997, Kraemer, Crittenden et al. 1999), 

and further studies indicate that FBF can also recruit the Ccr-Not deadenylation complex 

to trigger mRNA decay (Suh, Crittenden et al. 2009).  Several studies have demonstrated 

that both yeast Puf proteins and human Pums can directly interact with members of the 

Ccr4/Not complex of deadenylase enzymes and trigger deadenylation of target mRNAs 

(Goldstrohm, Hook et al. 2006, Van Etten, Schagat et al. 2012).  In addition, it was 

recently shown that human Pum2 can influence translational elongation in vitro through 

interaction with Ago2 and a member of the translation initiation complex, eIF1A (Friend, 

Campbell et al. 2012). 

Another distinct feature of PUF family proteins is the high degree of sequence 

specificity of the Pum USER code.  Yeast Puf3, human Pum1 and Pum2, and fly Pumilio 

all bind the same RNA element, UGUAHAUA (Gerber, Herschlag et al. 2004, Gerber, 

Luschnig et al. 2006, Morris, Mukherjee et al. 2008).  Other PUF family proteins 

recognize similar, but distinct, RNA elements.  Figure 4 shows the RNA motif (the Pum 

USER code) recognized by multiple PUF proteins from human, Drosophila, and yeast. 
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Figure 4: Conservation of the Pum USER Code. 

 

Careful structural characterization of the Pum HD from multiple species has 

demonstrated a unique modular structure to the Pum domain (Wang, Zamore et al. 

2001, Wang, McLachlan et al. 2002, Miller, Higgin et al. 2008).  The HD of all studied 

Human (PUM1, PUM2), Drosophila (Pum), and yeast (Puf3p) recognize the 

same Pum USER Code.  Other yeast Puf proteins (Puf3p, Puf4p, Puf5p) 

recognize similar but distinct sequences.  Figure from (Galgano, Forrer et al. 

2008). 
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PUF family proteins forms a crescent shape, and each of the PUM repeats is structured 

as an alpha helix within the overall crescent.  RNA interaction occurs on the inner 

concave surface of the crescent where each PUM repeat makes multiple contacts with a 

single base in the PBE.  Figure 5 shows the crystal structure of the Pum-HD, both in 

complex with a target RNA and with the individual PUM repeats colored separately. 

 

Figure 5: Structure of the PUM-HD. 

 

The left image shows the Pum-HD of human Pum1 in complex with a Pum 

binding element from the p38alpha RNA, shown in green.  The right image 

shows the PUM-HD of mouse Pum2 with the individual PUM repeats displayed 

in different colors.  Images from the RCSB PDB (www.rcsb.org).  Structures 

3Q0M and 3GVT from (Jenkins, Baker-Wilding et al. 2009, Lu and Hall 2011).  
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Recent work has selected and engineered PUM repeats capable of binding any 

nucleotide (Filipovska, Razif et al. 2011), enabling the construction of a PUM-HD based 

RNA binding structure than can effectively recognize any eight nucleotide RNA 

sequence (Miller, Higgin et al. 2008, Lu, Dolgner et al. 2009, Cooke, Prigge et al. 2011).   

The binding specificity and modularity of the PUM-HD make PUF family 

proteins are quite distinct from the RNA recognition characteristics of most other RBPs.  

As discussed above, for instance, the Hu family (and most other known ARE-binding 

proteins) display a much broader range of USER codes, which makes specific 

characterization of their RNA binding motif much more challenging.  Interestingly, a 

comparison of the RNA targets of Pum1 and HuR identified by studies in our laboratory 

(Morris, Mukherjee et al. 2008, Mukherjee, Lager et al. 2009) show a substantial overlap.  

Given the contrast in established cellular functions of these two RBPs (HuR as an 

activator of expression and Pum1 as a repressor) and the distinct differences in their 

RNA binding specificity, I anticipate that comparisons between the activities of the two 

proteins will illuminate general features of posttranscriptional regulation.  These 

features will provide a basis for developing rules and definitions of the functional 

consequences of RBP-mRNA interaction that will ultimately be required to evaluate and 

understand posttranscriptional regulation on a global scale. 
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2. A Global View of Posttranscriptional Regulation of 
Gene Expression 

2.1 Introduction 

Since the publication of the completed human genome sequence, it has become 

abundantly clear that the fundamental principles regulating gene expression are 

encoded, to a large degree, in the interactions between genes and their products 

(Remenyi, Scholer et al. 2004).  This realization has led to the rapid expansion of the field 

of systems biology, which aims to understand the principles of biological systems in a 

holistic manner.  Clearly, study of the complex network of interactions responsible for 

cellular behavior necessitates systems-level approaches to experimentation and data 

analysis.   

Interestingly, studies in the field of systems biology have largely ignored a 

substantial and critical aspect of gene expression, namely, the posttranscriptional 

regulatory environment (Keene 2007).  The recent explosion of microRNA (miRNA) 

studies has sparked some interest in the field of systems biology, promoting some 

exploration of the relationship between small RNAs and the overall gene expression 

network.  However, earlier developments in the field of posttranscriptional control of 

gene expression have demonstrated that RNA binding proteins (RBPs) impart a 

significant amount of regulation to gene expression (Cheadle, Fan et al. 2005).   

Until recently, the majority of studies on the posttranscriptional environment 

have focused on one or a few RBPs and their targets, making it very difficult to apply 
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any global systems-level analysis to this important aspect of gene expression.  

Fortunately, the Brown laboratory has published a study characterizing the RNAs 

associated with 47 different RBPs in the yeast S. cerevisiae  (Hogan, Riordan et al. 2008).  

This groundbreaking study has provided a dataset that will enable global examination 

of the regulatory structure of the yeast posttranscriptional environment.  Perhaps more 

importantly this data, when combined with the abundant yeast transcriptional datasets 

available, will illuminate the extent and structure of the relationship between 

transcriptional and posttranscriptional control of gene expression. 

I have combined the RBP-mRNA association datasets from the Brown lab work 

with a transcription factor targeting dataset from a seminal yeast systems biology work 

from the Young laboratory (Harbison, Gordon et al. 2004) to generate and evaluate an 

integrated network of transcriptional and posttranscriptional control of gene expression 

in yeast.   

2.2 Results  

2.2.1 Network Definition 

Edges were defined based on RBP-mRNA or transcription factor (TF)-DNA 

association, as measured by RIP-Chip or ChIP-Chip, respectively.  RBP-mRNA edges 

were included in the network for all RBP interactions with mRNAs detected in the 

Brown study.  TF-gene edges were included for all interactions identified in the Young 

lab study.  To explore the relationships between the transcriptional and 
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posttranscriptional regulatory environments, the network was filtered to include only 

those nodes for which interactions were measured in one of these two studies.  A 

representation of the filtered network is shown in Figure 6.   

 

Figure 6: Combined RBP/TF Network 

 

Although the network contains more than twice as many TF nodes as RBP nodes 

(102 TF, 46 RBP), the majority of network interactions are of the RBP-mRNA type (472 

RBP-mRNA edges, 244 TF-DNA edges).  This finding suggests that, at least within the 

subset of genes represented in this network, posttranscriptional interactions may be 2 to 

Each node in the left circle represents a TF, each node in the right circle 

represents an RBP.  Each edge represents a targeting relationship.  Edges 

originating from TF nodes indicate that the target node was identified as a TF 

target by ChIP, while edges originating from RBP nodes indicate that the target 

node was identified as an RBP target by RIP.  Edges originating from TF nodes 

are blue, while edges originating from RBPs are red. 
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4 times more common than transcriptional relationships.  Examination of the relative 

number of interactions per RBP or TF indicates that this trend is supported on the scale 

of all genes.  The mean number of interactions identified for RBPs and TFs by these two 

studies were 358 and 63, respectively.  This data supports the argument that 

posttranscriptional interactions are substantially more prevalent than transcriptional 

interactions in the sets of RBPs and TFs tested.   

2.2.2 Regulators of Regulators 

Interestingly, RBPs and TFs appear to differ in their target gene-type preference.  

Specifically, the filtered network indicates that while RBPs display the expected 

frequency of interactions with both other RBP nodes and with TF nodes (68.92% of 

nodes are TF and 63.77% of the edges from RBP nodes target TF mRNAs), TFs show 

interaction with other TFs with much higher preference than interaction with RBPs 

(31.08% of nodes are RBPs, but only 13.52% of the edges from TFs target RBPs).  Table 1 

shows the relative frequency of interactions between the two types of nodes.  This 

finding suggests that RBPs have the potential to regulate messages encoding both other 

RBPs and messages encoding TFs.  In contrast, TFs appear to preferentially target other 

TFs, suggesting a self-regulating sub-network that may process the regulatory inputs 

provided by the RBP component of the overall regulatory network.  Furthermore, the 

relative dearth of connections leading from TF nodes to RBP nodes suggests that RBPs 
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may compose a self-regulating sub-network responsible for controlling their own 

expression as well as the expression of key members of the TF network. 

Table 1: Frequency of Interaction Types in RBP/TF Network 

  RBP TF 

Nodes 46 102 

Edges 472 244 

% Nodes 31.08% 68.92% 

Edges to TFs 301 211 

Edges to RBPs 171 33 

% of Edges To TFs 63.77% 86.48% 

% of Edges to RBPs 36.23% 13.52% 

 

In order to determine whether the network characteristics observed were simply 

a result of the large number of RBP-mRNA interactions, compared to TF-DNA 

interactions, I removed the 8 most highly connected RBP nodes and examined the 

resulting network.  As shown in Figure 7, the distributions of number of interactions for 

RBPs and TFs were much more similar after removal of the high degree RBP nodes 

(right panel).  Strikingly, removal of these RBP nodes did not impact the overall 

regulatory structure observed in the full network.  
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Table 2 illustrates that the relative frequency of interactions for RBP and TF nodes 

remains largely unchanged after removal of these nodes.   

 

Figure 7: Target Number Distributions of RBP, TF, and High-Degree-Removed RPB 

Networks. 

 

Histograms show the distribution of number of targets for all RBPs, all TFs, and 

the subset of RBPs with the high-degree RBP nodes removed.  Quantiles and 

moments for the three distributions are provided below the histograms. 
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Table 2: Frequency of Interaction Types in High-Degree-RBP-Removed Network 

  RBP TF 

Nodes 38 102 

Edges 109 240 

% Nodes 27.14% 72.86% 

Edges to TFs 71 211 

Edges to RBPs 38 29 

% of Edges To TFs 65.14% 87.92% 

% of Edges to RBPs 34.86% 12.08% 

 
2.2.3 Reachability Analysis 

To further explore the regulatory potential of the RBP and TF sub-networks, I 

extended the network model to include targeting data for all yeast genes, not just those 

encoding RBPs and TFs.  I performed a ‘reachability’ analysis on this extended network 

by following all paths through the directed network and evaluating the number of 

targets (nodes) that can be reached through any path beginning at each RBP and TF 

node.  As shown in Figure 8, a major cluster of 5331 genes (the majority of genes in the 

dataset) can be reached from ~45% of the RBP nodes, while only ~25% of the TF nodes 

have paths that lead to this cluster.  This observation suggests that the indirect 

regulatory potential (that is regulation through one or more intermediate nodes) in the 

RBP sub-network is substantially greater than the potential in the TF network.   
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Figure 8: Reachability Analysis of RBP/TF Network 

 

The number of nodes ‘reachable’ from individual TF or RBP nodes is indicated 

on the y axes.  The x axis represents individual RBPs and TFs.  Upper graph 

shows reachability analysis for TFs, lower graph shows analysis for RBPs.  
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2.2.4 Network Structure/Function Analysis 

The relationship between regulatory network structure and functional regulation 

of gene expression was further explored through integration of Gene Ontology 

categories.  The combined RBP/TF network was divided into groups according to the 

Yeast slim ontology (Eilbeck, Lewis et al. 2005) and the structural features of the 

resulting sub-networks were evaluated.  Two structural metrics, modularity and 

conductance, were chosen as measures of network structure and information flow.  

