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Abstract

People live and work in local markets spatially distinct from one another, yet space is

absent from most economic models of the national labor market. Workers choose the

markets in which they will participate, but there are costs to mobility. Furthermore,

cities are heterogeneous in a number of dimensions, including their local labor market

productivity, their housing supply, and their offering of amenities.

I examine the impact of these spatial considerations on the dynamics of local

labor markets and the national market to which they aggregate. First I study the

patterns of location choice through a gravity model of migration applied to rich panel

data from the U.S. I find that location choices respond to temporal shocks to the la-

bor market, but only after controlling for local heterogeneity. Next, with this result

as motivation, I turn to development of a dynamic spatial equilibrium of the na-

tional labor market. I make a technical contribution to work in dynamic equilibrium

modeling by empirically implementing an island economy model of worker mobility.

I quantify the importance of worker mobility costs versus local housing prices for

explaining spatial variation in the unemployment rate. I find that the link between

the local housing market and the local labor market is important for explaining the

spatial dispersion in unemployment, but mobility costs are not. Finally, I further

exploit the dynamic equilibrium framework to examine the effect of local housing

policy on labor market growth. I find that housing supply regulation is a constraint

to growth, but is only binding on cities that are particularly desirable because of
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their labor market opportunities or amenities. I find that some lightly regulated

markets have a contingent of population that has been pushed out of more regulated

markets by high housing prices.
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1

Migration Flows to Labor Markets

1.1 Introduction

There is an apparent disconnect in the literature on labor migration. On one hand,

it has long been recognized that a person’s location choice is made in a dynamic

context, the result of forward-looking behavior. Therefore, the literature studying

individual migration decisions, from Sjaastad (1962) to more recent structural work1

is formulated in this dynamic setting. On the other hand, most studies of aggregate,

interregional migration are framed, or at least empirically evaluated, in a static

context or a very narrowly defined dynamic one;2 either comparing migration flows

between regions over a short period, or looking at before and after changes in region’s

populations. The limitation is often due to data availability.

Studies with relatively few periods of data are exploiting mainly (and perhaps

only) spatial variation in location attributes, yet many attributes of labor and housing

markets–salient topics of inquiry like wages, unemployment, and housing prices–are

dynamically varying. This loses potential information from dynamic variation and

1 See for example Kennan and Walker (2011), Bishop (2008), Gemici (2011), and Winkler (2011).
2 See Greenwood (1985). Pissarides and Wadsworth (1989) and Dahl (2002) use individual data

in estimation, but similarly in a narrowly defined dynamic context of one move decision.
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it impairs the researcher’s ability to study the effects of temporal shocks.

The lack of dynamic variability in local attributes could be especially problematic

under the notion of a spatial equilibrium such as that proposed by Roback (1982).

A feature of the disconnect in the literature is the issue of the importance of local

labor market conditions on migration. Micro studies of migration (e.g. Kennan and

Walker, 2011) find lifetime income prospects to be a key determinant of household

migration choices; extrapolating from this one would expect local labor conditions to

be importance to aggregate migration flows. But studies of aggregate migration do

not find a clear positive relationship between population growth and local average

wages (see, e.g., Blanchard and Katz, 1992; Greenwood, 1975, or Greenwood and

Sexton, 2012). Under the notion of spatial equilibrium proposed by Roback (1982),

prices in the labor and housing markets account for differences in local amenities.

Thus, spatial variation in labor and housing prices tells us little about the underlying

utility differentials that presumably are actually driving location choices. Thus, the

lack of dynamic variability in local labor conditions may be part of the reason for

this apparent contradiction.

This article seeks to narrow the gap in the literature by conducting a study of

aggregate place-to-place migration under a long span of contiguous time. I utilize 19

consecutive years of migration flow data at a fine level of geography from a dataset

compiled by the U.S. Internal Revenue Service (IRS). I apply a standard tool for the

study of spatial interaction, the gravity model, but with the advantages afforded by

the long time span of data.3 Estimation of the model is able to leverage temporal

variation in local labor and housing market attributes in addition to spatial variation.

Furthermore, I can account for unobserved location heterogeneity through the use

of location or location pair fixed effects, which would not be possible without the

3 I also note in passing that the fine level of geography provided in the data allow me to specify
the locations to be cities rather than states or regions. This is preferable for studying local labor
and housing market attributes.
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panel structure of the data. Results indicate that wages, unemployment, and housing

prices have significant and intuitive effects on place-to-place migration flows, but only

after conditioning on unobserved local heterogeneity. This is consistent with both

the Roback notion of spatial equilibrium and the findings of recent structural studies

of individual migration, resolving somewhat the contradiction between studies of

individual and aggregate migration. Further, I find that recent local labor market

growth is positively associated with migration flows, suggesting that migrants are

forward-looking when choosing their destinations, which is consistent with the notion

of migration being a dynamic decision problem.

The framework also allows me to examine the effect on migration of particular

form of a temporal shock, the recent decline in housing prices. It has been suggested

in the literature that such housing price declines impede labor mobility.4 After

conditioning the gravity model on indicators of local housing market bust, I find at

most weak evidence of so-called housing lock-in.

Finally, I find that the downward trend in migration rates noted by other re-

searchers5 is present even after controlling for dynamic variation labor and housing

market attributes.

The rest of the article proceeds as follows. The next section provides a brief review

of the gravity model of spatial interaction. The third second describes the data and

econometric specification. The fourth section discusses the empirical results. The

fifth concludes.

1.2 Model

The gravity model, a mathematical expression of spatial interaction, borrows its

name and intuition from the interaction of bodies in Newtonian physics. “Particles”

4 See, for example, Chan (2001) and Ferreira et al. (2010).
5 See, for example, Molloy et al. (2011).
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(such as people or goods) float in space, with the size of the flows between points

governed by the magnitude of the attraction and repulsion forces exerted by the

points and the friction to movement imposed by distance.6 As in the gravitational

pull of celestial bodies, the size or mass of the body affects its pull. The relationships

can be expressed as:

Mij � SjSi
Aj
Ai

Ri

Rj

1

fpdq
(1.1)

The size of the flow from i to i, Mij depends positively on the sizes of i and j, Si

and Sj, the attraction forces of j, Aj, and the repulsive forces from i, Ri. Conversely,

it depends negatively on the attraction of i, Ai, the repulsive forces of j, Rj, and by

the distance friction, fpdq.

In logs, (1.1) becomes

mij � sj � si � aj � ai � ri � rj � fpdq (1.2)

where logpXq � x. The linearity of equation (1.2) makes it easily applicable to a

simple regression framework. The empirical application of the gravity model is then

to find what consitutes attractive and repulsize forces.7

The gravity model has found use in transportation, hydrology, and telecommuni-

cations, though it is more commonly used in the social sciences, including economics,

geography, and sociology (Kolaczyk [2009]). It economics, it has been used to study

6 Niedercorn and Bechdolt (1969) provide an economic derivation of the gravity model based on
utility maximization constrained by time and/or travel costs. They also admonish the reader that
analogy to physics can only be taken so far in a behavioral science and to recognize that the most
useful feature of the gravity model is its empirical specification.

7 One could cast the gravity model completely in terms of attractive forces, depending on the
definiton of variables. For example, the attract/repel forces could be specified as pairwise differences,
xij � xi � xj , then a positive difference either attracts to i or j. Ultimately it becomes an issue of
mere semantics. The key is the sign of the variable in equation (1.2).

4



migration8 and trade.9

1.3 Empirical Application to Migration

This article applies a gravity model to U.S. domestic migration flows. I focus in

particular on the impact of dynamically-varying attributes–prices in the local labor

and housing markets–on migration flows. The point in space, or “body,” is defined

as a metropolitan statistical area (MSA) because this is the area definition which

most nearly corresponds to a labor market.

1.3.1 Data

The migration flow data come from data kept by the Statistics of Income Division

of the Internal Revenue Service (IRS).10 The IRS compares a tax filer’s address from

one year to the next to infer the filer’s migration status within the year: if the filer

uses an address in A in year one, but an address of B in year two, she has apparently

moved from A to B in the year; if she files at the same address, she has not moved.11

The IRS then publishes the aggregated results in a place-to-place flow matrix. The

data report gross flows.

The data are available at a county-to-county level from 1990-2008. Having multi-

ple time periods, in successive years no less, is an advantage over most static gravity

models.12 The time dimension permits the use of time variation in addition to spatial

variation in attractive and repulsive forces and the capture of unobserved location

8 See Zipf (1946) for a seminal example, and Greenwood (1975) for a survey.
9 See Carrere (2006) and citations therein.

10 More information is available at http://www.irs.gov/taxstats/article/0,,id=212683,00.html. A
simple internet search for “IRS SOI migration data” will also lead to the relevant web pages.
11 There are reasons other than migration that an address may change; for instance, a person may
maintain two homes. For now, such complications are ignored, as they are likely infrequent and
orthogonal to the objectives of this study.
12 For an application of gravity models to repeated cross-sectional data, see Greenwood and Sexton
(2012)

5



heterogeneity through the use of location fixed effects. The data also allow for time

trends in migration, a topic of recent interest (Molloy et al [2011]). Further, the IRS

migration data is essentially a high-frequency census of migration flows, an advantage

over even large samples such as Integrated Public Use Microdata Series (IPUMS) or

the Current Population Survey (CPS). Of course, it is a census of taxpayers only,

which may impose some sample selection issues. While this is likely a small dis-

advantage for purposes of studying local labor markets, the reader should bear the

disclaimer in mind.

