Crystal structure of Bacillus subtilis glyceraldehyde-3-phosphate dehydrogenase GapB

Pawan Dahal¹, Deepak Pathak¹ and Eunju Kwon²,³,*

¹College of Pharmacy, Yeungnam University, Gyeongsan 38541, Republic of Korea
²Division of Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
³Research Institute of Molecular Alchemy, Gyeongsang National University, Jinju 52828, Republic of Korea
*Correspondence: eunjukwon@gnu.ac.kr

Crystal structure of Bacillus subtilis glyceraldehyde-3-phosphate dehydrogenase GapB

INTRODUCTION

Glycolysis is a metabolic process that occurs in most organisms, where one glucose molecule is converted into two pyruvate molecules through 10 sequential enzymatic reactions (Scrutton and Utter, 1968). The sixth reaction of glycolysis is the process that converts glyceraldehyde 3-phosphate (G3P) into 1,3-bisphosphoglycerate (1,3-BPG) (Harris and Waters, 1976). This process is catalyzed by glyceraldehyde-3-phosphate dehydrogenase (GAPDH). During this reaction, the aldehyde group of G3P is oxidized to a carboxyl group, and NAD⁺ is reduced to NADH. Phosphate is then covalently attached to the oxidized G3P.

GAPDH catalyzes the interconversion between G3P and 1,3-BPG depending on substrate concentration. G3P is oxidized to 1,3-BPG by GAPDH during glycolysis, whereas 1,3-BPG is reduced to G3P by the same enzyme during gluconeogenesis (Harris, 1976) (Figure 1A). A single GAPDH mediates this interconversion in many organisms. However, two or more GAPDHs have been identified in plants (Petersen et al., 2003) and some species of prokaryotes, such as cyanobacteria (Koksharova et al., 1998), archaea (Brunner et al., 2001; Ito et al., 2012; Tastensen and Schonheit, 2018), and non-photosynthetic bacteria (Peres et al., 2010). In prokaryotic species containing two GAPDH genes, GapA catalyzes the oxidation of G3P to 1,3-BPG during glycolysis, while GapB catalyzes the reverse reaction during gluconeogenesis (Koksharova et al., 1998; Brunner et al., 2001; Peres et al., 2010; Ito et al., 2012; Tastensen and Schonheit, 2018).

Bacillus subtilis, a model organism for gram-positive bacteria, also possesses two GAPDHs: BsGapA and BsGapB (Kunst et al., 1997). BsGapA is a classical NAD⁺-dependent GAPDH that catalyzes the 1,3-BPG production during glycolysis, whereas BsGapB is an NADP⁺-dependent enzyme that mediates the reverse reaction during gluconeogenesis. GAPDH contains characteristic residues for cofactor binding. BsGapA contains Asp34, Leu190, and Pro191 for NAD⁺ binding. BsGapB contains Ala34, Asn190, and Pro191 for NADP⁺ binding (Corbier et al., 1990; Clermont et al., 1993; Fillinger et al., 2000). The folding of BsGapB is assisted by the YjoB chaperone in B. subtilis (Kwon et al., 2022).

Since the first GAPDH structure was determined (Moras et al., 1975), many GAPDH structures from approximately 70 species have been reported. NAD⁺-dependent GAPDH structures have been extensively studied, while NADP⁺-dependent GAPDH structures have been relatively less studied. Herein, the crystal structure of NADP⁺-dependent BsGapB is determined at 2.3 Å resolution and compared with previously known structures.

MATERIALS AND METHODS

Protein preparation

BsGapB was prepared as described previously (Kwon et al., 2022). In brief, the B. subtilis gapB gene (residues 1-340) was amplified using a polymerase chain reaction from the genomic DNA of the B. subtilis strain 168. The gene was inserted into the pETDuet-1 vector (Merck Millipore, Billerica, MA, USA) modified with DNA encoding 6×His-thioredoxin (Trx) and a tobacco etching virus (TEV) protease cleavage sequence to express the 6×His-Trx-BsGapB protein. The plasmid was introduced
Crystal structure of *Bacillus subtilis* GapB

into the *E. coli* strain BL21-star (DE3) (Thermo Fisher Scientific, Waltham, MA, USA), and the cells were cultured in Luria Bertani medium at 37°C. When the optical density at 600 nm reached 0.6-0.7, the protein expression was induced by adding 0.4 mM isopropyl β-D-1-thiogalactopyranoside. The cells were then cultured for 24 h at 20°C and harvested through centrifugation at 3,000 × g for 10 min at 4°C. The harvested cells were resuspended in buffer A (20 mM HEPES pH 7.5, 0.2 M NaCl, and 5% (v/v) glycerol) and lysed by sonication. Cell lysates were treated with DNase I and RNase A (10 μg/ml each; Roche, Basel, Switzerland) for 30 min on ice and clarified through centrifugation at 20,000 × g for 30 min at 4°C.