Networks with high modularity display a large number of connections between nodes 

of the same ‘module’ while containing few connections between modules (Newman 

2006).  Many biological systems display high modularity, suggesting that local 

community interactions may underlie many biological functions.  Several studies have 

determined that high modularity is frequently related to robustness and stability in 

biological networks (Pradhan, Dasgupta et al. 2011, Wang and Zhou 2012).  We 

evaluated the modularity of the sub-networks resulting from the division of the RBP/TF 

network according to the GO-Slim ontology.  Additionally, we evaluated the 

conductance of various sub-networks of the RBP/TF system.  Conductance provides a 

quantification of the information flow across a cut of a graph.  In this case, we evaluated 

the conductance in (or out) of a given sub-network of the combined RBP/TF network as 

a representation of the potential for that sub-network to send or receive information to 

or from the rest of the network.   
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Table 3 provides an overview of the results of the GO-Slim divisions and 

modularity calculations.  Interstingly, no GO-Slim-based divisions resulted in sub-

networks with conductance value z scores > 2.  However, several of the GO-Slim 

divisions resulted in high modularity z scores.  Both the “RNA binding” and 

“Transcription Regulator Activity” sub-networks displayed high modularity scores, 

further supporting the previous observation that many RBPs and TFs target other RBP 

and TF nodes in the network.  Similarly, the “DNA Binding” and “Transcription” GO 

sub-networks likely represent a similar subset of TF nodes, as many GO-Slim categories 

contain overlapping sets of genes.  It is interesting to note the sub-networks defined by 

the “Cell Cycle” and two metabolic GO categories (“cellular amino acid and derative 

metabolic process” and “generation of precursor metabolites and energy”) also display 

high modularity.  Previous work has shown the yeast cell cycle regulatory network to be 

highly robust to perturbation (Li, Long et al. 2004).  Similarly, other studies have 

identified a relationship between robustness and modularity in metabolic networks 

(Holme 2011).  It is important to note that previous studies have not included 

posttranscriptional regulatory data in the construction of their network models.  Given 

the greater level of RBP-mediated regulatory potential in the combined RBP/TF network, 

it is likely that the high modularity values identified in these functional groups are, at 

least partially, due to the ‘Regulators of Regulators’ structure observed in the overall 

network. 
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Table 3: Network Strucural Analysis of GO Category Modules 

GOID Category Size 
Modularity 

z Score 

GO:0003723 RNA binding 23 14.37 

GO:0030528 
transcription regulator 

activity 
91 13.13 

GO:0003677 DNA binding 78 12.61 

GO:0007049 cell cycle 20 9.84 

GO:0006519 

cellular amino acid and 

derivative metabolic 

process 

11 8.86 

GO:0007124 pseudohyphal growth 9 8.12 

GO:0005634 Nucleus 107 7.53 

GO:0006350 Transcription 90 5.75 

GO:0000746 conjugation 3 4.49 

GO:0005694 chromosome 16 4.31 

GO:0006091 
generation of precursor 

metabolites and energy 
7 3.09 

 
2.2.5 Integration of Functional Datasets 

I further evaluated the functional implications of the combined regulatory 

network by integrating data from several other yeast studies, including global 

measurements of mRNA abundance and transcription rate (Holstege, Jennings et al. 

1998), mRNA decay rates (Holstege, Jennings et al. 1998, Wang, Liu et al. 2002), and 

protein abundance (Newman, Ghaemmaghami et al. 2006).   

Table 4 shows the average values for the various datasets evaluated, separated 

into groups based on whether they are targets of RBP nodes only, TF nodes only, both 

RBP and TF nodes, or neither.  Red entries in the table indicate p < 0.05 for a Welch’s T-

test vs. the ‘Neither’ group.  Interestingly, those genes targeted by RBPs, either alone or 
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in combination with TFs, show significantly shorter halflives than the genes targed by 

TFs only or by neither TFs or RBPs.  These findings may reflect the role of many RBPs in 

the destabilization of target mRNAs.  It is also interesting to note that the transcription 

rate of those genes targeted by both RBPs and TFs is significantly higher than the rate of 

non-target genes.  This observation agrees with the fact that this group of genes also 

displays a higher average mRNA abundance than the other groups.  It is striking to note 

that the only group that displays a difference in average protein abundance is the TF-

Only group.  The highly elevated levels of protein abundance observed for this group 

may reflect a lack of translational control, as the RBP & TF group show a much lower 

average protein abundance, despite having nearly double the average mRNA 

abundance of the TF Only group.  Together, these data support the previous argument 

that the posttranscriptional regulatory environment may be largely responsible for 

maintaining the steady state expression level of many of the expressed genes in the yeast 

system.  

Table 4: Functional Dataset Integration Averages 

 

Protein 

Abundance 

mRNA 

Half-life 

mRNA 

Abundance 

mRNA 

Half-life 

Transcription 

Rate 

Neither 1204.30 35.23 1.16 20.52 3.18 

RBP Only 489.05 23.20 1.97 18.22 5.06 

TF Only 5210.38 36.00 2.28 20.72 5.90 

RBP & TF 1153.47 24.54 4.35 18.56 12.05 

 

 I also explored the relationship between these functional datasets and the 

previously discussed network structural metrics.  In this case, the network was 
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partitioned by spectral clustering (Gleich 2006) and the clusters were evaluated for 

modularity and conductance.  However, as shown in Figure 9, no significant 

relationship was identified between the various functional datasets examined and the 

conductance or modularity of the sub-networks.  

 

Figure 9: Relationship Between Functional Datasets and Structrual Metrics 

 

The combined RBP/TF network was partitioned by spectral clustering and the 

conductance and modularity of the resulting clusters were evaluated.  These 

values were then compared with data gathered from various global yeast 

studies.  The upper panel shows the pairwise correlation plots between the 

conductance and modularity values and the functional datasets.  The lower 

table shows the conductance and modularity values for the network partitions 

based on the functional datasets. 
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2.3 Materials and Methods 

Data sources: Yeast RBP target data included in our dataset were obtained from 

the supplemental data of the Brown lab study (Hogan, Riordan et al. 2008).  Interactions 

were included only if they were identified with an FDR < 1% in the published 

supplemental data.  TF target data were obtained from the Frankel lab webpage 

(http://fraenkel.mit.edu/Harbison/) and only interactions identified with p < 0.005 were 

included in our dataset.  All functional datasets were obtained from the published 

supplemental data of their respective publications.  

‘Reachability’ Analysis was performed as an iterative (stack based) depth first 

search.  The ‘reachability’ search was run beginning on every node with outgoing edges 

in the RBP/TF network and the results were compiled and analyzed in Microsoft Excel. 

Conductance and Modularity calculations were performed in R, based on the 

definitions provided in (Newman 2006) and implemented with assistance from Anirudh 

Natarajan.  The Spectral clustering method was based on algorithm provided in (Gleich 

2006) and implemented in R by Scott Schmidler and modified with assistance from 

Anirudh Natarajan. 

Statistical analysis of the functional datasets was performed in Microsoft Excel.  

2.4 Discussion 

Our analysis of the integrated yeast network suggests that posttranscriptional 

regulation of gene expression, as represented by RBP-mRNA association, composes a 

http://fraenkel.mit.edu/Harbison/
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substantial component of the overall gene expression regulatory network.  In addition, I 

believe that the inclusion of RBP-mRNA interaction data to the gene expression network 

will enable discoveries that would not otherwise be possible (i.e. in the transcriptional 

network alone).  Specifically, modeling of gene expression based on transcription 

networks alone lacks a whole level of regulation that can, at least partially, be captured 

by including posttranscriptional data in the network. 

Further, comparisons between the TF and RBP sub-networks and their respective 

connections indicate a strong ‘regulators of regulators’ structure inherent to the 

posttranscriptional environment.  While similar structures have been suggested in 

higher eukaryotic systems (Keene 2007, Keene 2010), large-scale RBP-mRNA interaction 

data for numerous individual RBPs was unavailable until the publication of the Brown 

work used to generate the RBP regulatory network.  Since the conclusion of this work in 

our laboratory, several additionally studies have confirmed and extended many of the 

findings through additional reanalysis of the same data sets. 

Strikingly, two studies from the Janga laboratory (Mittal, Roy et al. 2009, Mittal, 

Scherrer et al. 2011) determined that, in general, mRNAs encoding RBPs are expressed at 

higher levels than non-RBP mRNAs and that a large number (nearly 1/3) of RBPs 

autoregulate their own expression.  Further, their study found RBPs with a large 

number of targets (node out degree in the combined RBP/TF network) tended to be 

expressed at higher levels and exhibited greater message and protein stability, 
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indicating that these highly connected RBPs are important and tightly regulated cellular 

factors.   

Another group has also further explored the relationship between the 

transcriptional and posttranscriptional networks in yeast (Joshi, Van de Peer et al. 2011).  

Specifically, they found that clustering genes by similarity in expression level yields 

more functionally related groups when clustered based on translational abundance than 

when using RNA expression level.  Further, they found that these groups of 

coordinately translated genes tended to be expressed at higher levels and with lower 

noise than clusters of genes co-expressed at the RNA level.  By integrating RBP and TF 

target data in the same manner as I have, they also found that specific network 

structural motifs (feedback loops and bifans) enriched in the integrated network tend to 

target, and presumably regulate, these translationally co-expressed clusters.  A later 

study (Joshi, Beck et al. 2012) from the same group confirmed that the RBP regulatory 

system in bacteria, yeast, mice, and humans tends to display less noise and contains 

more self-regulatory structural motifs than the corresponding TF regulatory system.   

Although, I was unable to identify specific structural network attributes that 

correlate with the functional data evaluated, a previously discussed study (Mittal, 

Scherrer et al. 2011) found that the protein-protein interaction network displays a higher 

degree of modularity than either the TF-mRNA or the RBP-mRNA networks.  Their 

findings suggest that co-regulation at the posttranscriptional level may be responsible 
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for establishing functional modularity in the resulting protein expression network.  It is 

possible that the conductance and modularity metrics utilized (which were chosen for 

their potential to illuminate the relationships between ‘regulators of regulators’) are not 

ideal metrics to identify functional correlations between groups of nodes in the 

posttranscriptional network.  It is also possible that identification of the true functional 

relationships encoded by the posttranscriptional RBP-mRNA interaction network will 

require characterization of the targets of a larger number of RBPs (although the Brown 

study examined 46 RBPs, there are believe to be over 550 RBPs in the yeast genome). 

Together, our data and the findings provided by several other groups strongly 

support the conclusion that integration of posttranscriptional regulatory information 

into models of gene expression is critical to fully understand the complex process of 

regulation of gene expression. 
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3. Global Analysis of HuR Posttranscriptional 
Regulatory Dynamics 

3.1 Introduction 

Although the global network-based analysis of gene regulatory systems has been 

recognized as an important field of study for some time (Lee, Rinaldi et al. 2002), the 

understanding of the importance of dynamic data in the analysis of regulatory networks 

is a more recent development (Luscombe, Babu et al. 2004, Alexander, Kim et al. 2009, 

Blonder, Wey et al. 2012).  As indicated in the previous chapter, the study of gene 

expression has largely focused on transcriptional regulation, while little attention has 

been paid to the posttranscriptional regulatory environment.  Similarly, the integration 

of dynamic data in the development and analysis of regulatory networks has been 

almost exclusively focused on studies of transcriptional network dynamics.  However, a 

few studies have strongly indicated a need for dynamic models of posttranscriptional 

regulation.  