Because the location status is derived from the individual’s tax return, which

is filed during the first quarter of the year, the “migration year” does not exactly

correspond to the calendar year, but leads one quarter. When I refer to year 1990,

for instance, I am referring to location decisions made from the second quarter of

1990 to the first quarter of 1991.13 The labor and housing market data are adjusted

to correspond to the migration year.

For each place-to-place cell, the data report the number of tax returns (essentially

the number of households), the number of exemptions (the number of persons), and

the taxable income of the filers in the cell. In order to keep the flow matrix of

a manageable size, cells with fewer than ten returns are not reported. While this

truncation and imputation is much less of an issue for the large urban counties

used in this analysis, it does have a few practical consequences for the current study.

First, I use the returns/households level data instead of the population data. Second,

while the flow matrix may not be symmetric, it is not known whether a particular

missing place-to-place pair actually has zero migrants, or just a number so small

as to be unobserved. However, the total number of out-migrants are reported for

each origin, and the total number of in-migrants are reported for each destination,

13 This is my own convention for ease of exposition. The IRS would refer to the same timeframe as
the 1990-1991 data–from the tax return filed in 1990 (for income earned in 1989) to the tax return
filed in 1991.
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so the aggregate mobility is known. To mitigate the impact of the truncation, I

impute unobserved cells by allocating the unaccounted for migrants according to a

score based on the frequency of migration in other (observed) years. This is designed

to correct for the cell which, by way of example, averages a steady flow of 15-20

migrating households per year, but for one year dips below the threshold of ten and

is unobserved. This ignores the other kind of cell which, again by way of example,

rarely has any migrating households, but happens to have one in a particular year;

there is much less information to impute such a cell, and these cells are likely to

be of little consequence anyway. If a pair still has zero migrants, I exclude the pair

from the analysis rather than enter a zero (which when logged may skew a regression

analysis).14

To examine attractive and repulsive forces, I also employ data on local labor and

housing markets. The wage data come from the Quarterly Census of Employment

and Wages (QCEW) from the Bureau of Labor Statistics (BLS). This is a quarterly

employer-level census of payroll size, in number of employed persons and total dollar

amount. The average wage is derived directly from this. The unemployment rate

data come from the Local Area Unemployment Statistics (LAUS), also from the BLS.

The housing price data come from two sources. First, the price dynamics come from

a metro level housing price index calculated by the Federal Housing Finance Agency

(FHFA); this is pegged to a dollar amount using the median house value from the

2000 Census. All of these data sources were selected because of their fine level of

geographic detail (county level for the BLS products, metro level for the FHFA) and

relative frequency (quarterly or monthly for LAUS). The frequency allowed me to

fit the data to the staggered migration year, and use the staggering to construct

instruments. All data were aggregated to the MSA level.

14 Entering a small value, say, two, for unobserved pairs would cause an excessive number of total
migrants.
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1.3.2 Estimation

The econometric specification is the application of (1.2) to the migration flow and

location attribute data. The estimating equation is:

mijt � θ0 � θ1si � θ2sj � αiXit � δjZjt � fpdij, µq (1.3)

The log migration flow from origin i to destination j at time t depends linearly

on the log size of the origin si and destination sj, the attributes of of the origin, Xit,

and destination Zjt, and a linear in parameters function of the distance between the

origin and destination, fpdij, µq. Some specifications contain time and or origin and

destination fixed effects.

Note that the attributes of a location are indexed by t. The data are essen-

tially an (unbalanced) panel, and thus there is time variation in addition to spatial

variation in the attribute variables.15 The attributes employed are the local wages,

unemployment rates, housing prices, and in some specifications, indicators of labor

market growth and/or housing market shocks; all of which are varying dynamically.

Time invariant attributes, such as climate, are either exluded or absorbed by the

orign and destination fixed effects, depending on the specification. The paramters to

estimate are θ, α, δ, µ. The signs and magnitudes of these paramters–with primary

interest in α, δ–allow for interpretation of the attributes as attractive or repulsive

forces.

The inclusion of origin and destination sizes is important. On the origin side, it

accounts for larger flows resulting from a larger at-risk population; in the context of

location choice, it turns the migration flow into a choice probability. The “at-risk”

intuition is similar on the destination side. If one were simply drawing at random, a

large city would be more likely than a small city to produce a new job, be home to a

15 Carrere (2006) applies a gravity model to panel data on trade flows.

8



family member, and the like, and hence be the destination. Also, a large desination

is more likely to have good amenities and therefore be a desirable location.16

One could work with origin/destination differences–pairwise differences instead of

origin and destination attributes–and the model is effectively the same, but I prefer to

split out the origin and destination variables to maintain the attract/repel intuition.

In what follows, the standard errors are clustered around the time-origin group to

account for potential correlation in destination flow outcomes. For example, if there

are idiosyncratically more migrants to destination A from origin X, then there will

be fewer migrants in origin X available to choose all other destinations B, C, and so

on.17

1.4 Results

This section presents the results from the application of the gravity model to the

IRS migration data.

1.4.1 Baseline Regressions

Table 1.4.1 presents the main results. The distance friction employed here and in

subsequent specifications is a dummy for whether the destination was a move, plus

a coefficient times the log distance in miles between the origin and destination. The

dummy accounts for the discontinuous drop in the level of flows between moves

and non-moves, while the continuous variable allows the friction to change with

distance in a concave way. Table 1.5 at the end of the article reports results for other

specifications of the distance friction, including the move dummy alone, and linear

16 This statement derives intuition from a combination of Roback (1982) and Berry (1994).
17 Technically, for asymptotics on a true cluster sample, the econometrician would want the number
of clusters to tend to infinity while the size of each cluster would remain fixed (Wooldridge, 2002). In
the gravity model, adding more locations means the size of the cluster will also increase, suggesting
that the cluster group should be only the time period. The results are not substantially affected
by using the time as the only cluster group, but I prefer the finer cluster grouping of time-origin to
account for the intuition explained in the main text.
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and polynomial distances with and without the move dummy. While the distance

specification does little to alter the attract/repulse results, the dummy plus log miles

specification proved the best fit to the data. Naturally, both elements of the distance

friction are negative and highly significant in all specifications, evidence that not

only do migration flows decline with physical distance, but also that inertia is great:

moving at all is a nontrivial decision.

Recall that the gravity model specifies that the origin and destination sizes be

included as right-hand side variables, as sheer mass creates more flows in and out.

In all specifications, these are positive and highly significant, in line with intuition.

The other regressors–the candidate attraction and repulsion forces–are the origin

and destination unemployment rates, wages, and housing prices (all in logs). All

attraction/repulsion variables are expressed as the difference from the contempo-

raneous national average.18 Note that a positive coefficient indicates the variable

increases flows, which makes the variable a repulsive force when associated with the

origin and an attractive force when associated with the destination. A negative co-

efficient is then indicative of an attractive force at the origin and a repulsive force at

the destination.

Column 1 of Table 1.4.1 is the basic gravity model with origin and destination

sizes, the distance friction, and the candidate attraction and repulsion forces. The

origin and destination unemployment rates have intuitive signs, with unemployment

acting as a repulsion from the origin and destination.19 Wages and housing prices,

however, do not tell a consistent attract/repel story in this specification, as the origin

and destination have the same sign. These results say that high wage locations have

lower flows between them (conditional on size), and high house price locations have

higher flows between.

18 Though the results are little different without this detrending, especially when time dummies
are included, as the detrending amounts to the same model as that of time dummies.
19 Pissarides and Wadsworth (1989) found similar results regarding unemployment using British
data from the 1970s and 1980s.
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Both wages and housing prices have strong time trends in many locations, even

relative to the national average, and it is already known that migration rates have

been gradually declining in the U.S. over the last few decades (see Molloy et al [2011]).

Perhaps the negative association of wages to flows is due to the inverse patterns in

their respective trends. To test this, column 2 adds time dummies to the gravity

model to soak up trends in migration rates. The results are essentially unchanged.

The time dummies do pick up the downward trend in mobility, exhibited in Figure

1.4.4, which will be addressed in more detail in a later section.

Column 3 of Table 1.4.1 adds origin and destination fixed effects to the spec-

ification. The fixed effects are meant to capture unobserved heterogeneity in the

MSAs that, over the period of data, is causing them to be net senders or receivers

of population. Note that within a study of mobility, the unobserved heterogeneity is

a dynamic heterogeneity; this is conceptually different from some permanent unob-

served “quality of life” that causes a metropolitan area to be bigger or smaller than

expected conditional on its wages, unemployment risk, housing prices, etc. For exam-

ple, a favorable climate may allow a city to have a larger market share of population

than another city with an identical labor and housing market but an unfavorable

climate; but that example is the result some long run spatial equilibrium. The key

in this context is that, for the fixed effect to matter, there is something changing

which is allowing, e.g., the favorable climate city to continue to absorb more people

from the unfavorable climate city. This could include changing amenities, such as

an improvement in local schools or development of the arts. The fixed effects will

also pick up if a city is more or less mobile than average, for reasons such as in-

dustry or occupation composition and potential differences in turnover, a city being

a retirement, schooling, early career or immigrant destination, and perhaps many

others.