BsGapB was purified using immobilized metal affinity chromatography and size-exclusion chromatography (SEC). Cell lysates were loaded onto a 5-ml HisTrap nickel-chelating column (Cytiva, Marlborough, MA, USA), and proteins bound to the resin were eluted through a linear gradient of 0.08-1.0 M imidazole on an AKTA-FPLC system (Cytiva). Fractions containing 6×His-Trx-BsGapB were pooled and incubated with TEV protease at 4°C to separate the 6×His-Trx tag from BsGapB. After cleavage, the protein solution was dialyzed against buffer A and passed through a HisPur Ni-NTA resin (Thermo Fisher Scientific) to remove the 6×His-Trx tag. BsGapB was further purified by SEC using a Superdex 200 preparatory grade column (Cytiva) equilibrated with buffer B (20 mM HEPES pH 7.5, 50 mM NaCl, and 5% (v/v) glycerol).

Crystallization, data collection, and structure determination

BsGapB crystals suitable for X-ray diffraction grew in microbatch plates (Hampton Research, Aliso Viejo, CA, USA) at 20°C. The crystallization drop was set up by mixing 1 μl BsGapB (11.75 mg/ml) and 1 μl crystallization solution under Al’s oil layer (Hampton Research). Crystals grew completely within 2 weeks in the crystallization solution containing 20.1% (v/v) 2-methyl-2,4-pentanediol, 10.05% (w/v) polyethylene glycol 8000, 0.1 M CaCl₂, and 0.1 M sodium acetate/acetic acid pH 5.5 (Rigaku, Tokyo, Japan). For cryo-protection, 0.5 μl of 100% glycerol was directly added to the crystallization drop. Single crystals were

TABLE 1 | Data collection and refinement statistics

<table>
<thead>
<tr>
<th>Data collection</th>
<th>Diffraction source</th>
<th>PAL/PLS BEAMLINE 11C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wavelength (Å)</td>
<td>0.9794</td>
<td></td>
</tr>
<tr>
<td>Temperature (K)</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Space group</td>
<td>P6,22</td>
<td></td>
</tr>
<tr>
<td>a, b, c (Å)</td>
<td>102.60, 102.60, 111.08</td>
<td></td>
</tr>
<tr>
<td>α, β, γ (°)</td>
<td>90.00, 90.00, 120.00</td>
<td></td>
</tr>
<tr>
<td>Resolution range (Å)</td>
<td>88.85–2.30 (2.38–2.30)</td>
<td></td>
</tr>
<tr>
<td>R_meas (%)</td>
<td>14.7 (79.7)</td>
<td></td>
</tr>
<tr>
<td><I/σ(I)></td>
<td>16.0 (4.5)</td>
<td></td>
</tr>
<tr>
<td>Completeness (%)</td>
<td>100.0 (100.0)</td>
<td></td>
</tr>
<tr>
<td>Redundancy</td>
<td>18.9 (19.0)</td>
<td></td>
</tr>
<tr>
<td>Mosaicity (°)</td>
<td>0.68</td>
<td></td>
</tr>
<tr>
<td>Total no. of reflections</td>
<td>302,108 (28,816)</td>
<td></td>
</tr>
<tr>
<td>No. of unique reflections</td>
<td>15,937 (1,519)</td>
<td></td>
</tr>
</tbody>
</table>

Refinement	Resolution range (Å)	88.85–2.30 (2.38–2.30)
	R_work/R_free (%)	19.4/25.1 (17.5/24.6)
	No. of non-H atoms	Protein 745 Water 137 Total 882
	R.m.s. deviations	Bonds (Å) 0.005 Angles (°) 0.772 Average B factors (Å²) 12.4 Protein 10.8 Water 20.9
	Ramachandran plot	Most favored (%) 97.7 Allowed (%) 2.3 Cruickshank DPI 0.034

Values for the outer shell are provided in parentheses.
then picked up using dual-thickness micro loops (MiTeGen, Ithaca, NY, USA) and rapidly frozen in liquid nitrogen.