A study from our lab (Mukherjee, Lager et al. 2009) was the first to demonstrate 

dynamic remodeling of the posttranscriptional landscape.  Specifically, the RBP HuR 

was found to dynamically associate with its target messages throughout the process of T 

cell activation.  A novel application of probabilistic evaluation of the likelihood of RBP-

mRNA association allowed us to quantify these association dynamics and identify 

correlated groups of functionally related mRNAs that are co-regulated by HuR.  

Additionally, the use of dynamic association data as an input to the Broad Institute’s 
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Connectivity Map (CMAP) (Lamb, Crawford et al. 2006) enabled us to identify small 

molecule effectors that modulate the activity of an RBP, HuR in this case.  

Although prior studies had characterized targets of HuR (Lopez de Silanes, Fan 

et al. 2004, Lopez de Silanes, Zhan et al. 2004, Abdelmohsen, Pullmann et al. 2007, 

Mazan-Mamczarz, Hagner et al. 2008), this study provided the first global picture of a 

dynamic RBP-mRNA landscape.  Despite the advances provided by these studies, the 

underlying mechanisms involved in the coordination of these dynamic changes, as well 

as their functional consequences remain largely unknown.  I explored these mechanisms 

and consequences through a combination of modeling and experimental approaches. 

3.2 Results 

3.2.1 Thermodynamic Model 

Previous studies in our lab investigated the interaction between HuR (an RBP) 

and cellular mRNAs throughout the process of PMA/PHA activation of Jurkat T-cells 

(Mukherjee, Lager et al. 2009).  We found that HuR dynamically associates with sets of 

mRNAs across the activation process.  Based on these data, I generated a 

‘thermodynamic model’ of RBP-mRNA association that describes the relationship 

between the relative concentrations of RBP, mRNAs, and RNP complexes by means of 

thermodynamic rate equations for reversible association in dynamic equilibrium:  
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Equation 1: mRNA/RBP Association Equilibrium 

 

where [B] indicates RBP concentration, [A] represents mRNA concentration, and 

the RBP/mRNA complex concentration is represented by [AB].   

For each mRNA, i, Ka at time 0 is given by: 

Equation 2: mRNA/RBP Equilibrium For Time 0 

 

where the relative concentration of each message, fiTotal, is determined by total 

RNA microarray analysis.  For each message, i, the relative concentration of [AB] is 

calculated from the difference of the positive and negative (control) IP mean microarray 

signals (f+IP – f-IP). 

Array data from our previous study on Jurkat T-cell activation (Mukherjee, Lager 

et al. 2009) provide values for fiTotal, f+IP, and f-IP for multiple time points.  The simple 

model presented in Equation 1 aims to explain dynamics in mRNA/RBP association as 

the result of temporal differences in RBP concentration ([B]) and mRNA concentration 

([A]).  If other cellular factors contribute to association dynamics, then the model will 
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not explain the observed changes in relative concentration of the mRNA/RBP complex 

([AB]).  Ideally, experimental values for [A], [B], and [AB] at each time point would be 

utilized to determine the degree to which the model predicts these observed changes.  

However, I was unable to obtain quantitative data on the change in HuR concentration 

([B]), as the study did not analyze protein concentrations in a quantitative manner.  

Thus, I calculate an idealized change in [B], represented by c, assuming no factors other 

than RBP and mRNA concentrations are responsible for the observed changes in 

dynamics: 

Equation 3: Estimate of Change in RBP Concentration 

 

This estimate allows us to ask to what extent the observed changes in [A] and the 

calculated changes in [B] (represented by c) explain the observed dynamic changes in 

HuR RNP composition [AB] from 0 to 4 hours post activation: 
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Equation 4: Estimate of Dynamic Change in Association 

 

I found that the dynamics of HuR association for many messages are well 

explained by changes in mRNA and HuR abundance alone (Figure 10).  However, for 

many other messages, further experimental data, such as competition with other RBPs in 

the cell or differential phosphorylation of the RBP, will be required to determine the 

factors underlying the dynamics of RBP association.  Additionally, the changes in 

association observed for a number of messages fall within the experimental noise and I 

was unable to draw conclusions regarding the possible mechanisms responsible for the 

observed changes in their association with HuR. 
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Figure 10: Values of r4 are largely predicted by r0c. 

 

The points whose confidence intervals do not cross the y=x line are denoted by 

red circles.  These points represent messages whose dynamic association with 

HuR is not explained by a change in [HuR] from 0 to 4 hours post-activation.  

This suggests that posttranslational modification or the state of other RNPs may 

be responsible for these dynamics.  The confidence intervals for points denoted 

by (+) cross the y=x line, indicating that the experimental noise for these 

measurements makes it impossible to draw conclusions regarding possible 

mechanisms for the observed changes. 
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3.2.2 Functional Dynamics 

3.2.2.1 Translational Regulation 

Generally, RIP-Chip based posttranscriptional studies evaluate global RNP 

composition by microarray or deep sequencing.  However, functional characterization of 

RNP composition has been limited to studying a handful of mRNA regulatory elements 

using reporter assays.  Understanding of posttranscriptional gene expression 

coordination from a global perspective has been greatly limited by the absence of global 

approaches to evaluate functional outcomes of RNP association.  To this end, I examined 

an additional level of global posttranscriptional gene expression regulation based on 

polysome profiling followed by microarray analysis to examine the functional 

“translatomic” outcomes of dynamic RNP association.  Many studies have employed 

polysome profiling microarrays to evaluate global changes in translation following a 

perturbation, and such information is closely related to RNP analysis by RIP-Chip (Lu, 

de la Pena et al. 2006, Mamane, Petroulakis et al. 2007).   

As shown in Figure 11, HuR protein is partially localized in the heavy polysome 

fractions during all three time points in the Jurkat activation system.   
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Figure 11: HuR Protein is localized to heavy polysome fractions during Jurkat T cell 

activation. 

 

Given our previous findings that the set of mRNAs associated with HuR changes 

dynamically throughout the process of Jurkat activation, I sought to explore the 

functional consequences of HuR association, as reflected in translation status of HuR 

target mRNAs.  Thus, I performed microarray analysis of total mRNA and heavy 

Upper panel shows a representative UV absorbance plot for a polysome 

gradient.  Fraction numbers are indicated below the trace.  Lower panel shows 

western blots of HuR protein localization across polysome gradients at 0, 4, and 

12 hours post Jurkat activation. 
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polysome fraction mRNA from Jurkat T-cells at 0hr, 4hr, and 12hr post activation 

(Figure 12).   

 

Figure 12: Polysome profiling of activated Jurkat T-Cells 

 

Following array normalization, T-scores of change in polysome-association and 

change in total mRNA levels between time points were calculated for each message.  

These T-scores were then compared to one another (pairwise correlation) to examine the 

differences in total mRNA levels or polysome association from 0-4hr and from 4-12hr 

following Jurkat T-cell activation.  The data, presented in Figure 13, indicate that the 

Polysome-associated mRNA (red boxes) was pooled and analyzed by microarray 

analysis from Jurkat T cells at 0, 4, and 12 hours post activation. 
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total message levels and polysome association dynamics differ across the two time 

intervals (red circles).  Further, the dynamic changes observed in the total mRNA levels 

differ from the changes observed in polysome association (blue circles), suggesting the 

activity of specific translational control mechanisms during this process. 
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Figure 13: Correlations between T-scores measuring change in total mRNA levels or 

polysome association from 0-4hr and from 4-12hr post Jurkat T-cell activation 

 

Changes in total RNA and polysome-associated RNA abundance were 

evaluated by microarray analysis.  T-scores representing the differences 

between timepoints were calculated: T_0vs4Poly indicates the T-score of change 

in polysome association from 0 to 4 hours post-activation; T_4vs12Poly indicates 

the T-score of change in polysome association from 4 to 12 hours post-

activation; T_0vs4Total indicates the T-score of change in total RNA abundance 

from 0 to 4 hours post-activation; T_4vs12Total indicates the T-score of change 

in total RNA abundance from 4 to 12 hours post-activation.  Red circles indicate 

comparisons between the changes from 0 to 4 hours and 4 to 12 hours.  Blue 

circles indicate comparisons between changes in total RNA abundance and 

changes in polysome association. 
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3.2.2.2 Integration with RBP Targeting Data 

To further explore the functional consequences of RBP-mRNA interaction, I 

compared dynamic changes in HuR-mRNA association with the dynamic changes of 

mRNA in the polysome gradient experiments.  Because I am interested in specific 

alterations in translational control, I calculated changes in polysome association relative 

to changes in total mRNA abundance.  Thus, differences observed would not be due to 

increases or decreases in the absolute amount of a given mRNA, but instead should 

represent message-specific recruitments to or away from the translation machinery.  

Data from our previously published study (Mukherjee, Lager et al. 2009) on dynamic 

changes in HuR-mRNA association between 0 and 4 hours post Jurkat T-Cell activation 

were classified as 1) HuR associated at both 0 and 4 hours, 2) loss of HuR association 

from 0 to 4 hours, 3) gain of HuR association from 0 to 4 hours, and 4) not HuR 

associated at either time point for every mRNA.  Figure 14 compares the cumulative 

probability of an mRNA increasing in association with the heavy polysome fractions 

between messages classified into these four groups based on their HuR association 

dynamics.  Surprisingly, the comparison shows that those messages that lose HuR 

association from 0 to 4 hours (green line) are significantly (p = 0.0148) more likely to 

increase in their association with polysomes than those messages that are always HuR 

associated (red line).   
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Although HuR is generally believed to increase the stability and translation of its 

target messages, numerous studies (Katsanou, Papadaki et al. 2005, Leandersson, 

Riesbeck et al. 2006, Kim, Kuwano et al. 2009) have identified systems in which HuR acts 

as a repressor of translation.  Also, it is interesting to note that in these data, those 

messages that gain association with HuR are not differentially localized in the polysome 

gradient, compared to those that are never HuR associated or those that are HuR 

associated at both 0 and 4 hours post-activation.  However, the data do show a 

significant difference in the likelihood of polysome association between those messages 

that are HuR associated at both 0 and 4 hours (red line) and those that are never HuR 

associated (orange line, p = 0.0006).  Similar to those messages that lose HuR association 

from 0 to 4 hours post-activation, the messages that are not found associated with HuR 

at either time point show a greater tendency to be localized in the heavy polysome 

fractions of the gradient after activation.  
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Figure 14: Relationship Between Change in HuR Association and Change in 

Polysome Association 

 

In addition to comparing the polysome association data with RBP targeting data 

from the Jurkat T-Cell activation system, I also examined the relationships between this 

data and previously published RBP targeting data sets.  Specifically, I utilized PAR-Clip 

binding site data for numerous RBPs available in the literature that was collected in a 

Cumulative probability function comparing change in polysome association to 

change in HuR target status.  The horizontal axis represents change in polysome 

association (normalized to change in total RNA level) from 0 to 4 hours post-

activation.  The red line represents those messages that are HuR associated at 

both 0 and 4 hours; the green line represents those messages that are HuR 

associated at 0 hours but not 4 hours; the blue line represents those messages 

that are HuR associated at 4 hours but not at 0 hours; the orange line represents 

those messages that are not HuR associated at 0 or 4 hours.   
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previous study from our lab (Friedersdorf and Keene 2014).  Using the binding site 

information from these datasets, we categorized each message as a target or non-target 

(and in some cases, strong target) of each RBP.  These lists were then compared to the 

dynamic polysome association data.  Figure 15 shows several representative 

comparisons for target sets based on PAR-Clip experiments on the RBPs Ago2, Pum2, 

and HuR.  In agreement with the data presented previously, this analysis indicates that 

association with HuR negatively correlates with association with the heavy polysome 

fractions at 4 hours post-activation in Jurkat T-Cells (p < 0.0001).  Indeed, the group of 

‘strong targets’ (those with more than 4 PAR-Clip sites, blue line) show a larger negative 

correlation than the less strong targets.   
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Figure 15: Relationship Between RBP Targeting and Change in Polysome Association 

 

Similarly, those messages identified as containing PAR-Clip sites for both Pum2 

and Ago2 (blue lines) show significant (p < 0.0001) negative correlation with association 

with the heavy polysome fractions at 4 hours post-activation.  Table 5 shows the p 

Cumulative probability functions comparing change in polysome association to 

RBP targeting databases.  The horizontal axis represents change in polysome 

association (normalized to change in total RNA level) from 0 to 4 hours post-

activation.  The red lines represent messages that are not targets of the specific 

RBP tested.  Blue and green lines represent messages that are target or strong 

targets (green) of the specific RBP tested. 
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values of association between all PAR-CLIP target sets and the total-normalized change 

in polysome association from 0 hours to 4 hours post activation. 