The addition of the fixed effects affects the coefficients of the attract/repel vari-

ables, especially the wages and housing prices. These now tell more of a push/pull

story: higher origin wages reduce flows out while higher destination wages increase

flows in, and higher origin housing prices increase flows out and higher destination

12



housing prices reduce flows in. Interestingly, the origin and destination unemploy-

ment rate estimates are not drastically affected. Comparing column 3 to 2 or 1

suggests that some high wage locations have been net senders, while some low wage

locations have been net receivers. Wages and housing prices do seem to affect lo-

cation decisions, but there has not been a widespread movement of workers from

low wage to high wage locations. Clearly, the unobserved heterogeneity in cities as

desinations or origins has an important effect on how migrants respond to labor and

housing market features of cities.

Column 4 carries the fixed effects strategy one step further, using origin-destination

pair dummies. These fixed effects pick up an even greater degree of observed and un-

observed heterogeneity (including the distance between two locations). The results

on the attract/repel variables are much the same.

In a similar vein, column 5 uses the locally demeaned wages, housing prices and

unemployment as the attract/repel regressors. This purges the regression of the

more permanent differences in local labor and housing markets–the long run spatial

equilibrium–and focuses on the effects of the temporal, cyclical differences. Even

without origin and destination fixed effects, the attract/repel relationship of unem-

ployment, wage, and house price premia is evident, especially from the origin side.

That is, migrants appear to be responding to cyclical variation in these variables, but

not simply leaving low wage areas for high. This is further evidence that a Roback-

style (1982) spatial equilibrium holds in the long run, but at higher frequency, workers

at the margin are responding to labor and housing market dynamics.

The discussion so far has ignored the potential for simultaneity bias in the es-

timates. One might worry that he gravity model amounts to a classic endogenous

regressors error: the regression of labor supply on wage and/or unemployment rates;

the concern is similar for housing demand. Fortunately, a simple remedy is avail-

able in the usage of lagged values as instruments. The working assumption of the

this instrumental variables (IV) strategy is that lagged values are uncorrelated with

current unobserved migration; this means that, e.g., wages were not set in antici-

pation of future migration flows. Columns 6, 7, and 8 repeat the specifications of

13



columns, 1, 2, and 3, respectively, but using lagged values of origin and destination

unemployment rates, wages, and housing prices as instruments for the current val-

ues.20 The coefficients rise in magnitude for destination wages and housing prices

and origin wages, though not significantly so, and the effects on the unemployment

rate coefficients and origin house prices are negligible. Still, the regression in column

8 is preferred in principle.

Table 1.5 at the end of the article repeats Table 1.4.1 using only migrant ob-

servations; that is, excluding non-movers from the data. The results suggest that

the patterns in Table 1.4.1 are not driven by non-movers. Table 1.5 also includes

an additional column of 3.1, which includes non-movers in the data, but allows the

destination variables to enter the regression separately for movers through the inter-

action with the move indicator. Little intuition is gained through this, except to see

the apparent endogeneity of the destination house prices.

Before proceeding, consider the magnitudes of the coefficients in Table 1.4.1.

While the coefficients on the unemployment rates are smaller, it would be incorrect

to read the results as indicating that unemployment rates have only relatively minor

effects on migration patterns. As displayed, it appears that wages are the strongest

force for attraction or repulsion, followed by housing prices and then unemployment,

and in the most straightforward sense, this is so. But also consider the feasibility

of large changes in the underlying variables, one of which is a rate. Recall that

the coefficients in a log-log specification like a gravity model are elasticities. A 100

percent increase in wages–a doubling of incomes–would be a massive change to a

labor market, while a 100 percent increase in the unemployment rate (from say, 4

percent to 8 percent) would be a significant but considerably more modest change.

Thus, while the coefficient is smaller, in reality the impact of the variable is not.

20 Recalling the timing of the migration data, I use the first quarter values of the variables as
instruments; for example, wages in the first quarter of 1990 serve as the instrument for the 1990:q2-
1991:q1 annual variable. This allows me to preserve the first year of migration flows as data in the
regression.
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1.4.2 Forward-looking Behavior and Migration Momentum

If moving between cities is a costly and infrequent occurrence, as the rate of migration

suggests, it is reasonable to expect agents to be forward-looking when making a

migration decision. I examine this hypothesis in the context of the gravity model. We

would expect predictors of future growth to be an attractive force for in-migration,

conditional on the current attract/repel forces. This is indeed what I find.

Metro areas demonstrate persistence in employment shocks, as evidenced by the

persistence of wage and employment growth at the metro level. In the data,21 the

autocorrelation of employment growth is 0.46, of wages it is 0.88, and of wage growth

it is 0.09. Thus wage and employment growth make good candidates for predictors of

future labor market conditions.22 In Table 1.4.2, I extend the regressions from Table

1.4.1, columns 3 and 8 (which were, respectively, the OLS and IV models including

origin and destination fixed effects) by adding lagged wage and employment growth

as attract/repel variables; the use of the lag also sidesteps the issue of simultaneity.

In all specifications, the wage and employment growth variables exhibit attrac-

tiveness, especially at the destination. Note that this attractiveness is exhibited on

top of the attractiveness of current wages. The coefficients on the destination growth

are larger in magnitude, and in the specification of column 5 using migrants only,

the coefficients are larger still. This suggests that growth predictors are not merely

a blanket attractive force, but are especially important to migrants in choosing their

particular destination. The fact that past employment growth is positively related

to current migration shows there is some momentum in city growth.

1.4.3 Housing Lock-in

In this section I use the gravity model to examine whether declining housing prices are

associated with reduced migration, as some literature has suggested. The intuition

21 Again, the data are expressed relative to the national average.
22 Even if the autocorrelation of wage growth is low, wage growth can be attractive to potential
migrants because the autocorrelation of wages is high, and thus growth that has already occurred
will translate to persistently higher wages.
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of lock-in is simple: housing price declines give homeowners disincentive to move

because they must take an asset loss to sell their home. An extended time-on-market

for a home (presumably because the price needs to come down even more to find a

buyer) functions the same. For leveraged homeowners, the disincentive may be even

greater if they owe more on their mortgage than they would receive in a home sale;

this is commonly referred to as being “underwater” on the property.

Recently, housing lock-in has received considerable attention in the literature.23

Much of the concern about lock-in is whether it causes widespread immobility that

leads to an inefficient allocation of labor, or spatial mismatch. The data and model

of this article are well-suited to examine whether housing price declines have reduced

aggregate mobility and created a widespread lock-in effect. The following is not an

examination of whether housing price declines constrain an individual’s mobility per

se, but whether the recent housing market price bust has diminished the rate of

aggregate migration.

The technique is much the same as previous subsections: include variables indica-

tive of lock-in and see whether they act as attract or repel variables in the gravity

model. Specifically, an origin experiencing a housing price decline would see less

outflow, conditional on the other attract/repel variables in the model. First, there is

the matter of operationalizing the lock-in idea in the context of the gravity model.

Because much of the concern over lock-in has been driven by the recent housing bust,

I use measures that emphasize the period after a location’s housing price has peaked.

I use three simple approaches. One is a dummy variable for whether a location is

below its peak housing price. Table 1.4.3 below shows that virtually all locations

are post their peak price in the late 2000s, though there is some useful variation

in precisely when. But since this discrete variable may lump some slightly affected

locations in with the critically-affected, the other two variables are continuous mea-

sures of the size of the decline: one in percentage from the peak, and the other in

the magnitude of the decline in (log) dollars. These latter two measures are also

23 See, for example, Chan (2001); Ferreira et al. (2010); Karahan and Rhee (2011); Winkler (2011).
Conversely, Molloy et al. (2011) find lock-in to have little impact on mobility.
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summarized in Table 1.4.3.

Table 1.4.3 reports the results from including these lock-in measures as attract/repel

variables in the gravity model. The baseline specification is from Table 1.4.1, column

6–time, origin, and destination dummies; instrumented wages, unemployment, and

housing prices; and lagged wage and employment growth. Table 1.4.3, column 1

adds to the baseline the post peak dummy the origin side. The coefficient on the

post-peak dummy is actually positive, indicating no diminished mobility resulting

from starting in a location with a housing price decline. Columns 2 and 3 repeat

the specification with the continuous measures of housing price decline. Here again,

there is no indication of lock-in.

Columns 4, 5 and 6 use the three measures of lock-in on both the origin and

destination sides. Interestingly, each of the destination side measures exhibit a neg-

ative sign; that is, locations experiencing a housing price decline are less attractive

destinations. This indicates some impact on mobility, though not in a way directly

consistent with a lock-in story, and thus the intuition behind the result is not obvious.

The result may indicate that a housing bust has some impact on the expectations

of forward-looking migrants, or it is perhaps even the result of some uncorrected

simultaneity. Columns 7, 8 and 9 repeat the analysis of columns 4-6, but using

only migrants (non-movers excluded from the data). The limiting of the sample has

virtually no effect on the results.

The final column of Table 1.4.3 includes both the post peak dummy and the log

magnitude of the decline. It is only here that the results indicate some immobility

caused by a housing price decline in the origin location: while the post peak dummy

is still positive, the coefficient on the price decline is negative. However, for a net

negative effect on mobility at these point estimates, the origin must experiencing a

price loss of 11.14 log points, or about $69,000. The coefficient on the percentage

decline measure (not reported) was essentially zero.