Diffraction data were collected at PLS II-BL11C (Beamline 11C, Pohang Light Source II, South Korea) (Park et al., 2017). The data were indexed, integrated, and scaled using MOSFLM (Battye et al., 2011) and AIMLESS (Evans and Murshudov, 2013). The crystal structure of BsGapB was determined using the molecular replacement method in Phaser (McCoy et al., 2007). The AlphaFold model structure of BsGapB (AlphaFold ID: O34425-F1) was used as the template for molecular replacement (Jumper et al., 2021). Model building and structure refinement were performed using COOT (Emsley et al., 2010) and Phenix.refine (Afonine et al., 2012; Liebschner et al., 2019).

Figures were drawn using ChemDraw (Revitty Signals Software, Waltham, MA, USA) and PyMOL (Schrodinger, 2015). Diffraction images were prepared using ADXV (Scripps Research Institute, La Jolla, CA, USA). The InterPro database was used for protein classification and domain organization (Paysan-Lafosse et al., 2023). Structure alignment and protein-protein interactions were analyzed using the DALI server (Holm and Rosenstrom, 2010) and PISA (Krissinel and Henrick, 2007). The final coordinate and structure factor of BsGapB were deposited in the Protein Data Bank (PDB ID: 8WWZ).

RESULTS AND DISCUSSION

Crystallographic data collection and structure determination of BsGapB

Although hundreds of GAPDH structures from approximately 70 species have been deposited in the PDB, the crystal structure of BsGapB has not yet been reported. Full-length BsGapB was purified and crystallized to determine its crystal structure. The 6×His-Trx-BsGapB was expressed in E. coli at 20°C. The protein was purified using immobilized metal affinity chromatography, and the 6×His-Trx tag was removed by treatment of TEV protease, after which it was passed through the nickel-chelating resin. BsGapB was further purified by SEC using a Superdex 200 preparatory grade column (Figure 1B and 1C). In SEC, BsGapB was observed at elution volume of approximately 65 ml, wherein it was estimated to be a tetramer (Figure 1B). BsGapB was crystallized into a rod-shape using 2-methyl-2,4-pentanediol and polyethylene glycol 8000 as precipitants (Figure 1D). The crystal was exposed to a micro-focusing X-ray source, and reflections were observed up to 2.0 Å resolution (Figure 1E and 1F). The collected diffraction data were processed at 2.3 Å resolution (Table 1). A total of 302,108 reflections were observed, which were merged to 15,937 unique reflections with an R merge /Rpim of 0.143/0.033. The dataset completeness was 100.0%. The crystal belonged to the hexagonal space group P6222 with unit cell parameters of a = 102.60 and c = 111.08 Å (Table 1). The Matthews coefficient (V M) was calculated to be 2.25 Å^3/Da, assuming that one BsGapB was in the crystallographic asymmetric unit. This value corresponded to a solvent content of 45.3%.

The crystal structure of BsGapB was determined using the molecular replacement method. For the structure determination, an alpha-fold model of BsGapB (AlphaFold ID: O34425-F1) was used as the template for molecular replacement (Jumper et al., 2021). The asymmetric unit of the crystal contained one...
Crystal structure of Bacillus subtilis GapB

BsGapB chain modeled at residues 2-182 and 194-337. The final structure was refined at 2.3 Å resolution with an R_{work}/R_{free} value of 19.4/25.1%. (Table 1 and Figure 2A).

Crystal structure of BsGapB monomer

GAPDH is composed of an N-terminal NAD(P)$^+$-binding domain (NBD) and a C-terminal catalytic domain (CD) (Moras et al., 1975; Olsen et al., 1975). In the crystal structure of BsGapB, residues 2-150 and 151-337 corresponded to the NBD and CD of GAPDH, respectively (Figure 2). BsGapB-NBD formed a Rossmann fold with a core β-sheet and peripheral helices. The core β-sheet contained six parallel β-strands arranged in the order: S5, S2, S1, S6, S7, and S9. The helices in the NBD (H1, H2, H3/H4, H5, and H6) were inserted between the strands (S1 and S2, S2 and S5, S5 and S6, S6 and S7, and S7 and S9 strands, respectively) and were placed on both sides of the core β-sheet (Figure 2B and 2C). β-hairpin (S3 and S4) and S8 strand extended this Rossmann fold of BsGapB-NBD by forming β-sheet hydrogen bonds with S5 and S9, respectively (Figure 2C). BsGapB-CD formed an α/β fold composed of a central β-sheet and peripheral helices (Figure 2B and 2C). In the central β-sheet of BsGapB-CD, three β-strands (S10, S12, and S13) formed a psi-loop motif as a β-sheet core. The S11 strand and the remaining β-strands (S14-S17) extended the psi-loop motif by forming β-sheet hydrogen bonds with S12 and S13, respectively (Figure 2C). The C-terminal helix H14 bound to the concave groove in the core β-sheet of the NBD, contributing to the formation of a globular and stable monomer (Figure 2B).