Table 5: p-values of Relationship Between RBP Targeting and Change in Polysome 

Association 

RBP p value 

Ago2 < 0.0001 

ALKBH5 < 0.0001 

C17ORF85 0.0873 

C22ORF28 0.0003 

CAPRIN1 0.0001 

FMR1 0.5747 

FMR1 iso1 < 0.0001 

FXR1 < 0.0001 

FXR2 < 0.0001 

HuR < 0.001 

IGF2BP2 < 0.0001 

LIN28B < 0.0001 

Pum2 < 0.0001 

TTP 0.38 

ZC3H7B < 0.0001 

 

In all cases of significant differences between groups, the ‘Target’ group showed 

a negative correlation with the change in polysome association compared to the ‘Non-

Target’ group.  This trend is unsurprising for several well-established mRNA repressors 

(Ago2, Pum2, FMR1, and FXR1), and may further suggest that much of the 

transcriptome is, in fact, translationally repressed during the process of T-Cell 

activation.  It is also possible that this negative correlation trend is, at least partially, due 

to the fact that the majority of the RBPs for which PAR-CLIP data are available are 

predominantly negative regulators of expression. 
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3.2.2.3 Integration with Global Stability Data 

A currently ongoing collaborative study in our lab is exploring the role of 

changes in mRNA stability during the process of Jurkat T-Cell activation.  RNA stability 

is tightly linked to the regulation of translation.  Many stability-regulating factors 

interact with and directly regulate translation complexes, as well as the stability of other 

target mRNAs.  Utilizing 4SU labeling and separation, Jeffrey Blackinton performed 

global stability analysis on Jurkat T-Cells at 0 and 4 hours post-activation.  Data from 

these experiments were analyzed to determine mRNA half-lives during this activation 

process.  Messages were then separated into groups according to their change in half-life 

(HL) from 0 to 4 hours post-activation (Decreased HL, No change, Increased HL).   
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Figure 16: Relationship Between Change in mRNA Half-life and Change in Polysome 

Association 

 

Figure 16 shows the comparison between change in half-life and dynamic 

association with the heavy polysomes from 0 to 4 hours following Jurkat activation.  The 

group of messages with half-lives that increase from 0 to 4 hours (blue line) show a 

Cumulative probability functions comparing change in polysome association to 

change in mRNA half-life.  The horizontal axis represents change in polysome 

association (normalized to change in total RNA level) from 0 to 4 hours post-

activation.  The red line represents messages with RNA half-lives that decrease 

from 0 to 4 hours post-activation; the green line represents messages with RNA 

half-lives that do not change from 0 to 4 hours; and the blue line represents 

messages with RNA half-lives that increase from 0 to 4 hours post-activation. 
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significant positive association (p = 0.0003) with the likelihood of associating with the 

heavy polysomes after activation.  Given the tight mechanistic linkages between 

translation and mRNA stability, it is unsurprising to find that stabilized messages are 

also more likely to increase in translation.  However, the previously described findings 

that none of the tested RBP targeting datasets positively correlate with the change in 

polysome association suggest that this increase in stability and translation may be due to 

the actions of a yet unidentified RBP or RBPs that stimulate the translation and prevent 

decay of mRNAs important for the process of T-Cell activation.  

3.3 Materials and Methods 

Data sources and analysis: Data used for the thermodynamic model and HuR 

target data used for comparison with polysome association were obtained from the 

supplemental information of (Mukherjee, Lager et al. 2009).  PAR-CLIP target data were 

obtained from the supplemental information of (Friedersdorf and Keene 2014).  mRNA 

half-life data were kindly provided by Jeffrey Blackinton.  All calculations for the 

thermodynamic model were performed in R, and correlation and cumulative 

distribution plots were generated with JMP 11 (SAS).  Statistical significance was 

considered p < 0.05 via all pairs Student’s T tests. 

Cell culture: Jurkat cells were cultured in RPMI 1640 with the addition of 10% 

FBS and penicillin/streptomycin at 37 C and 5% CO2.  Activation was performed by 

addition of 50ng/mL PMA and 2ug/mL PHA for the indicated times. 
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Polysome gradients: Activated Jurkat cells were treated with cycloheximide 

(CHX) at a concentration of 200uM for 15 minutes then harvested in lysis buffer (400mM 

KOAc, 24mM HEPES, 5mM MGOAc2, 0.5% Na-deoxycholate, 0.5% Triton-X-100, 1mM 

DTT, 1mM PMSF, 200uM CHX, 50U/mL RNaseOut) and incubated for 15 minutes on 

ice.  Lysates were precleared by centrifugation at 3,000 x g for 8 minutes and loaded on 

15-50% sucrose density gradients.  Gradients were spun for 3hr at 35,000 rpm in a SW41 

swinging bucket rotor.  Gradients were analyzed and collected as 10 fractions each on an 

ISCO density gradient fractionator.  RNA was extracted from 250uL of each fraction 

with Trizol LS (Invitrogen) according to the manufacturer’s protocol.   

Western blots: HuR was detected using the mouse monoclonal 3A2 antibody and 

an HRP conjugated anti-mouse secondary antibody (GE Healthcare).  Visualization was 

performed using Pierce ECL reagent. 

Microarrays:  Trizol-LS extracted RNA from the heavy polysome fractions 

(indicated by red boxes in Figure 12) was pooled and equal quantities of polysome RNA 

and total RNA were submitted for array analysis.  All samples were run in biological 

triplicate on HO36K spotted oligo microarrays (Operon).  Data were quantile 

normalized and all further analysis was performed in JMP 11 (SAS). 

3.4 Discussion 

Our Thermodynamic Model of RBP-mRNA association provides, to my 

knowledge, the first predictive statistical model of dynamics in a posttranscriptional 
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regulatory system.  My analysis of dynamic HuR association data using this model 

highlights the combinatorial nature of the posttranscriptional regulatory environment.  

In agreement with the conclusions from the study of the yeast posttranscriptional 

network, this modeling work indicates that while some of the dynamics of association 

observed in the T-Cell system may be simply explained by changes in mRNA 

abundance (which are likely the result of transcriptional dynamics), many of the changes 

observed can’t be attributed to such alterations.  Instead, I suggest that competition 

and/or cooperation between other posttranscriptional regulatory factors, including RBPs 

and small RNAs, is likely responsible for driving these changes.   

Several studies have identified specific examples of both competition and 

cooperation between HuR and another ARE-binding protein, AUF1 (Lal, Mazan-

Mamczarz et al. 2004, Zou, Rao et al. 2010).  Additionally, HuR has been found to 

interact with the miRNA regulatory system to both counteract (Kundu, Fabian et al. 

2012) and promote (Kim, Kuwano et al. 2009) miRNA-mediated repression of target 

mRNAs.  A recent review (Ho and Marsden 2014) summarized many of the complex 

and somewhat conflicting relationships that have been characterized between HuR, the 

miRNA regulatory system, and other RBPs (including AUF and TTP).  Strikingly, a 

major conclusion of their summary is that global characterization of the 

posttranscriptional regulatory environment, and particularly the myriad interactions 

within the system, will be a critical step in understanding the various mechanisms of 
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gene expression.  The modeling approaches presented in Chapter 2 of this document are 

well suited to integration and analysis of this type of complex regulatory data. 

Our thermodynamic model may be extended and adapted to answer a number 

of important biological questions.  For example, are RBPs or mRNAs the limiting factor 

in RNP formation?  Similarly, future integration of miRNA target association data and 

RBP-mRNA association data will permit the model to estimate the relative contributions 

of each individual element (RBP or miRNA) to the experimentally observed dynamic 

changes in mRNP composition. 

 To further explore the relationship between RBP association dynamics and 

functional outcomes, I endeavored to globally evaluate functional consequences of 

changes in mRNA-RBP associations.  I quantified global changes in polysome occupancy 

of mRNAs following Jurkat T-Cell activation via microarray analysis and correlated 

those data with previously discussed data on HuR-mRNA association dynamics in the 

same system.  Although I was somewhat surprised by the observation that loss of HuR 

association correlates with increased localization to the polysome fractions, several 

studies have identified similar non-canonical behaviors of HuR (Katsanou, Papadaki et 

al. 2005, Leandersson, Riesbeck et al. 2006, Kim, Kuwano et al. 2009).  In particular, the 

Katsanou study demonstrated that exogenous expression of HuR resulted in the shift of 

target messages encoding inflammatory response proteins away from the polysome 

fractions in response to inflammatory stimulation (LPS).  Similarly to this study, they 



 

64 

found that treatment with pro-inflammatory mitogens, LPS in their case and PMA/PHA 

in my case, resulted in the reduction of polysome association of HuR target messages.  

They further concluded that HuR likely acts through multiple mechanisms and co-

effectors that enable multifunctional control of gene expression, a conclusion that further 

supports the argument of the importance of global modeling and integrated data 

analysis. 

Unfortunately, the distribution of FDRs in the polysome dataset indicates a very 

high level of noise in quantifying the changes in polysome association, making more 

fine-grained modeling and prediction somewhat intractable.  I believe that this suggests 

the need for additional replicates or new analytical techniques to characterize the 

dynamics of polysome association in this system.  Further, the array technology 

available when these experiments were performed is vastly inferior to modern 

sequencing-based approaches.   

Additional characterization of the links between the functional translation data 

and previously established RBP-mRNA interactions was performed by correlating the 

dynamic translation data with published lists of RBP target sets identified through PAR-

CLIP (Friedersdorf and Keene 2014).  My observations for many of the examined RBP 

target lists agreed with my findings on HuR targets.  Those mRNAs with putative target 

sites for many known repressive RBPs, such as Ago2, Pum2, and FXR, are less likely to 

increase in their association with the heavy polysome fractions following Jurkat 
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activation.  Ideally, dynamic targeting data for additional RBPs would be available in 

the Jurkat activation system, allowing more thoroughly quantification and exploration 

of the combinatorial contributions of multiple RBPs on the dynamic regulation of the 

translational state of mRNAs on a global scale. 
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4. Mechanisms of Control of Gene Expression Mediated 
by Pum1 

4.1 Introduction 

Although global studies of regulatory networks will ultimately be required to 

understand and predict the overall behaviors of complex biological gene expression 

processes, the development of in-depth models requires knowledge of specific 

mechanistic relationships between members of the regulatory networks.  The previously 

discussed observation that RBP targeting correlates with changes in translation status 

suggests a mechanistic linkage between association with many RBPs and recruitment to 

or away from the translation machinery.  Further, the tight linkage between regulation 

of mRNA translation and stability leads us to ask to what degree the dynamic 

associations with RBPs affects the regulation of mRNA decay.   