Thus, the model, data, and empirical strategy employed here provide scant evi-

dence of widespread diminished mobility, or lock-in, due to housing price declines.
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Figure 1.1: Estimates of Time Dummies From Various Specifications

1.4.4 Trends in Migration Rates

Other researchers have noted that migration rates in the U.S. have declined over

the last few decades without a satisfying explanation (Molloy et al. [2011]). The

empirical analysis of this article arrives at a similar conclusion. Figure 1.4.4 plots

the time dummies from several specifications of the gravity model (normalized to the

same value in 1991). The downward trend in migration rates is evident. What is

notable is that the trend is present even after controlling for the each location’s time

variation in labor and housing markets, including measures of expectations of labor

market growth and potential housing lock-in. Thus, the analysis herein can only

continue to offer the negative result that the secular trend remains unsatisfactorily

explained.

I also note that accounting for the downward trend in migration was critical in the

previous analysis of housing lock-in. Because virtually all locations’ housing prices

peaks and declined in the latter years of the data, there is substantial correlation

between the lock-in measures and a time trend. Failing to account for the time trend

would yield results indicating the presence of housing lock-in. Thus it is even more
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remarkable that the trend in migration rates seems independent from the housing

bust.

1.5 Conclusion

This article applied a version of the gravity model of population migration to mi-

gration flow data set including temporal variation. Therefore, the empirical strategy

leveraged both temporal and spatial variation in location attributes. Results indi-

cate that wages, wage growth, and employment growth act as attractive forces, while

unemployment and high housing prices act as repulsive forces, but the result is clear

only after controlling for unobserved location heterogeneity, which is made possible

by the temporal variation in the flow data. The attraction of wage and employment

growth suggests forward-looking behavior on the part of migrants.

A further advantage of the time-varying data is the ability to evaluate the im-

portance of temporal shocks to locations. In particular, I examined whether housing

price declines constrain mobility. The data provide only weak evidence of diminished

mobility, and if present at all, only in extreme declines.

In future work, the gravity model of this paper could be extended to further

exploit the time variation in the flow data. Potential extensions include time-varying

attract/repel coefficients and an analysis of network effects–whether past migration

flows encourage future flows along the same origin-destinaion path. Other extensions

could include more location attributes, such as time varying amenities, and more

sophisticated specifications of distance between locations that account for industry,

occupational, or amenity space in addition to actual physical space.

Finally, the importance of locational fixed effects and the indications of forward-

looking behavior together suggest that notions of spatial equilibrium are extant, yet

perhaps in a dynamic setting. I began this article by noting the disconnect between

structural models of individual migration and inter-regional studies of aggregate

migration. A structural equilibrium model of migration would further close the gap

in these literatures.
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2

A Dynamic Equilibrium Model of Cities and Labor
Market Dynamics

2.1 Introduction

Most economic models of the labor market abstract from geographic space. In reality

the national labor market consists of many local labor markets, or cities. While

there is a significant national component to business cycles, much of the variation

in labor market shocks is local. When cities are hit by heterogeneous shocks, the

efficient matching of workers to jobs requires the reallocation of people across space,

but spatial arbitrage is far from complete. At any point in time, the dispersion in

unemployment rates across cities is considerable–among the 30 largest U.S. cities the

difference between the minimum and maximum unemployment rate has averaged 4.8

percentage points over the past twenty years–and this dispersion is especially high

in recessions. In 2009, for example, unemployment differences among the 30 largest

cities was as high as 9.6 percentage points.

This paper seeks to understand how the spatial organization of the economy

in geographically distinct markets affects labor market dynamics. The main goal
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of the analysis is to quantify the impact of frictions that hinder the reallocation

of workers across cities on the employment dynamics of individual cities and the

national economy. There are a number of reasons that workers collectively might

not fully arbitrage away spatial differences in labor market opportunities. First,

migrating to a new city is costly in financial, psychological, and social terms. For

migration to be optimal to workers, labor market differentials would need to be

substantial enough to outweigh these costs. Bearing these migration costs may simply

not be worth the trouble, especially if the labor market differentials are not expected

to persist. Similarly, strong preferences for the many other features and amenities

of their city might keep people from moving despite the availability of better labor

market conditions elsewhere.

A second potential source of friction is the fact that the prices of housing and

many other goods and services depend on local demand. The actual impact of a

labor market shock on consumption may be mitigated to the extent that these prices

are responsive to local labor market conditions. For example, the hit that workers

take to consumption following a negative labor market shock might not be nearly

as large as the hit to their wages. How responsive local prices are to labor market

shocks will generally depend on how elastically these goods are supplied in the city,

a feature which can potentially vary significantly across locations. Furthermore,

because housing is durable and immobile across cities, a drop in local demand will

generally result in a sharp decline in the price (rather than quantity) of housing. More

generally, we would expect the prices of any local goods that depend on durable and

immobile capital to be quite responsive to negative shocks to local labor market

conditions. In this way, the price of housing and other local goods works as a

sort of “pro-cyclical” migration cost, reducing the migratory response of workers to

geographic variation in labor market opportunities. Thus I identify two types of

friction–one that is a direct result of geographic distance, and one that is an indirect
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result of distance causing some goods to be exclusively locally consumed.

The spatial fragmentation of the labor market is particularly interesting vis-a-vis

other segmentations of the labor market (e.g., industries and occupations) because

many of the impediments to spatial reallocation are not directly related to the la-

bor market itself. Instead, the frictions described above affect how workers choose

the local labor market in which to participate. Therefore, the term space should be

interpreted broadly. At its core, the concept of space is merely the organization of

the economy into distinct units, with local markets receiving their own productiv-

ity shocks and clearing according to local equilibrium conditions. Underlying the

separation of markets, however, is that utility-maximizing agents face these other

non-labor market inducements which, while rational from the point of view of the

agent, can amount to frictions to the labor market. Otherwise, space would not

matter, and the economy would be one unified market.

Whether directly tied to the labor market or not, impediments to mobility could

have important implications for macroeconomic adjustment. Blanchard and Katz

(1992) argue that labor mobility–not firm mobility or firm entry and exit–is the

primary mechanism for adjustment to regional business cycles. Similarly, Topel

(1986) finds worker mobility in response to local labor demand shocks to be significant

in explaining wage differentials.

The particular goal of this paper is to quantify and compare the importance

of the two main forms of friction highlighted above, the migration costs/location

preferences versus the prices of local goods. How much of the spatial dispersion in

unemployment is owed to these frictions?

To examine this question, one needs a model of how workers choose the markets

in which they will supply labor, subject to the non-labor market incentives already

described. This paper builds a dynamic spatial equilibrium model of the national

labor market. In the model, workers choose one market at a time, thereby subjecting

27



themselves to the local labor demand and housing market conditions at the time.

The model setting is a system of a finite number of local labor markets (in prac-

tice, MSAs), with each “island” defined by its own attributes and its point in space,

receiving its own process of productivity shocks. Workers face relocation costs, so

their optimal location decision is a dynamic problem. Workers also face congestive

interactions through competition in the labor and housing markets and therefore are

forced to take into account the equilibrium actions of other workers. Local hetero-

geneity is modeled by variation across locations in worker productivity, firm-worker

matching efficiency, and the elasticity of housing supply. I structurally model the

worker’s location decision, accounting for relocation costs, a worker’s expectations of

the future paths of location attributes, and congestive interactions in the labor and

housing market. Employing a dynamic discrete choice framework allows me to model

the spatial cross-section and permits a rich characterization of location heterogeneity

to be linked directly with city-level data.1 A novel equilibrium computation routine

allows for feasible estimation and simulation of the model. The model is then simu-

lated under alternative scenarios in which relocation costs are eliminated and which

the housing market is untied from the labor market.

The modeling antecedents of this paper are the island economy model of Lucas

and Prescott (1974) and the canonical work in spatial equilibrium, Roback (1982).

Importantly, Roback’s model is a static equilibrium in which workers face no costs

to relocation. The literature on migration (such as Kennan and Walker (2011) and

Bishop (2008)) has found that while labor market outcomes and amenities affect

location decisions, relocation comes at significant cost in terms of utility. This is

needed to rationalize why inter-city moves are observed so infrequently, with only

a small fraction of households relocating within a year. This paper extends the

1 This framework is much richer than a classic urban economics “toy” two-location model of a
city and reservation locale.
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spatial equilibrium model of Roback (1982) to a dynamic context where workers face

adjustment costs to relocation.

An extension this paper makes over the individual migration literature, however,

is the congestive interactions of agents in the equilibrium framework. This allows

me to distinguish between the simple inertia effect on moving costs–that people

face psychic or monetary costs to changing location–from the equilibrium feedback,

such as a locally priced good, that mitigates locational differentials. If workers face

competition in the labor or housing markets, then the locational differential is smaller

in general equilibrium than in partial equilibrium. While the partial equilibrium may

be sufficient for individual migration studies, a study of aggregate population flows

such as this must take the equilibrium seriously. To my knowledge, there is no other

equilibrium model of costly migration.