Structural homology searches showed that BsGapB shared an overall fold with GAPDHs in a wide range of species. Bacillus

![FIGURE 3 I Structural comparison of BsGapB with GAPDHs.](image)
Pawan Dahal, Deepak Pathak and Eunju Kwon

anthracis apo-Gap1 (PDB ID: 4DIB), Geobacillus stearothermophilus NAD⁺-bound Gap (PDB ID: 1DBV) (Didierjean et al., 1997), Spinacia oleracea NADP⁺-bound GAPDH (PDB ID: 1RM5) (Sparla et al., 2004), and Cryptosporidium parvum apo-GAPDH (PDB ID: 1VSU) (Cook et al., 2009) were superimposed onto BsGapB, with root mean square deviation values of 0.9, 1.0, 1.4, and 1.2 Å for 322 Cα atoms, respectively. This indicates that the overall structure of GapB was well-aligned with GAPDH structures, except for the missing loop (Figure 3).

In the crystal structure of BsGapB, residues 183-193 were not visible (Figure 3B). The missing residues corresponded to the S-loop, which mediates NAD(P)⁺ binding (Cook et al., 2009). The S-loop is flexible in the apo-GAPDH structure, whereas it is fixed in the NAD(P)⁺-bound GAPDH structures by interacting with NAD(P)⁺ (Figure 3B and 3C). Thus, a major difference in the presence and absence of the cofactor was observed in the S-loop.

Crystal structure of BsGapB tetramer

GAPDHs form a tetramer arranged by three 2-fold axes (222 symmetry) (Harris and Waters, 1976), and BsGapB was estimated to be a tetramer by SEC (Figure 1B). Although the BsGapB monomer was found in the asymmetric unit, it was predicted to form a stable homo-tetramer in the PISA analysis (Krissinel and Henrick, 2007). BsGapB tetramer was assembled with 222 symmetry like other GAPDHs (Figure 4A-D) (Biesecker et al., 1977; Sparla et al., 2004; Ferreira-da-Silva et al., 2006) and its extensive binding interfaces resulted in the surface burial of 27.8% (12,885 Å² in 46,360 Å²) and significantly reduced ΔG (–76.6 kcal/mol). This shows that the BsGapB tetramer has the conserved quaternary structure of GAPDH.

BsGapB contains Ala34, Asn190, and Pro191 as the signature residues for NADP⁺ binding. In the crystal structure of BsGapB superimposed with S. oleracea GAPDH, Ala34 was located close to NADP⁺, and Asn190 and Pro191 in the S-loop were not visible (Figure 4E). Given that the S-loop of the neighboring subunit interacted with NADP⁺ in the crystal structure of S. oleracea GAPDH tetramer, the S-loop of BsGapB appeared to be stabilized by interaction with NADP⁺ in the neighboring subunit of the BsGapB oligomer (Figure 4E).

FIGURE 4 | Crystal structure of BsGapB tetramer. (A) Cartoon model of BsGapB tetramer. BsGapB tetramer is generated by three crystallographic 2-fold symmetry (P-, Q-, and R-axis). (B-D) Surface models showing three different binding interfaces of BsGapB tetramer. Red ovals indicate the binding interface for BsGapB tetramerization. (E) Signature residues (Ala34, Asn190, and Pro191) of BsGapB for NADP⁺ binding. The teal and green dotted lines represent BsGapB S-loops from one subunit (teal) and the neighboring subunit (green). These S-loops were modeled using the crystal structure of SoGAPDH tetramer (PDB ID: 1RM5). The magenta circles highlight the signature residues for NADP⁺ binding.
Crystal structure of Bacillus subtilis GapB

ACKNOWLEDGEMENTS
This research was supported by Learning & Academic research institution for Master’s-PhD students, and Postdocs (LAMP) Program of the National Research Foundation of Korea (NRF) grant funded by the Ministry of Education (RS-2023-00301974).

CONFLICT OF INTEREST
The authors declare no competing interests.

REFERENCES