Evaluation of the contributions of RBPs to either or both of these facets of 

posttranscriptional control has proved somewhat difficult, as direct influences on RNA 

stability are often responsible for secondary effects on translation and vice versa.  While 

some RBPs may be directly responsible for the recruitment to or away from the 

translation machinery (for example, eIF4E) or the direct catalysis of RNA (for example 

ADAR2 and Ago) (Lunde, Moore et al. 2007), most require the action of other RBPs and 

cellular co-factors.  I investigated the specific mechanisms of posttranscriptional control 

mediated by a well-characterized RBP, Pum1.  Pum1 is closely related to one of the RBPs 

previously described as displaying a likely effect on translational control based on the 
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dynamic polysome analysis (Pum2).  Additionally, abundant literature on PUF family 

proteins indicates the potential for a dual role in translational control and regulation of 

mRNA stability, although the details of the mechanistic interactions required for Pum1’s 

regulatory functions remain largely uncharacterized.  The mechanistic study of Pum1 

will provide important functional linkage data that can be incorporated into network 

models of posttranscriptional regulation to further enhance our ability to evaluate and 

predict behaviors of these complex regulatory systems. 

4.2 Results 

4.2.1 Pum1 Binds SIRT1 and PCNA mRNAs 

Previous studies have demonstrated that Pum1 protein associates with a subset 

of cellular mRNAs (Galgano, Forrer et al. 2008, Morris, Mukherjee et al. 2008).  Although 

several of these studies identified SIRT1 as a putative mRNA target of Pum1 protein, 

further characterization of this interaction or its functional consequences has not been 

presented.  To evaluate the ability of Pum1 to bind the SIRT1 mRNA, I performed RNA 

Immunoprecipitation (RIP) analysis of FLAG-tagged Pum1 protein from HEK-293T 

cells.  Enrichments in FLAG IPs compared to negative IPs (RIPs performed on lysates 

lacking FLAG-Pum) and to total RNA levels were calculated using GAPDH for 

normalization.  As shown in Figure 17, SIRT1 mRNA is highly (~200 fold) enriched in 

the Pum1 IPs, while the mRNAs for HuR, B2M, and Histone 1 do not show substantial 

enrichment compared to negative IPs.  Additionally, PCNA mRNA, a known Pum1 
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target message (Morris, Mukherjee et al. 2008), also shows strong enrichment in the 

Pum1 IPs (~50 fold). 

 

Figure 17: Pum1 Binds SIRT1 and PCNA mRNAs 

 

4.2.2 Pum1 represses expression through the SIRT1 and PCNA UTRs 

To evaluate the functional consequences of the interaction between Pum1 and 

the SIRT1 mRNA, I generated luciferase reporters containing the full length 3’ UTRs of 

SIRT1, PCNA, and TTP (as a non-target control).  Cells were co-transfected with 

Fold enrichments of mRNAs in Pum1 RIP experiments were calculated relative 

to a negative RIP and normalized to the GAPDH mRNA.  SIRT1 and PCNA are 

putative and known RNA targets of Pum1, respectively, while B2M, HuR, and 

H1AB (Histone 1) are not known targets of Pum1. 
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luciferase reporters and a FLAG-Pum overexpression plasmid.  The presence of a target 

UTR (either PCNA or SIRT1) and full length Pum1 protein resulted in a decrease in 

luciferase expression of between 40 and 60% (Figure 18).  In contrast, luciferase 

expression was unchanged when the reporter contained a non-Pum1 target UTR (TTP). 

 

Figure 18: Pum1 Represses Expression of its Targets 

 

Full length FLAG-Pum1 was expressed together with luciferase constructs 

containing the 3’ UTRs of Pum1 target (PCNA, SIRT1) and non-target (TTP) 

mRNAs.  Luciferase activity was normalized to the luciferase vector lacking a 

UTR (pLuc) and cells transfected with an empty expression vector (pcDNA).  *** 

indicates p < 0.001 vs. pcDNA control. 
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4.2.3 The region upstream of the Pum1 RNA binding domain is 
required for repression 

Pum1 contains a single Pumilio-homology domain (HD) near its C-terminal 

region.  Previous studies have demonstrated that the HD is responsible for the RNA 

binding activity of Pum1 (Zamore, Williamson et al. 1997), as well as the repressive 

function of Pum1 through recruitment of deadenylase complexes (Goldstrohm, Hook et 

al. 2006, Goldstrohm, Seay et al. 2007, Van Etten, Schagat et al. 2012).  However, another 

study identified regions upstream of the HD as potentially important for the regulatory 

function of Drosophila Pumilio and human Pum1 in an in vitro system (Weidmann and 

Goldstrohm 2012).  To determine whether these upstream regions are required for 

Pum1-mediated repression of SIRT1, I co-transfected luciferase reporters with constructs 

expressing Pum1 truncations.  Figure 18 provides an overview of the Pum1 protein 

truncations tested.  The FLAG-HD construct contains only the defined Pumilio-

homology domain of Pum1.  The FLAG-HD+ construct includes the homology domain 

with an additional 239 upstream amino acids and includes the putative upstream 

regulatory regions identified by (Weidmann and Goldstrohm 2012).   
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Figure 19: Pum1 Truncation Constructs 

 

As shown in Figure 20, the expression of the Pum1 homology domain alone does 

not affect the expression of any luciferase vectors, independent of the presence of a 

Pum1 target UTR.  However, the expression of both the SIRT1 and PCNA UTR 

constructs is dramatically repressed when co-transfected with the FLAG-HD+ construct.   

Diagram of the Pum1 RBP truncation vectors and their respective protein 

product sizes.  FLAG-Pum FL encodes the full length Pum1 protein with an N-

terminal FLAG tag.  FLAG-Pum1 HD encodes the C-terminal 369 amino acids of 

the Pum1 protein, which includes the entire PUM homology domain (HD).  

FLAG-Pum1 HD+ encodes the C-terminal 608 amino acids of the Pum1 protein, 

including the PUM homology domain and an additional 239 upstream amino 

acids. 
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Figure 20: The Region Upstream of the Pum1 HD is Required for Translational 

Repression 

 

Figure 21 shows that this loss of regulation is not due to the loss of RNA binding, 

as SIRT1 and PCNA mRNAs are highly enriched in IPs of Pum-HD truncation 

constructs compared to negative IPs.   

The full length, HD, and HD+ Pum1 truncations were expressed together with 

luciferase constructs containing the 3’ UTRs of Pum1 target (PCNA, SIRT1) and 

non-target (TTP) mRNAs.  Luciferase activity was normalized to the luciferase 

vector lacking a UTR (pLuc) and cells transfected with an empty expression 

vector (pcDNA).  ** indicates p < 0.01 vs pcDNA control, *** indicates p < 0.001 

vs. pcDNA control. 
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Figure 21: Pum HD Truncation Binds Target mRNAs 

 

Because the homology domain has been previously shown to interact with the 

cellular deadenylase system to trigger destabilization of its target messages, I was 

surprised to find that the HD region alone is unable to repress expression in this system.  

These data suggest that the observed repression may be due to a mechanism other than 

recruitment of the deadenylase complex. 

Fold enrichments of mRNAs in Pum1-HD RIP experiments were calculated 

relative to a negative RIP and normalized to the GAPDH mRNA to ensure the 

Pum1-HD construct retained its RNA binding function.  Enrichment of Pum1 

target mRNAs (PCNA and SIRT1) in the RIP relative to non-target mRNAs 

(B2M, HuR, Histone) indicate that the HD truncation binds Pum1 target 

mRNAs. 
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4.2.4 Role of Pum1 in Regulation of Stability 

PUF family proteins have been characterized as negative regulators of mRNA 

stability in yeast (Olivas and Parker 2000, Hook, Goldstrohm et al. 2007).  In addition, in 

vitro and in vivo studies have demonstrated functional interactions between PUF family 

proteins and enzymes responsible for mRNA deadenylation (Goldstrohm, Hook et al. 

2006, Goldstrohm, Seay et al. 2007).  To investigate the role of Pum1 in the regulation of 

mRNA stability, I treated cells with actinomycin D to inhibit transcription and evaluated 

the rate at which specific mRNAs decayed over a 3 hour time course both in the 

presence and absence of siRNA-mediated knockdown of Pum1.  As shown in Figure 22, 

the rates at which the endogenous SIRT1 and PCNA mRNAs decayed was unaffected by 

Pum1 knockdown.   
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Figure 22: Effect of Pum1 Knockdown on Decay of Target mRNAs 

 

Similarly, overexpression of the HD and HD+ Pum1 truncation constructs had no 

effect on the decay rate of the PCNA mRNA (Figure 23, bottom panel).   

Actinomycin D decay assays were performed on cells treated with siRNA 

against Pum1 mRNA (Pum si) or a control siRNA (Neg si).  Abundance of 

mRNAs was evaluated at 1-hour timepoints following treatment via real time 

PCR, normalized to the initial amount of mRNA at time 0.  The upper panel 

shows the decay curve for the SIRT1 mRNA, and the lower panel shows the 

decay curve for the PCNA mRNA. 
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Figure 23: Effect of Pum1 Truncation Constructs on Decay of Target mRNAs 

 

Actinomycin D decay assays were performed on cells expressing Pum1 

truncation constructs.  Abundance of mRNAs was evaluated at 1-hour 

timepoints following treatment via real time PCR, normalized to the initial 

amount of mRNA at time 0.  The upper and middle panels show the decay 

curves for the SIRT1 mRNA in cells expressing the Pum-HD and Pum-HD+ 

truncations, respectively.  The lower panel shows the decay curve for the PCNA 

mRNA in cells expressing the Pum-HD and Pum-HD+ truncations. 
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Interestingly, however, overexpression of the HD truncation construct stabilized 

the SIRT1 mRNA (Figure 23, top panel).  Expression of the HD+ truncation displayed a 

similar effect on the SIRT1 mRNA, however the difference was not significant (Figure 

23, middle panel).  These observations further suggest that the repression observed in 

the luciferase assays may involve a pathway other than the recruitment of deadenylases 

and enhancement of mRNA decay. 

4.2.5 Role of Pum1 in Translational Regulation 

Numerous studies have demonstrated roles for PUF-family proteins in 

translational silencing (Wharton, Sonoda et al. 1998, Gu, Deng et al. 2004).  For example, 

Drosophila Pumilio has been extensively studied as an important regulator of hunchback 

and Cyclin B mRNA translation (Asaoka-Taguchi, Yamada et al. 1999, Sonoda and 

Wharton 1999).  A recent study also demonstrated a role for human Pum2 in regulation 

of translational elongation in vitro (Friend, Campbell et al. 2012).  To investigate whether 

Pum1 affects the translation of its target mRNAs in vivo, I performed polysome gradient 

fractionation and evaluated the polysome distribution of Pum1 target mRNAs.  As 

shown in Figure 24, siRNA-mediated knockdown of Pum1 dramatically reduced Pum1 

protein levels in total cell lysate.  However, the absence of Pum1 protein did not affect 

the overall distribution of the SIRT1 or PCNA mRNAs in the polysome gradient (Figure 

25).   
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Figure 24: siRNA Knockdown of Pum1 Protein 

 

Western blot showing the reduction in Pum1 protein level by siRNA treatment.  