These two features together, the moving costs and general equilibrium setting,

allow me to compare two impediments to labor reallocation: generic migration costs

and the link between labor and housing markets. After building and estimating the

model, the main exercise of this paper is to compare two counterfactual scenarios, one

in which workers face no migration costs, and another in which the link of the housing

market to the labor market is relaxed. I find that, in equilibrium, the housing market

forms more of an impediment to labor allocation than generic migration costs. When

the housing market link is relaxed, labor supply is more responsive to local labor

market conditions, unemployment differences between cities are reduced, and cities

more closely follow the national cycle. Spatial arbitrage of labor is increased by about

one-third. Reducing migration costs has a smaller impact, but primarily affecting

the tails of the unemployment distribution, with no broad effects on the spatial

arbitrage of labor. That is, the reduction in migration costs moves the outlying

high and low unemployment cities toward the national average, but does not induce

broader convergence in unemployment rates.
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The key difference between the two experiments is that housing prices form a

pro-cyclical moving cost.2 When a location receives a positive labor market shock,

housing prices increase, reducing the relative differential in local real wages; when

there is a negative shock, the decline in local housing prices mitigates the effect on

utility. Thus relaxing the housing market link provides margin for reallocation in

any state of the world, not just when a few locations are outliers.

This finding relates to the growing literature on the effect of housing on labor

allocation, much of which has focused on the “lock-in” effect of underwater mortgages

(see, for example, Chan (2001), Ferreira, Gyourko, and Tracy(2010), Davis, Fisher,

and Veracierto (2010), Karahan and Rhee (2011)). The housing market friction of

this paper is more general, as the effects of lock-in can occur (though not explicitly

through a negative housing equity channel), but “lock-out” can also occur as rising

housing prices in growing markets form a barrier to entry. The lock-out feature

of housing in this model is consistent with the findings of Saks (2008), Sinai and

Souleles (2009), Gyourko, Mayer, and Sinai (2005), and Van Niewerburgh and Weill

(2010). Saks (2008) finds that MSAs with higher degrees of land use regulation

exhibit smaller employment changes in response to labor demand shocks. Sinai and

Souleles (2009) find that when households do relocate, they tend to move between

correlated housing markets, which is consistent with the structure of the model of

this paper, where workers evaluate locations in terms of consumption differentials.

The latter two papers relate increasing cross-city dispersion in housing prices to

increasing dispersion in the labor market. A key result of this paper is that if housing

was unlinked from the labor market, the cross-sectional dispersion in unemployment

rates would decrease.

That housing appears like a pro-cyclical moving cost also relates to the insights

2 As Chan (2001) aptly puts it in the context of homeownership, “A great degree of risk is
introduced to the homeowner’s portfolio as there is positive covariance between its most important
assets: human capital and housing capital.”
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of Glaeser and Gyourko (2005) and Notowidigdo (2010). Glaeser and Gyourko

(2005) suggest that the irreversibility of housing contributes to urban decline, as

the “kinked” housing supply curve, due to the fixed and durable nature of housing,

results in large price effects in periods of declining demand. Notowididgo (2010)

extends this, finding that falling housing prices are part of the apparent high mov-

ing costs to low-skill workers in declining labor markets. The simulation exercises

of this paper provide support for the intuition of these studies, suggesting that the

immobile and durable nature of infrastructure is an important part of local growth

and especially decline.

Ultimately, the goal of this line of research is to better understand what con-

stitutes a friction to the economy. If different types of spatial frictions affect the

economy in different ways, conclusions about the efficiency of the economy and pre-

scriptions for policy will depend on the nature of the friction. This paper is a first

step in classifying and quantifying spatial frictions in the labor market.

The rest of the paper proceeds as follows. Section 2 briefly characterizes un-

employment dispersion in the U.S. Section 3 describes the model, starting with the

equilibrium conditions within an arbitrary market, and then describing the worker’s

optimal location problem. A section briefly describing the computational routine

follows. Section 5 describes the empirical implementation of the model. Section 6

conducts the model’s simulation under alternative scenarios and discusses the results.

Section 7 concludes. An appendix provides further details on the computational rou-

tine.

2.2 Motivation

This section characterizes the degree of spatial dispersion in unemployment in the

U.S. The data, explained in more detail in section 5, are quarterly observations of

metropolitan statistical area (MSA)-level unemployment rates for the period 1990-
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Figure 2.1: Unemployment Rates in MSAs, Quarterly

2010, obtained from the Bureau of Labor Statistics. I focus on the 29 largest MSAs.

Figure (2.1) is a scatterplot of quarterly unemployment rates in the 29 largest

MSAs; each blue point is a city-quarter observation, and the black line is the national

average. Clearly, there is a national component to the movement of MSA-level

unemployment rates over time, with the points moving in swarm with the national

average. But the thickness of the band indicates there is also a significant degree of

dispersion at all points in the business cycle.

Figure (2.2) displays the quartiles of the cross-sectional distribution of the de-

trended unemployment rate (local unemployment less the national average). While

the dispersion clearly varies over the business cycle, observe that the interquartile

range is as high as 2.5 percentage points and rarely smaller than 1 percentage point.

The next figure highlights the dispersion/business cycle relationship alluded to

earlier. Figure (2.3) plots the cross sectional standard deviation in unemployment to

the national average unemployment rate. Periods of higher national unemployment

are associated with more dispersion between cities. Comparing the dispersion of

the locally demeaned unemployment rate retains this pattern. This suggests that

national downturns in employment impact some markets more than others.
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Figure 2.2: Dispersion in Cross-Sectional Distribution of Detrended Unemploy-
ment

The previous two figures demonstrated that the magnitude of unemployment dis-

persion varies over time. The next question is whether this dispersion is the result

of transitory or permanent differences in local unemployment rates. A plausible ar-

gument derived from Roback (1982) could be that permanent local differences in

unemployment are necessary (for whatever reason), and that wages, amenities, or
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Figure 2.3: Cross-Sectional Standard Deviation of Unemployment to Average Un-
employment
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Figure 2.4: Unemployment Rates in MSAs, Quarterly

housing prices compensate workers for this labor market disamenity. However, the

next figure illustrates that there are both permanent and transitory components.

Figure (2.4) plots the detrended unemployment rate for selected MSAs. Observe

that some locations, such as Detroit and Los Angeles, are near or below the national

rate at some points while well above it at others. Some cities, such as Chicago and

Pittsburgh, oscillate around the national average, and some, most notably Wash-

ington DC, are consistently below the national rate. While there are likely varied

explanations for the behavior of the individual cities, Figure (2.4) suggests that some

local cycling is present, and the dispersion is not entirely due to permanent local dif-

ferences in unemployment rate. Therefore, the posited “compensating differential”

explanation is not especially persuasive.

Permanent differences between cities are much more visible in wages, however,

suggesting that the compensating differential argument is extant in some dimensions

of the labor market. Figure (2.5) plots the relative wage series for the 29 largest

MSAs. The stratification among cities is evident, and there is little turnover. Perhaps

it is wages that compensate workers for permanent differences in amenities, while

unemployment plays the role of shorter-run adjustment mechanism.
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Figure 2.5: Wages in 29 Largest MSAs, Local Difference to National Average,
Quarterly, 1990-2010

The final exhibit in this section summarizes the above findings and lays the foun-

dational motivation for this paper. Table (2.1) reports the R2 statistics from pooled

regressions of local unemployment rates or wages on sets of dummies. Times dum-

mies pick up variation that is due to economy-wide effects–the national business

cycle. The first row of Table (2.1) shows that this type of vaiation is more prevalent

in unemployment than wages. MSA dummies pick up variation that is due to perma-

nent differences between cities. The second row of Table (2.1) shows that this type

of vaiation is more prevalent in wages than unemployment. When both sets of dum-

mies are included, the remaining variation is MSA by time, or local non-permanent

variation. It is this local/temporal variation that is of primary interest for this paper.

Under complete spatial arbitrage of labor supply, this variation would not exist. The

last row of Table (2.1) demonstrates that a substantial amount of local/temporal

variation remains for unemployment, though not for wages.

The preceding exhibits have illustrated the spatial dispersion in the unemploy-

ment rate, that it varies over time, and that at least some of the local variation is

transitory. I now turn to an examination of why labor mobility does not arbitrage
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Table 2.1: R2 from Regressions of Quarterly Local Labor Market Statistics on Time
and MSA Dummies

Left-side Variable: Unemployment Wage
Time dummies .64 .21
MSA dummies .16 .73
Time and MSA dummies .82 .96

away the spatial variation in unemployment. The next section describes a spatial

equilibrium model of the national labor market.

2.3 Model

2.3.1 The Setting

Time is discrete and the horizon infinite. The economy consists of a finite num-

ber of “islands,” or local markets. There are J locations, with j referring to an

arbitrary single location. A labor market is defined as the area in which a person

is constrained to live and work within one period of time.3 There is a continuum

of identical, infinitely-lived, risk-averse workers distributed about the local markets,

with a national labor force population of measure P .4 The labor force population at

a location j is denoted pj;
°
j pj � P . A worker lives and supplies labor inelastically

in one market in each time period t. Each market has its own exogenous processes

for productivity which govern wages and employment rates.

The worker’s objective is to maximize her expected lifetime utility through op-

timal choice of labor market. When choosing a location, all workers have full in-

formation about the present state of the economy, which is described by the labor

force distribution from the end of last period and the current productivity states

3 As is standard (see, e.g., Van Nieuwerburgh and Weill (2010)), the empirical counterpart is a
Metropolitan Statistical Area (MSA).

4 In this model, population and labor force are equivalent.
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at each location. Workers know the distributions of all shocks to the economy and

can form expectations of the values of future state variables. Each market exhibits

congestion through prices; that is; workers prefer a market with fewer other workers,

all else equal. The population, employment rate, and housing costs of each location

are determined endogenously.

The model’s timing is as follows. At the beginning of each period, the labor

demand of each location is revealed. Workers then simultaneously choose the market

in which they will live and work for the period, paying a moving cost if they relocate.

Then in their chosen location, workers meet firms through a matching process, and

the employed produce output and receive wages. All pay the local housing cost and

consume the remainder of their wage. The timing then repeats.

2.3.2 The Local Labor Market

Within a location in each period, workers are matched to jobs created by firms

through a one-shot matching process, as in Ahn, Arcidiacono, and Wessels (2011).

This matching process which I now detail determines the employment and wage rates

for a local labor market in a given time period.

Firms

In each location there are a large number of identical firms. The production technol-

ogy is linear in the sole input, labor, and output is sold on a perfectly competitive

world market. Production is either consumed within the economy (with a price nor-

malized to one), used to construct housing, or sold outside the economy. The output

of each worker is y, an exogenously determined worker productivity parameter.

To hire labor, firms enter the matching process by posting vacancies. In order to

enter, firms must pay an employment cost, specified as a per-vacancy cost of cpvq,

a function which is increasing in the total number of vacancies, c1pvq ¡ 0. The
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employment cost is a search friction meant to capture all non-wage costs to produc-

tion, such as the recruitment, training, and management of workers, production fixed

costs, worker benefits, and local regulatory compliance. That the per-vacancy cost is

increasing in the number of employed workers reflects convexity in non-wage costs.

Thus, even with constant returns to scale production and matching technology, firm

profitiability exhibits decreasing returns. The employment cost function is constant

over time,5 and within a location, the same for all firms. The employment cost is

determined by the equilibrium number of posted vacancies.

The purpose of the convex employment cost feature is to pin down city size. It is

a necessary feature for congestion in the labor market, because without some form

of decreasing returns to scale,6 the employment rate is nondecreasing in the number

of workers, and the size of a city is unbounded. The necessity of this feature distin-

guishes this model of matching in multiple local markets from a national matching

model.7 Secondly, it provides a simple rationalization for the significant variation in

the average size of labor markets (e.g. the New York market employs many more

than Boston).

The two costs to the firm are the employment cost and the wage it pays to the

workers with whom it matches. The firm finds a match with probability ρf . When

a firm matches with a worker, the firm receives the output from the match, y, and

pays the worker a wage w. The expected profit of a firm posting a vacancy is then:

π � ρf py � wq � cpvq (2.1)

With a large number of potential entrants, firms will enter the market by posting

vacancies, decreasing ρf and increasing cpvq until expected profit is driven to zero.

5 Temporal variation in the efficiency of the matching process will be introduced in another channel.
6 Recall that I assumed the production technology is linear in labor input.
7 For a survey, see Petrongolo and Pissarides (2001).
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This zero profit condition will factor importantly into the empirical implementation

of the local market’s matching process.

Workers and Wages

A worker enters the matching process by locating in a market. The total number of

available workers in a location is p, the local labor force population. The worker’s

value from unemployment is normalized to 0, so a worker finding a match will ac-

cept any strictly positive wage. As is common in the search literature,8 wages are

determined according to a Nash bargaining rule in which the worker receives a share

δ P p0, 1q of her output, or

w � δy (2.2)

All workers are equally productive, so w � δy for every match. The value to

unemployment is normalized to 0 for all workers, locations, and time periods, so

workers will accept any match they receive from the search process.

Matching

The matching technology is specified as a constant returns-to-scale function with

labor supply elasticity parameter α:

n � mpv, p, αq (2.3)

The number of employed (matched) workers, n, is increasing in both the available

vacancies, v, and the available workers, p, with the elasticity of employment to

each argument determined by α. Workers not finding a match are left unemployed

for the period. The resulting employment rate (the worker’s match probability) is

er � n
p
� mpv,p,αq

p
. The firm’s match probability is ρf �

mpv,p,αq
v

.

8 See, for example, Pissarides (1985).
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I will refer to the parameter α as the “matching efficiency” because it will deter-

mine how responsive the number of matches is to the number of available workers.

This is a key determinant of the employment rate, and it governs how quickly the

labor market congests. A better matching state is one in which an available worker

very likely translates into a job match; hence, a more efficient matching state (high

α, or greater elasticity with respect to p) is one in which the number of job matches

is determined mostly by the number of available workers. The matching efficiency

may vary between locations and over time within a location.9

Locational Heterogeneity

The two types of labor market states, labor productivity and the matching efficiency,

are the sources of temporal variation in the labor market. They are also the sources

of locational heterogeneity in the model. Aggregate demand may drive temporal

changes in labor producitivty, but cross-sectional variation in labor productivity due

to, for instance, differences in the local industry mix, will result in varying wage

movements in different locations. Furthermore, differences in the matching efficiency

can yield heterogenous employment responses to to labor productivity shocks. A

location with lower matching efficiency, reflecting for instance, search frictions or

local labor regulations, will exhibit less employment growth for a given level of la-

bor productivity.10 Some locations may experience variation in labor productivity

but not match efficiency and will therefore exhibit more wage variation than em-

ployment variation; in other locations, the opposite may occur. The intuition is

that two dimensions of labor states allow locations to exhibit wage volatility but not

9 Recall that the employment cost function may also differ between locations but in contrast to
the matching efficiency, it is assumed constant over time.
10 One can see this by looking at the zero profit condition of the firm. Less efficient matching will
drive down the ρ term more quickly, so for a given level of match profitability py � wq, firms will
be less willing to open vacancies.
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employment volatility, and vice versa.11

2.3.3 Housing and Rents

The local market is defined as the area in which a person lives and works in a period.

Each member of the labor force population in a market area consumes one unit of

housing for the period, paying the local rental rate. Housing quality is assumed

constant over time and space.

Housing demand is given by the inverse demand function hd � Dpqd, Iq, where the

price hd depends on the quantity demanded and the income of the local population,

I. Thus, demand shifts as population flows in or out of the location and as workers

in a location have more or less income to bid for housing. Each location has a large

number of real estate firms that supply housing units of constant quality. Each

period, firms construct housing units using firm production as input and rent the

units to the local population. The market is perfectly competitive, so the real estate

firms earn zero profits, and the housing supply curve is the marginal cost curve

of housing production. Because land in a location is in fixed supply, the supply

curve is assumed not to shift. The inverse supply function is hs � Spqs, τjq, where

τ is a location-specific parameter that determines the slope of the housing supply

function.12 The market clearing condition is qd � qs. Combining the supply13 and

demand functions yields hd � DpS�1phs, τjq, Iq, which yields the equilibrium price

function h � HpI, τjq.

Each location has its own supply curve as represented by τj, and differences in the

slope of the supply curve are another form of location heterogeneity in the model.

11 Shimer (2005) convincingly documents the failure of a single labor productivity dimension in
rationalizing employment volatility in the U.S.
12 One can think of this as how much of the consumption good is needed to produce additional
housing in the location, which is not explicit but reflected in the price of housing.
13 The supply function is assumed continuous and monotonic and is thus invertible.
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Figure 2.6: Illustration of Local Heterogeneity in Housing Supply Elasticity

As the literature on housing supply has shown,14 supply elasticity of housing can

vary greatly between cities because of differences in local regulation, topography,

and available land. Furthermore, because housing is a highly durable, locationally-

fixed good, it cannot easily be removed from supply, a point argued by Glaeser and

Gyourko (2005). Thus, cities below their housing stock capacity are on a “vertical”

part of the supply curve.

Heterogeneity in housing supply curves is illustrated in Figure (2.6) which depicts

hypothetical demand and supply curves for three types of cities. In the illustration,

an identical upward demand shift will increase prices more in the ‘steep’ city and

quantity more in the ‘flat’ city; a downward demand shift will cause predominantly

price effects in the ‘shrinking’ city. This is the intuition behind allowing heterogenous

supply curves, and why differing price-demand relationships appear in the data,

though the steep/flat/shrinking classification is merely for illustrative purposes.

14 See, for example, Glaeser, Gyourko, and Saks (2006), Saiz (2010), Paciorek (2010).
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2.3.4 Workers

Having established the conditions of the local market within a period, I now turn to

the sorting of the labor force over locations. First I will define the worker’s utility

function.

Utility Specification

Workers are risk averse and have utility over consumption, which is the remainder

of their local wage after paying the local housing price, cjt � wjt� hjt.
15 Recall that

all residents pay the housing price, but only matched workers receive a wage. To

account for the risk of unemployment, I specify utility as the employment probability-

weighted utility of consumption:

upwjt, αjt, pjtq � Epupcjtqq � erjt � upwjt � hjtq � p1 � erjtq � up�hjtq (2.4)

where erjt, wjt, hjt are, respectively, the employment probability, the wage, and the

rent in j at time t. Utility varies by location and over time according to the changes

in wages, employment rates, and housing prices.

Note that unemployment directly enters the utility function without specifically

affecting any individual, in a specification equivalent to a full local unemployment

insurance system.16 This accounts for unemployment as a “bad” while maintaining

tractability in the state space of the problem, and maintains consistency with the

timing of the location decision before the labor matching process; that is, the worker

chooses a location before she knows whether she will match to a job.

Also, all workers in j receive a flow amenity value of µj, which is assumed to be

constant over time for each location.

15 Note that this relationship is implied by a simple household budget constraint.
16 The expected utility specification is an extension of Harris and Todaro’s (1970) “expected earn-
ings.”
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Location Choices

Workers choose the local market to which they will supply their labor and in which

they will reside for the period in order to maximize their lifetime expected utility.