Tubulin is shown as a loading control. 
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Figure 25: Effect of Pum1 Knockdown on Polysome Distribution of Target mRNAs 

 

I performed a similar analysis in cells overexpressing the Pum1HD and 

Pum1HD+ truncation constructs.  As shown in Figure 26, the expression of the various 

Pum1 truncations did not alter the distribution of Pum1 target mRNAs in the polysome 

gradient. 

Polysome gradient analysis was performed on cells treated with siRNA against 

Pum1 mRNA.  The proportion of mRNA in each fraction of the gradient was 

analyzed by real time PCR and normalized as a percentage of the total 

abundance of that mRNA across the gradient.  Panel A is the UV 265 absorbance 

of the total RNA across the gradients.  Panels B, C, and D show the distributions 

of the PCNA, SIRT1, and Histone mRNAs, respectively, in the polysome 

gradients from cells treated with either Pum1 siRNA or a negative control 

siRNA. 
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Figure 26: Effect of Pum1 Truncations on Polysome Distribution of Target mRNAs 

 

Steady state polysome gradient analysis only reflects the average translational 

status of a given mRNA.  This distribution is generally dominated by the rate of 

translation initiation, and the previous demonstration that Pum2 affects translational 

elongation suggested that a steady state analysis might not identify differences in 

elongation rate due to Pum1.  To investigate these differences, I treated cells with 

Polysome gradient analysis was performed on cells expressing Pum1 truncation 

constructs.  The proportion of mRNA in each fraction of the gradient was 

analyzed by real time PCR and normalized as a percentage of the total 

abundance of that mRNA across the gradient.  Panel A is the UV 265 absorbance 

of the total RNA across the gradients.  Panels B, C, and D show the distributions 

of the PCNA, SIRT1, and Histone mRNAs, respectively, in the polysome 

gradients from cells expressing Pum1-HD, Pum1-HD+, or an empty control 

expression vector (pcDNA). 
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pactamycin, an inhibitor of translation initiation, for either 5 or 10 minutes prior to 

harvesting and polysome gradient analysis.   As shown in Figure 27 and Figure 28 (top 

left panels), the addition of pactamycin permitted translational ‘run off’ while 

preventing additional initiation, resulting in a reduction in the heavy polysome fractions 

and an increase in the lighter fractions.   

However, the distributions of Pum1 target messages across these gradients did 

not differ from the distributions of non-target messages.  Additionally, neither the 

siRNA-mediated knockdown of Pum1 protein nor the overexpression of the Pum1 

truncations or altered these distributions in the pactamycin-treated cells (Figure 27, 

Figure 28).   
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Figure 27: Effect of Pum1 Knockdown on Polysome Distribution of Target mRNAs 

After Pactamycin Treatment 

 

Polysome gradient analysis was performed on cells treated with siRNA against 

Pum1 following treatment with pactamycin to halt translation initiation.  The 

proportion of mRNA in each fraction of the gradient was analyzed by real time 

PCR and normalized as a percentage of the total abundance of that mRNA 

across the gradient.  Panel A is the UV 265 absorbance of the total RNA across 

the gradients.  Panels B, C, and D show the distributions of the PCNA, SIRT1, 

and Histone mRNAs, respectively, in the polysome gradients from cells treated 

with either Pum1 siRNA or a negative control siRNA following pactamycin 

treatment. 
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Figure 28: Effect of Pum1 Truncations on Polysome Distribution of Target mRNAs 

After Pactamycin Treatment 

 

4.2.6 Functional interaction partners 

Several studies have identified functional interactions involved in PUF-family 

mediated repression of gene expression.  Specifically, interaction with members of the 

CCR4-NOT complex has been identified as a major mechanism by which PUF family 

Polysome gradient analysis was performed on cells expressing Pum1 truncation 

constructs following treatment with pactamycin to halt translation initiation.  

The proportion of mRNA in each fraction of the gradient was analyzed by real 

time PCR and normalized as a percentage of the total abundance of that mRNA 

across the gradient.  Panel A is the UV 265 absorbance of the total RNA across 

the gradients.  Panels B, C, and D show the distributions of the PCNA, SIRT1, 

and Histone mRNAs, respectively, in the polysome gradients from cells 

expressing Pum1-HD, Pum1-HD+, or an empty control expression vector 

(pcDNA) following pactamycin treatment. 
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proteins repress, primarily through the recruitment and promotion of deadenylation 

(Goldstrohm, Hook et al. 2006, Goldstrohm, Seay et al. 2007).  However, these studies 

utilized in vitro methods to identify PUF-interacting proteins.  Further, the bulk of the 

characterization performed in these studies focused on yeast Puf proteins, and 

interactions with the mammalian Pum proteins were only briefly examined.   

To identify proteins that interact with human Pum1 in vivo, I 

immunoprecipitated full length FLAG-Pum1 from 293T cells and subjected the resulting 

IP eluate to proteomic analysis.  As shown in Figure 29, I performed both positive and 

negative (control) IPs and eluted from the IP resin with FLAG peptide.   
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Figure 29: FLAG-Pum1 IP Western Blot 

 

As illustrated in Figure 30, protein was recovered from both the positive and 

negative IPs, but the positive IP showed substantially more protein signal than the 

background IP. 

Western blots of FLAG-Pum (left) and control (right) IPs for proteomic analysis.  

Each blot contains total protein, IP supernatants (Sup), fractions eluted using 

the 3X FLAG peptide (Elu), and the beads following elution. The positive IP 

was performed on cells overexpressing full length FLAG-Pum1 (left blot), while 

the control IP was performed on untransfected cells (right blot).  The positive 

blot was probed with an anti-FLAG primary antibody, while the negative blot 

was probed with an anti-Pum1 antibody. 
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Figure 30: IP to Identify FLAG-Pum1 Interacting Proteins 

 

Both samples (+ and – IPs) were submitted for proteomic analysis.  Table 6 shows 

the list of co-immunoprecipitated proteins identified as significantly enriched in the 

positive IP compared to the negative IP.  Encouragingly, a member of the CCR4-NOT 

complex, CNOT1, was identified as a Pum1-interacting protein by this analysis.  

Additionally, several other RBPs and known RBP-related proteins were identified 

(HNRNPC1, PABP1, HNRNPA1, RHA).  It is important to note that our IP protocol did 

not involve any RNAse treatment or RNP-disrupting methods.  Thus, I expected to 

Eluted fractions from positive (+) and control (-) IPs were separated by 

electrophoresis and visualized by silver stain.  L indicates a molecular weight 

ruler, weights are indicated as kDa to the left of the blot. 
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identify members of the overall Pum1-containing RNP complex, not only direct protein-

protein interactors. 

Table 6: FLAG-Pum1 Interacting Proteins 

Name Mol. Weight Fisher's (pval) 

Pumilio homolog 1  126 kDa 1.40E-45 

Heat shock 70 kDa protein 4L  95 kDa 0.00064 

Clathrin heavy chain 1  192 kDa 0.0012 

Heat shock protein 105 kDa  97 kDa 0.0014 

Heterogeneous nuclear ribonucleoproteins C1/C2  34 kDa 0.0014 

Matrin-3  95 kDa 0.0014 

Structural maintenance of chromosomes protein 4  147 kDa 0.0033 

14-3-3 protein epsilon  29 kDa 0.0039 

Polyadenylate-binding protein 1  71 kDa 0.0056 

Heat shock cognate 71 kDa protein  71 kDa 0.0074 

Heterogeneous nuclear ribonucleoprotein A1  39 kDa 0.0095 

Nucleolar RNA helicase 2  87 kDa 0.02 

Nuclear pore complex protein Nup205  228 kDa 0.02 

ATP-dependent RNA helicase A  141 kDa 0.023 

CCR4-NOT transcription complex subunit 1  267 kDa 0.026 

Nucleoprotein TPR  267 kDa 0.026 

Regulator of nonsense transcripts 1  124 kDa 0.038 

Heat shock 70 kDa protein 1A/1B  70 kDa 0.04 

Stress-70 protein, mitochondrial  74 kDa 0.047 

 

As I began validation experiments and further characterization of the 

interactions between Pum1 and CNOT1, a study was published by the Goldstrohm 

laboratory identifying and carefully characterizing the RNA-independent interactions 

between Pum1 (and Pum2) and the CCR4-NOT complex (Van Etten, Schagat et al. 2012).  

This study clearly illustrated a strong role for the interaction between Pum and the 

CCR4-NOT complex in the promotion of mRNA deadenylation and repression of 
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reporter constructs.  Interestingly, however, the results of this study also suggested that 

Pum proteins may exhibit a secondary repressive function that is not dependent on 

deadenylation of target mRNAs. 

Importantly, previous studies on the interactions between PUF proteins and the 

CCR4-NOT complex demonstrated that the region of the human Pum1 protein 

responsible for the interaction is located in the Pumilio Homology Domain.  Given the 

previously discussed findings that the repression of the SIRT1 and PCNA reporters 

requires a region of Pum1 upstream of the HD, it seems unlikely that Pum1’s interaction 

with the CCR4-NOT complex is responsible for this repression.  Thus, I sought to 

identify other proteins that interact with regions of Pum1 upstream of the HD in the 

hopes of identifying the factors responsible for the Pum1-mediated repression of SIRT1 

and PCNA. 

To identify these interactors, I again performed proteomic analysis of Pum1 IPs.  

However, in this case, I expressed FLAG-tagged truncation constructs containing either 

the region upstream of the HD previously identified as necessary for repression (FLAG-

Mid), or the previously described FLAG-HD+ construct.  A negative IP was also 

performed on lysates expressing an untagged HD+ construct.  Figure 31 shows the 

expression of the truncation constructs (indicated with arrows) and the resulting protein 

isolated by IP (lower panel).    
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Figure 31: IP to Identify Protein Interaction Partners Upstream of the HD 

 

Proteins identified through the proteomic assay were considered targets only if 

they were identified in both the FLAG-HD+ and FLAG-Mid IPs and were not identified 

in the control (HD+) IP sample.  

The indicated constructs (Mid, FLAG-Mid, HD+, FLAG-HD+) were expressed in 

293T and IPs were performed with anti-FLAG antibodies.  Upper panel shows a 

western blot of total protein (T), IP supernatants (Sup), and 

immunoprecipitated samples (IP) probed with an anti-FLAG primary antibody.  

Lower panel shows a coomassie stain for total protein of the indicated IP 

samples. Red arrows indicate FLAG constructs. 
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Table 7 lists the proteins identified in this analysis as potential interactors upstream of 

the Pum1 HD.  Strikingly, the top two identified proteins as ranked by number of 

peptide counts were also identified in the full length Pum1 proteomic analysis.  