The workers’ problem is dynamic because: 1) they face adjustment costs to chang-

ing locations, and 2) the states of the labor market in each location change over

time.17 The workers choose an optimal location j according to current and expected

future utility flows. The processes governing local labor productivity and match-

ing efficiency are assumed exogenous, and each process has its own location-specific

variance and degree of persistence. I assume workers know the law of motion for

the labor productivity and matching efficiency in each location and can therefore

form expectations about the future state of the labor market in terms of wages and

employment.

At the start of the period, productivity and cost shocks to local markets are

revealed. Workers know the wage and match efficiency in each local market, and

therefore know the tw, eru pair for an arbitrary value of the labor force population.

The employment and wage will also determine the rental price of housing, h. Thus,

workers know the utility provided by each location conditional on its states; the

location’s labor force population is the endogenous state to be determined by a

sorting equilibrium.

The worker faces moving costs if she chooses a location other than her current

one. The moving costs are a function of distance and are therefore symmetric for

a location pair. I assume they are time-invariant and are the same for all workers

choosing between k and j. Population new to the system does not face a moving

cost when selecting a location.18

17 This reasoning goes back to at least Sjaastad (1962).
18 This is to represent, e.g. immigrants and young people new to the labor force who are choosing
an initial location.
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Workers then receive an idiosyncratic location shock, εijt, and decide where to

locate. Because the utility of a location depends on its population (the number of

workers making the choice to live there), the workers’ equilibrium decision rules are

determined simultaneously.

The state variables in the workers’ problem are the labor productivity, yjt, and

match efficiency, αjt in each local market, and the labor force population of the local

market that resulted from location choices in the previous period, pt�1. The vector

of all locations’ productivity states are collected in W , the matching efficiency states

in A, and the vector of the initial population distribution over locations is P . The

other state variable is k, the worker’s current location. Location enters as a state

variable because the moving cost to a destination j varies according to origin k.

Assuming a stationary Markov structure on the transitions of the productivity and

matching efficiency states, the workers’ problem can be represented as a discrete

choice problem in Bellman equation form:

V pWt, At, Pt�1, kq �
maxjrupwjt, αjt, pjtq � µj �mckj � εijt � βEV pWt�1, At�1, Pt, jqs

(2.5)

with β the worker’s discount rate. The expectation is taken with respect to the

future movements in local productivities and match efficiencies as well as the future

idiosyncratic draws; the population states are determined by the equilibrium in the

location choice problem. As written, W and A appear to lead the population state

variable, but they are contemporaneous with respect to the migration decision: given

the timing of the model, tWt, Atu and Pt�1 are both revealed at the time of worker

location decision. They appear as state variables at time t because they compose

the information set at the time the worker makes a location decision.

When valuing a location, the worker cares about all locations’ productivities,

match efficiencies, and populations–not only the location evaluated as a potential
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destination–because each of these affect how likely it is that other workers choose

the same market as she.

Theoretical island economies models such as Lucas and Prescott (1974) often

assume an infinite number of islands, and use the massless nature of the islands to

specify an equilibrium. An empirical application such as this needs to use a finite

number of islands as the islands correspond to actual markets. Using a finite number

of locations adds computational complexity beyond that of standard island economies

models, as the identities of the islands matter, and therefore the discrete choice

problem carries a large state space. The advantage of the discrete choice setting,

however, is the direct link between model and data–each island corresponds to an

actual city for which data series exist. The heterogeneity of locations is explicitly

accounted for, and estimation of the model can use the empirical distributions of

wages, employment, and housing prices of actual MSAs. To my knowledge, there

is no other literature that solves an island economies equilibrium through a discrete

choice optimization.

2.3.5 Equilibrium

I define the equilibrium in the model as a rational expectations equilibrium: workers

choose locations conditional of their expectations of the location choices of other in

the system, and in equilibrium, workers’ expectations of others’ strategies are correct.

Because of the differential moving costs affect where workers move conditional on

their origins, the current and future distribution of population is dependent on the

history of population sorting. I am only interested in an equilbirium where, given

vectors of labor market states and the current population distribution, agents can

rationally make location choices for the next period. The implicit assumption in

writing the workers’ problem in (2.5) is that the geographic distribution of population

is sufficient for summarizing both the path of play and agents’ expectations about
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the future.19 That is, P is a sufficient state variable in a recursive problem.

An equilibrium in this model is now defined. Capital letters again denote the

vectors collecting the all locations’ values of a variable.

Equilibrium. Given productivity and efficiency states, S, and last period’s distribu-

tion of population over locations, P , a rational expectations equilibrium is a set of

employment rates ER, housing rental prices, H, an allocation of population P 1, such

that:

1. Each local labor market matches according to n � mpv, p, αq and π � 0, @j.

2. Each local housing market clears according to h � HpI, τjq @j.

3. Worker’s locations are optimal.

A few technical assumptions on the value functions are needed to ensure an

equilibrium exists and is reasonable.20 The underlying state variables–most notably,

wages and national population–may have trends which could cause the value of a

particular location to become unbounded, in which case workers will not sort over

markets but instead all enter the same location. I rule out by assumption any

equilibrium in which any city absorbs the entire national population, or one in which

a city is completely emptied.21

19 The equilibrium is similar to Lee and Wolpin (2006), Lee (2005), and Krusell and Smith (1998)
in that I have an rational expectations equilibrium process, except that rather than assuming a
particular form for a forecasting rule for the endogenous state and then iterating on it to find
parameters consistent with a rational expectations equilibrium, my forecasting rule is degenerate:
population distribution over the islands is all the information agents need about the endogenous
states. The population distribution itself is the equilibrium object.
20 While the model has only congestive interactions and not the agglomerative forces that often
lead to multiple equilibria, I cannot say that in general an equilibrium is unique. In practice, I keep
the equilibrium in the model as close to that of the data as possible.
21 The issue is not whether a single location may someday be so desirable as to absorb all population
at that date. The practical problem is that without boundedness assumptions on the value functions,
expectations of future trends may cause that ‘supercity’ to be realized today.
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Therefore, I assume |V pSt, Pt�1, kq|   8@ k, t.22 A reasonable assumption which

rules out V � �8 is that wjt ¡ 0 @ j, t. Then to rule out V � 8, I make the assump-

tion that national population growth will always be large enough to congest locations

(through e.g., house prices) with positive trends in wages, ensuring consumption is

finite.23

The last equilibrium condition, the worker’s utility maximization condition, is the

key to determining the equilibrium. The model specifies the equilibrium relationship

in the local labor and housing markets, so the first two equilibrium conditions follow

trivially when the last is satisfied. That is, all the endogenous variables are pinned

down by the sorting of labor across locations. An equilibrium is then a fixed point

in the spatial distribution of population.

P ΣpS, P 1q � P 1 (2.6)

where

P �
�
p1 p2 � � � pJ

�

and

Σ �

�
����

σ11 σ12 � � � σ1J

σ21 σ22 � � � σ2J
...

...
. . .

...
σJ1 σJ2 � � � σJJ

�
���


P is the spatial distribution of population from the end of the previous period,

P 1 is the new population distribution, and Σ represents the migration probabilities

of workers as a function of the vector of local productivities and the worker’s expec-

tation of the population distribution; σkj represents the probability of residents in k

choosing location j.

22 Bajari, Benkard, and Levin (2007) make the same assumption.
23 A convenient but less general assumption is that utility is bounded above. For example, specifying
CARA utility of upcq � 1 � expp�cq ensures that suprus � 1 and the maximal discounted value of
flow utility is simply 1

1�β , which is finite.
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Condition (2.6), which represents how workers behave optimally given the actions

of other workers, will hold for each period t. Intuitively, population will flow into

desirable locations and away from undesirable ones until choice value differences are

arbitraged away by the congestion in prices (the rental price of housing and the

employment probability).

However, this is not to say that utilities across locations are equilibrated, as

in Roback(1982). In contrast to Roback’s static model, the model has costs to

mobility, so that choice values–which incorporate moving costs–may be in equilibrium

without convergence in flow utilities. Furthermore, the workers are maximizing their

lifetime utility, and may trade off current and future consumption according to their

expectations of the labor market states. The richer dynamic equilibrium of this

model uses the value function to account for moving costs, the expectations of future

states, and the expected future actions of other workers in the system.

The full distribution of population is relevant to each worker’s choice, as workers

in comparatively good markets are less likely to move than workers in comparatively

bad markets, and those “far away” (in moving cost terms) are less likely to make the

same location decision as those “nearby.” The dynamic sorting problem thus carries

the entire spatial distribution of population as state variables. The assumption of

atomistic agents implies that choice probabilities are equivalent to moving shares,

so the optimization problem need not be infinite dimensional. But even so, the

heterogeneity of J locations makes the problem akin to a game of J players. Shortly

I will discuss the numerical technique for finding the equilibrium, but for now, merely

note that the spatial element of the model means state space grows exponentially

fast in the number of locations, and so for any “large” number of locations (more

than about 4), the state space is extremely large.24

24 With 30 locations, three states each, a discretization method for value function iteration with
N discretization points would involve N90 points in the state space.
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2.4 Equilibrium Approximation

I now describe the technique for numerically finding the equilibrium of the model.

More details are available in the Appendix.

Finding the equilibrium of this model for a given set of parameters requires finding

a fixed point in the spatial distribution of population. The values of the other

endogenous variables, the local housing prices and employment rates, are pinned

down by inserting the population into the equilibrium conditions for the other local

variables.