However, one of these, Heat shock protein 70 4L, is a known chaperone protein, and 

may be present simply due to its general protein-binding function.  
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Table 7: FLAG-HD+ and FLAG-Mid Interacting Proteins 

Name Mol. Weight 

FLAG-HD+ 

Peptide 

Counts 

FLAG-Mid 

Peptide 

Counts 

Pumilio homolog 1 126 kDa 31 8 

Heat shock 70 kDa protein 4L 95 kDa 13 6 

ATP-dependent RNA helicase A 141 kDa 9 2 

Staphylococcal nuclease domain-

containing protein 1 
102 kDa 6 2 

Serum albumin 69 kDa 2 3 

Glutathione S-transferase P 23 kDa 4 4 

40S ribosomal protein S20 13 kDa 3 2 

40S ribosomal protein S11 18 kDa 4 1 

Gem-associated protein 5 169 kDa 4 1 

28S ribosomal protein S27, 

mitochondrial 
48 kDa 2 2 

Transmembrane protein 109 26 kDa 2 2 

60S ribosomal protein L23a 18 kDa 3 1 

DNA replication licensing factor MCM6 93 kDa 1 3 

Calcyclin-binding protein 26 kDa 3 1 

Ornithine aminotransferase, 

mitochondrial 
49 kDa 1 3 

40S ribosomal protein S26 13 kDa 2 1 

60S ribosomal protein L22 15 kDa 1 2 

Signal recognition particle 14 kDa 

protein 
15 kDa 2 1 

60S ribosomal protein L12 18 kDa 2 1 

Plasminogen activator inhibitor 1 RNA-

binding protein 
45 kDa 2 1 

Splicing factor U2AF 35 kDa subunit 28 kDa 1 2 

28S ribosomal protein S29, 

mitochondrial 
46 kDa 1 2 

Dolichyl-diphosphooligosaccharide--

protein glycosyltransferase subunit 1 
69 kDa 1 2 

Annexin A5 36 kDa 2 1 

 

ATP-dependent RNA helicase A (RHA or DHX9), the other potential interactor 

identified in both assays, is a known RBP, with roles in transcriptional and translational 
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regulation (Fuller-Pace 2006, Ranji, Shkriabai et al. 2011, Manojlovic and Stefanovic 

2012).  Interestingly, studies have shown a direct interaction between RHA and another 

protein identified by the assay, Staphylococcal nuclease domain-containing protein 1 

(SND1 or p100) (Valineva, Yang et al. 2006).  Given the potential of these two proteins as 

functional interactors with Pum1, I chose to validate their interaction through IP and 

western blot.  Figure 32 shows a western blot of both negative (lysate containing no 

FLAG tag) and positive IPs of the same truncations utilized for the proteomic assay. 

 

Figure 32: Putative Interaction Partners In Negative IPs 

 

Unfortunately, as shown in the rightmost lanes of the figure, both RHA and 

SND1 were present in the eluate from the negative IP as well as the positive IPs.  

Additional optimization of wash conditions, IP conditions, and negative lysates did not 

Total (T), supernatants (S), and immunoprecipitates (IP) from positive (FLAG-

Mid and FLAG-HD+) and control (HD+) IP reactions were subjected to western 

blots probed with anti- RHA, SND1, and FLAG primary antibodies. 
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alter these results.  Discussions are currently underway with the proteomics facility to 

resolve this uncharacteristic difference between the two detection methods (neither RHA 

nor SND1 were present in the negative sample by proteomic analysis).  Further 

characterization of the interactions between these potential functional regulators and 

Pum1 will require a resolution of these discrepancies. 

4.3 Materials and Methods 

Plasmids: The FLAG-Pum1 plasmid was generated by inserting an N-terminal 

FLAG sequence upstream of the full length CDS of human Pum1 in a pcDNA3 

backbone.  The Pum1 truncation constructs, FLAG-HD and FLAG-HD+, were generated 

by PCR using primers containing N-terminal FLAG sequences and cloned into pcDNA3.  

The FLAG-HD construct encodes amino acids 820-1189 of human Pum1, and FLAG-

HD+ encodes amino acids 581-1189.  Luciferase reporter vectors were generated by 

inserting full length 3’ UTR PCR products of the SIRT1, PCNA, and TTP mRNAs 

downstream of the Firefly Luciferase ORF in the pcDNA3-Luc vector. The pcDNA3-Luc 

vector containing no UTR insert was used for normalization.  All constructs were 

validated by sequencing. 

Cell culture and transfection: HEK-293T cells (ATCC) were cultured in DMEM 

supplemented with 10% FBS and Penicillin/Streptomycin at 5% CO2 and 37 C.  All 

plasmids and siRNA were transfected using Lipofectamine 2000 (Invitrogen) per the 

manufacturer’s instructions. The day prior to transfection, cells were seeded in 12-well 
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plates to an approximate density of 1.5x10^5 cells/mL.  Cells were transfected with 1ug 

of total DNA and the media was replaced after 24 hours.  For siRNA experiments, 30 

pmol of Pum1 siRNA or a non-silencing negative control RNA (Ambion Silencer siRNA) 

were co-transfected with 1ug of pcDNA3 as a carrier.  All experiments were harvested 

48 hours after transfection. 

Immunoprecipitation: FLAG immunoprecipitation (IP) was performed using 

preconjugated anti-FLAG M2 magnetic beads (Sigma).  Cell lysates used for IP were 

harvested in PLB (100mM KCl, 5mM MgCl2, 10mM HEPES (pH 7.0), 0.5% NP40, 1 mM 

DTT, 100 units/mL RNase Out, 400 µM VRC, 1X Protease inhibitor cocktail (Roche)) 

(Keene, Komisarow et al. 2006) and frozen at -80C.  Lysates were precleared by 

centrifugation at 15,000 x g for 15 minutes and IP reactions were prepared in NT2 buffer 

(50mM Tris-HCl (pH 7.4), 150mM NaCl, 1mM MgCl2, 0.05% IGEPAL).  Beads were 

washed 5X with cold NT2 buffer then tumbled with the IP reactions for 2 hours at 4 C.  

The IPs were then washed 3X with NT2 buffer containing 5M urea, followed by two 

washes in NT2 buffer.  The beads were suspended in Trizol and stored at -80 C until 

RNA preparation.  For RNA-coimmunoprecipitation (RIP), negative IPs were performed 

on lysates transfected with an untagged Pum1 expression vector.  The enrichment in 

mRNA presence in the FLAG-containing-IP over the untagged IP was used to evaluate 

protein-RNA association. 
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Western Blots: Rabbit anti-Pum1 was purchased from GeneTex, rabbit anti-SIRT1 

was purchased from Cell Signaling Technologies, mouse anti-PCNA and rat anti-tubulin 

were purchased from Thermo, rabbit anti-RHA and mouse anti-SND1 were purchased 

from Pierce..  Chemiluminescent secondary antibodies were obtained from GE 

Healthcare and detection was performed using Pierce ECL reagent. 

Coomassie and Proteomics: Gels used for total protein visualization were stained 

with colloidal coomassie blue G-250 according to the protocol in (Candiano, Bruschi et 

al. 2004).  LC-MS/MS samples were delivered in 1x LDS loading buffer (Invitrogen) and 

separated via SDS-PAGE on a 4-12% Bis/Tris gradient gel (Invitrogen) in MES buffer, for 

approximately 15 minutes.   Seven distinct gel regions were dissected using a scalpel, as 

annotated in Figure 33.  In-gel digestion was performed according to a standard protocol 

(http://www.genome.duke.edu/cores/proteomics/sample-preparation/documents/In-

gelDigestionProtocolrevised.pdf).  Briefly, gel pieces are repeatedly shrunken and 

swelled in MeCN and 50 mM ammonium bicarbonate (AmBic) respectively.  Proteins 

are then reduced using a solution of 10 mM dithiothreitol, alkylated with 20 mM 

iodoacetamide.  Supernatant was removed, then 300 ng Sequencing Grade Modified 

Trypsin (Promega) was added at 10ng/uL in 50 mM ammonium bicarbonate (pH 8).  

Digestion was allowed proceed overnight at 37°C, then quenched with the addition of 

1% Formic Acid.  Peptides are extracted and dried, then resuspended in 12 uL 0.2/2/97.8 

v/v/v  formic acid/MeCN/water for analysis.   
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Figure 33: Gel Cuts for Proteomic Analysis 

 

The in-gel digested peptides from each band were analyzed via LC-MS/MS as 

follows:  Approximately ½ of each digest (5 ul) was injected onto a 75µm x 250 mm BEH 

C18 column (Waters) and separated using a gradient of 5 to 40% acetonitrile with 0.1% 

formic acid, with a flow rate of 0.4 µL/min, in 30 minutes on a nanoAcquity liquid 

Coomassie stained gel of co-IP reactions submitted for proteomic analysis.  

Positive (FLAG-Mid IP and FLAG-HD+ IP) and control (Neg IP) samples were 

separated by electrophoresis and the lanes were cut into 7 samples each, as 

indicated in the figure.  The regions marked with X indicate heavy and light 

chain antibody bands and were avoided. 
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chromatograph (Waters).  Electrospray ionization was used to introduce the sample in 

real-time to a Q-Tof Synapt G2 mass spectrometer (Waters), collecting data for each 

sample in DDA mode with 0.6 second survey scans and three 0.6-second MS/MS scans 

in CID mode of the top three most abundant precursor ions, allowing MS/MS 

sequencing of ions with charge state 2 or greater.    Raw data was processed in Mascot 

Distiller v2.3 (Matrix Sciences, Inc) and interrogated using automated searching in 

Mascot v2.2 (Matrix Science).  Search tolerances 10 ppm on precursor and 0.04 Da 

product ions.  Carbamidomethylation (C) was included as a fixed modification, and 

deamidation (N and Q) and oxidation (M) were allowed as variable modifications.   Data 

curation was performed in Scaffold v4 (Proteome Software, Inc), and annotation 

performed at a false discovery rate of 0% at the protein level, using target-decoy 

database strategy. 

RT and Real Time PCR: RNA was extracted using Trizol reagent (Invitrogen) per 

the manufacturer’s instructions and cDNA synthesis was performed using the BioRad 

iScript kit.  Real time PCR was carried out in a Roche LightCycler capillary qPCR 

instrument using SYBR-Supermix UDG (Invitrogen).  Primer sequences used for qPCR 

are listed in 



 

98 

Table 8.  Data were analyzed using the delta-delta Ct method, normalized to GAPDH as 

a ‘housekeeping’ control and a negative treatment sample.  
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Table 8: Real Time PCR Primer Sequences 

mRNA Forward Primer Reverse Primer 

SIRT AGTGGCAAAGGAGCAGATTAG CTGCCACAAGAACTAGAGGATAAG 

PCNA AGCTCTTCCCTTACGCAAGTCTCA ACGAGTCCATGCTCTGCAGGTTTA 

B2M TGTCTGGGTTTCATCCATCCGACA TCACACGGCAGGCATACTCATCTT 

HuR GGATGAGTTACGAAGCCTGTT CAAGCTGTGTCCTGCTACTT 

H1A GGAGAAGAACAACAGCCGCAT TTGAGCTTGAAGGAACCCGAG 

GAPDH TCGACAGTCAGCCGCATCTTCTTT ACCAAATCCGTTGACTCCGACCTT 

 

Luciferase Assays: Equimolar quantities of luciferase reporter vectors were co-

transfected with a Renilla luciferase expression vector (pRL) and Pum1 expression 

constructs or empty pcDNA3 as a negative control.  Cells were harvested using Passive 

Lysis Buffer (Promega) and diluted 100x prior to performing luciferase assays.  Assays 

were performed on a Mithras LB 940 (Berthold Technologies) using Promega Dual 

Luciferase reporter reagents.  The ratios of Firefly to Renilla luciferase signal (F/R) for 

experimental groups were normalized to the F/R ratio of the pLuc vectors and untreated 

samples.  Data are presented as mean +- s.d.  Data analysis was performed in Excel with 

Daniel’s XL Toolbox (Microsoft; Daniel Kraus, Wurzburg, Germany). 

Actinomycin D experiments: Cells were treated with 5ug/mL of Actinomycin D 

and harvested in Trizol at hourly time points.  qPCR analysis of mRNA abundance at 

each time point relative to the untreated sample was used to generate decay curves. 

Polysome Gradients: Cells were treated with cycloheximide (CHX) at a 

concentration of 200uM for 5 minutes then harvested in lysis buffer (400mM KOAc, 

24mM HEPES, 5mM MGOAc2, 0.5% Na-deoxycholate, 0.5% Triton-X-100, 1mM DTT, 
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1mM PMSF, 200uM CHX, 50U/mL RNaseOut) and incubated for 15 minutes on ice.  For 

translational runoff experiments, cells were treated with 200nM pactamycin for 5 or 10 

minutes prior to the addition of CHX.  Lysates were precleared by centrifugation at 

3,000 x g for 8 minutes and loaded on 15-50% sucrose density gradients.  Gradients were 

spun for 2.5hr at 35,000 rpm in a SW41 swinging bucket rotor.  Gradients were analyzed 

and collected as 10 fractions each on an ISCO density gradient fractionator.  RNA was 

extracted from 250uL of each fraction with Trizol LS (Invitrogen) according to the 

manufacturer’s protocol.  qPCR analysis was used to evaluate the distribution of specific 

mRNAs across the gradient.  Equal volumes of RNA from each fraction were used for 

cDNA synthesis and raw C(t) values were used to calculate the relative percentage of 

each mRNA in each fraction of the gradient. 

4.4 Discussion 

Although SIRT1 has been identified in several genome-level studies as a 

potential mRNA target of the Pum1 RNA binding protein (RBP)(Galgano, Forrer et al. 

2008, Morris, Mukherjee et al. 2008), I have provided the first evidence that this targeting 

may also result in the posttranscriptional regulation of SIRT1 expression.  Additionally, I 

have demonstrated that the regulation of SIRT1 mRNA by Pum1 is mediated through 

the 3’ UTR of the SIRT1 message.  The only other reported RBP-mediated regulation of 

SIRT1 mRNA is the condition dependent stabilization of SIRT1 message through 

interaction with HuR (Abdelmohsen, Pullmann et al. 2007).  Strikingly, their study 
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found that SIRT1 mRNA loses its interaction with HuR upon induction of oxidative 

stress and that this disassociation results in destabilization of the SIRT1 mRNA.  A 

previous study from our group (Morris, Mukherjee et al. 2008) found that Pum1 

localizes to stress granules during oxidative stress, however attempts to quantify 

differences in Pum1 mRNA targeting before and after induction of oxidative stress have 

not, as yet, been successful.  It is intriguing to hypothesize that the destabilization of 

SIRT1 mRNA following oxidative stress may be partially mediated by Pum1.  Further, I 

propose that the lack of regulation observed on the endogenous SIRT1 message may be 

a consequence of the dynamic and condition specific nature of posttranscriptional 

regulation.   

Our observations that overexpression of Pum1 has little effect on stability or 

translation of its target messages is consistent with previously published findings (Van 

Etten, Schagat et al. 2012), suggesting that Pum1 protein is present in excess in 293T 

cells.  Further, Pum2, which is also expressed in 293T cells, targets a very similar set of 

mRNAs as Pum1 (Galgano, Forrer et al. 2008), suggesting that regulatory compensation 

by Pum2 may be responsible for maintaining levels of SIRT1 expression when Pum1 

levels are depleted. 

I have also provided the first in vivo validation of the role for regions upstream 

of the Pum1 homology domain (HD) in regulation of target expression.  A previous 

study (Weidmann and Goldstrohm 2012) identified several regions upstream of the HD 
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in multiple PUF family proteins that are independently capable of repressing expression 

in an in vitro tethering assay.  My data indicate that the presence of this upstream 

regulatory region is required for Pum1-mediated repression through the SIRT1 and 

PCNA 3’ UTRs, but this region is not required for mRNA binding.  These findings 

suggest the presence of a functional domain upstream of the Pum1 HD.  I hypothesize 

that this region is responsible for the recruitment of other effector proteins that mediate 

the mechanistic repression of mRNA expression, either through translational silencing 

or deadenylation and decay.  It is interesting to note that previous studies have 

identified the interaction sites between Pum1 and the deadenylase complex in the Pum 

HD (Goldstrohm, Hook et al. 2006, Goldstrohm, Seay et al. 2007).  This suggests that the 

repression mediated by the upstream regions of Pum1 may involve a different and novel 

set of regulatory mediators.   

As indicated by the proteomic data, the region upstream of the HD likely 

interacts with several additional elements of the posttranscriptional system.  The 

identification and characterization of these potential co-regulators has been a focus of 

numerous experiments in our laboratory.  The previously described disagreement 

between western blot and proteomic detection methods has somewhat hampered 

progress in the specific identification of these co-regulators.  However, it is possible that 

other candidate interactors identified through the proteomic experiments will prove 
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specific and functionally relevant.  Experiments are currently underway to test and 

characterize these additional potential interactions. 

Numerous studies have investigated the role of PUF family proteins in the 

regulation of translation (Cao, Padmanabhan et al. 2010, Chritton and Wickens 2010, 

Chritton and Wickens 2011) in multiple species.  Recent work has implicated human 

Pum2 as a negative regulator of translational elongation in a cell free translation assay 

(Friend, Campbell et al. 2012).  Although the luciferase reporter data support a role for 

Pum1 in the regulation of translation, I observed no effect on the distribution of 

endogenous Pum1 target messages in polysome gradients in response to overexpression 

or depletion of Pum1 protein.  I further explored the potential role of Pum1 in 

translational elongation through a translation run-off experiment, but again failed to 

confirm previous reports of Pum1-mediated repression.  A major difference between this 

study and the Friend et al. work is the in vivo vs in vitro natures of the respective 

systems.  It is likely that the intact cell system utilizes multiple redundant pathways to 

ensure proper expression of important regulatory genes, such as SIRT1. 

Additionally, although SIRT1 message shows strong enrichment in Pum1 IP 

experiments, I have not quantified the proportion of total SIRT1 mRNA that is bound by 

Pum1 protein in the cell.  Subcellular localization and binding accessibility of a given 

mRNA may vary greatly within the cell, resulting in differential regulation and 

coordination of subsets of a particular mRNA species.   
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The specific contributions of the multiple regulatory mechanisms utilized by the 

PUF family proteins remain uncharacterized.  It will be an important future step in the 

characterization of this family of RBPs to assess the degree to which they affect 

deadenylation, mRNA decay, and translation, particularly in the context of specific 

biological conditions and perturbations.  As previously discussed, experimental designs 

utilizing dynamic conditions, such as oxidative stress or developmental perturbations, 

may provide insights into many of these remaining questions regarding the mechanisms 

of Pum1 mediated regulation of SIRT1 and other target mRNAs.  Ultimately, the 

integration of these important mechanistic relationships into global-scale regulatory 

models will be necessary to fully characterize the complex system of posttranscriptional 

control of gene expression.
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5. Conclusions and Future Directions 

I have explored the posttranscriptional regulatory environment from the global 

perspective, thorough the development of systems-level interaction models, from the 

perspective of global translational control in a dynamic system, and through mechanistic 

analysis of individual RBP-mRNA interactions.  Global analyses indicate that RBPs 

compose a substantial proportion of the gene regulatory network, potentially 

contributing greater regulatory function than the transcription network.  Further, the 

global and mechanistic analyses presented in this document emphasize the importance 

of intramolecular cooperation and interactions in the regulatory control of gene 

expression at all levels. 

 Global analysis of the combined yeast transcriptional and posttranscriptional 

gene regulatory network provided us with evidence for the extent and significance of 

the posttranscriptional regulatory system.  This work, and subsequent studies by other 

groups, determined that those genes displaying regulation by RBPs show a greater 

degree of controlled expression at both the transcriptomic and proteomic levels than 

those genes that are only controlled by TFs.  The analysis presented in Chapter 2 also 

illuminates a global ‘regulators of regulators’ structure to the posttranscriptional 

environment.  This structure has been suggested by several small-scale studies 

previously, but this is the first global level demonstration of the tendency of 

posttranscriptional regulators to target and regulate one another in a combinatorial 
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fashion.  Additional studies from other laboratories exploring similar relationships in 

the same large-scale datasets I studied, as well as further studies in mouse and human 

systems, also observed similar ‘regulators of regulators’ behaviors in both the yeast and 

mammalian regulatory networks.  Together, these data suggest that the structure of 

interconnected regulatory networks of posttranscriptional mediators of gene expression 

may be an organizing principle that drives overall coordination of gene expression. 

While these findings are quite intriguing, they only include posttranscriptional 

interaction data for 46 yeast RBPs.  It has been suggested that yeast may express as many 

as 500 different RBPs, and integration of data from larger scale characterization of their 

target messages would provide a more complete picture of the highly complex network 

of posttranscriptional regulation in this system.   

Another important feature lacking from the integrated network analysis is 

biological dynamics.  In a first attempt to model the dynamic binding kinetics of an RBP, 

I explored the role of HuR during T cell activation.  I successfully modeled the dynamics 

of interaction between an RBP and its target mRNAs and was able to partially attribute 

these dynamics to changes in mRNA abundance.  However, I also determined that 

competition or cooperation with other RBPs, as well as potential posttranslational 

modification of HuR itself, are likely involved in the dynamic changes observed in HuR-

mRNA association.  I also analyzed HuR binding dynamics in the context of 

translational control and found that, in T cell activation, HuR may play a role in 
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translation inhibition, much as it does in other immune cells.  Further characterization of 

the global dynamics of RNA behavior in the T cell activation system is currently 

underway in our laboratory.   

Ultimately, I hope to integrate many levels of RNA regulation, including RBP 

targeting, RNA stability, and translation status into the first global model of PTR in a 

dynamic mammalian system.  Inclusion of global miRNA targeting data would further 

enhance the scope and impact of a PTR model.  To this end, I also hope to characterize 

the RNA targets of additional RBPs, either through direct experimentation or the 

integration of published large-scale interaction data, such as PAR-CLIP binding data sets 

and miRNA target databases.  Such data sets are rapidly emerging, and integration of 

these large-scale targeting studies into a statistical model of the functional consequences 

of RBP-mRNA interaction would provide great insights into the dynamic and complex 

nature of the overall posttranscriptional regulatory environment.  

Finally, I explored specific mechanisms of posttranscriptional regulation 

mediated by the Pum1 RBP.  I demonstrated a role for Pum1 in the regulation of SIRT1 

mRNA, an important regulator of cell aging and senescence.  I also provided the first in 

vivo evidence for the role of a region upstream of the Pum-HD in the function of the 

Pum1 protein.  The specific mechanisms of this repression function remain somewhat 

unclear.  I described preliminary approaches to identifying additional factors that may 

be involved in mediating this repression; however I have not yet definitively 
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characterized these factors.  Additional studies are currently underway to validate and 

characterize the factors that interact with Pum1 and mediate its ability to repress 

translation.   

Importantly, these studies of Pum1 have been performed in a static system, 

unperturbed growing 293T or HeLa cells.  Based on previous experience with HuR, I 

believe that exploration of Pum1 biology in a dynamic biological system, such as 

response to stress or cellular development and differentiation is an important next step 

in understanding the mechanisms and global functions of Pum1.  Given the importance 

of the SIRT1 protein in regulation of aging and cell senescence, and the hypothesized 

ancestral role for Pum proteins in stem cell self-renewal, exploration of the regulatory 

dynamics of SIRT1, as mediated by Pum1 protein, in an aging or stem-like experimental 

system would provide key insight into the biological role of mammalian Pum proteins 

in development.  Further, although the greater biological roles of PUF-family proteins 

have been studied extensively in yeast, flies, and worms, most mammalian studies of 

Pum1 and Pum2 have exclusively focused on cellular phenotypes and molecular 

mechanisms.  The important biological roles of these highly evolutionarily conserved 

genes may become apparent through studies in dynamic and developmental 

mammalian systems. 

I hope to study Pum1 and other RBPs in such a system, with the ultimate goal of 

integrating multiple levels of RBP-mRNA interaction data, global mRNA decay data, 
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and global translational profiling data into a dynamic systems-level model of the 

posttranscriptional regulatory environment. 
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