The worker’s migration decision is specified as a discrete choice optimization

problem with social interactions, the interactions being the endogenous congestion.

In equilibrium, a worker making a migration decision should accurately predict the

migration decisions of all other workers. The assumption of atomistic agents im-

plies that choice probabilities are equivalent to moving shares, so an equilibrium in

population is equivalent to an equilibrium in choice probabilities:

σkjpσ
�
�k,jq � σ�kj @k, j (2.7)

where σkj is the probability of choosing to locate in j conditional on currently residing

in k, and σ� denotes the equilibrium value. I will assume the idiosyncratic component

of utility, εijt, is distributed iid Type 1 extreme value, meaning the value differences

are distributed logistically, and the resulting choice probabilities are:

Prplocate in j|origin kq � σkj �
vkjpXq°
i vkipXq

(2.8)

where vkjpXq is the non-idiosyncratic relative values of locating in market j condi-

tional on the state space X and origin k.

Finding the equilibrium of this system of location decisions amounts to a system

of J2 nonlinear equations. It is similar to finding the equilibrium strategies of a J-

player game of private information, except that the “players” (locations) can switch
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identities by migrating. Numerical methods for finding the equilibrium of such a

dynamic game (without the identity switching) have been established in the indus-

trial organization literature, beginning with Pakes and McGuire (1994). A numerical

solution algorithm is as follows:

1. Initialize a guess of the choice probabilities, Σ0 (the policy function) for workers

at all locations J .

2. Solve the value function for each location, V 0
j , using the guess Σ0.

3. Update the choice probabilities, Σ1, using the converged values of V 0
j in (2.8).

4. Repeat steps 2-3 until convergence.

What complicates the direct application of these methods to the present model,

however, is the sheer size of the state space. Each location has only three state

variables, the productivity, y, the employment efficiency, α, and the population, p,

but the spatial considerations cause the states of all locations to affect the equilibrium

probability of selecting any location. A standard value/policy iteration involving

discretization of the state space into N points quickly becomes infeasible. In the

full solution method, where each choice probability depends on all locations states,

the value function would be evaluated at N3J points. For any interesting number of

locations, the state space is prohibitively large. On top of that, such a value function

would need to be evaluated for each location, with all functions converging jointly.

To make the equilibrium computation feasible, I simplify the computation through

two approximation techniques. The first form of approximation is state aggregation.

The separate tracking of each local state is what causes the explosive growth in the

state space in the full solution. When valuing a particular location, workers care

how many others are likely to locate there, but exactly where the congestion comes

from should not matter. Thus a natural approximation of relative value differences
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is to summarize the value of a location using its own states and a cross-sectional

summary (such as an average) of the states of other locations in the system.

The technique used here has conceptual antecedents in Weintraub, Benkard and

Van Roy (2008) and Krusell and Smith (1998). Weintraub et. al. suggested using

a technique they called “oblivious equilibrium” (OE) for games with large numbers

of players. Rather than a player keeping track of all rivals’ strategies, the player

behaves “obliviously” regarding the individual players and instead summarizes the

aggregate long-run industry state into a single state variable. Krusell and Smith

(1998) applied similar intuition in a different setting. In their model, a continuum

of heterogenous agents make savings decisions which depend on the distribution of

wealth in the economy; the full solution involves an agent considering the wealth of

all the other agents as states, an infinitive-dimensional problem. Their solution is to

assume agents summarize information about the wealth distribution into a finite set

of moments. In practice, they find that an equilibrium using only the mean wealth

as a state was sufficient for matching the empirical distribution of wealth in the U.S.

The approach employed in the current setting is not exactly like either one of these,

but the intuition is similar. The routine inherits the “myself, and everyone else”

categorization of states from OE, but through the use of summary statistics as in

Krusell and Smith.

The approach grows more attractive as the number of locations grows large–not

only for its relative computational gains, but also because it should become a more

accurate approximation as the locations approach an economy of infinite islands. And

while not exploited in this paper, it also naturally scales into regional classification,

such as having the states of nearby locations enter the value function separately from

faraway locations.

Even with state aggregation, however, the state space is large enough to make

computation of the model slow. To speed up the solution of the value functions, I
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follow Benitez-Silva et. al (2000) and Sweeting (2010) in applying Parameterized

Policy Iteration (PPI) to find the fixed point of the joint worker optimization prob-

lem. Instead of discretizing the state space, I approximate the value function by

specifying it to be a Q-termed, linearly parametrized combination of basis functions

the states X:

vpXq � v̂pXq �
Ķ

q

λqgqpxq

The advantage of the approximation is that it reduces the Bellman equation in the

worker’s problem, (2.5), to a more easily-solved linear problem. The parameters λ

are chosen so that they most nearly fit the contraction in the worker’s problem:

λ̂ � argminλ}r
¸
q

λqgqpxq � upX 1q � βEp
¸
q

λqgqpx
1qs} (2.9)

Using this approximation, the algorithm is now:

1. Form the functions gqpxq.

2. Guess a vector of parameters for the value function approximation, λ̂0.

3. Initialize a guess of the choice probabilities, Σ0 (the policy function) for workers

at all locations J .

4. Form the functions EpgqpX
1qq, where X 1 is the new states implied by Σ0.

5. Find λ according to (2.9). This updates the guess of v̂pXq.

6. Update the choice probabilities, Σ1, using the new guess of v̂pXq in (2.8).

7. Repeat steps 4-6 until convergence in Σ.

A further advantage of PPI is that the state space need not grow exponentially

in the number of players/locations. I simply need a “good basis” of functions gqpxq
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in (2.9), and then enough points to reliably find λ in (2.9); at a minimum, N ¡ Q

is required for identification. In practice, I use several hundred (carefully selected)

points per location.25

Applying both methods of approximation yield significant computational gains.

For example, the approximation routine converges in about one to five minutes (de-

pending on starting values) on a desktop machine when J � 30. In comparison, “full

solution” routines can take hours to converge with just J=3. Importantly, I have

found the approximation is fast enough to nest inside an estimation routine.

2.5 Data and Estimation

This section describes the empirical implementation of the model. First I will describe

the data, and then go on to describe the two estimation stages.

2.5.1 Data

Estimation of the model requires geographically detailed data on local labor and

housing markets. The data employed are taken from several public sources:

• Local Area Unemployment Statistics (LAUS) from the Bureau of Labor Statis-

tics (BLS). This dataset contains monthly employment and labor force size, at

the county level county, from 1990-2010. The data are aggregated up to the

MSA level.

• Quarterly Census of Employment and Wages (QCEW) from the BLS. This

dataset contains monthly employment and quarterly wages at the county level,

by industry, for the period 1990-2010 (through quarter 2). Its exhaustive in-

formation makes the QCEW valuable. Firms are subject to this census (not

survey) where, each quarter, they are asked their payroll in the last month of

25 See the appendix for more explanation of the choice of basis points.
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the quarter and how many paid employees they had each month of the quarter.

The data were aggregated up to one industry at the MSA level.

• County-to-County Migration from the Internal Revenue Service (IRS). This

dataset contains the annual county-to-county migration flows as calculated

by address changes on tax returns for the period 1990-2009. This dataset is

valuable because it is essentially a census of taxpayers migration decisions at a

fine level of geography and at a relatively high frequency.

• City Housing Price Indices (HPI) from the Federal Housing Finance Agency

(FHFA, formerly OFHEO). The HPI are weighted repeat-sales indices of the

value of single-family homes at the MSA level. These data are converted to

dollar values using the county level median home price from the 2000 Census,26

then aggregated back to the MSA level using the labor force population as

weights.

• Consumer Price Index (CPI) from the BLS. The “All items, less housing”

series27 was used to deflate all dollar values to 2000 dollars.

The LAUS, QCEW, and HPI data are seasonally adjusted for each MSA by

regressing the raw time series of data on quarterly dummies, and then taking the

residuals from this regression to be the seasonally adjusted data. This is done sepa-

rately for each MSA to allow for different seasonality in different locations.

2.5.2 Estimation Stage 1: Local Data Series and Parameters

Each of the following types of parameters are estimated or derived from time series

data for each MSA. Allowing the parameters to be specific to each MSA is important

for incorporating local heterogeneity.

26 Dowloaded from the NHGIS, www.nhgis.org.
27 Series ID: CUSR0000SA0L2
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Labor Matching

This section explains how I use the matching model described above to derive the

variables describing the state of each local labor market. The available data contain

employment, labor force population, and wages for each market over several periods

of time. Importantly, vacancies and labor productivity are unobserved. However,

the structure of the matching model allows me to derive the two key state variables,

conditional on further assumptions about the δ and c parameters.

The first important feature of the labor market is labor productivity, or the

output produced when a worker matches with a firm, y. I assume the parameter

δ is constant over time, and with wages assumed to be a constant fraction of the

output in (2.2), the wage can be taken to fully account for all movements in labor

productivity. Thus each local market’s wage series is used directly as a state variable.

The second important state variable is the matching efficiency, α. I use a constant

returns to scale Cobb-Douglas for the matching technology, n � v1�αpα, α P r0, 1s,

and set a linear form for the vacancy cost, cpvq � cv. The Cobb-Douglas form makes

it apparent why I refer to α as the matching efficiency: it is the elasticity of employ-

ment with respect to labor supply. A higher value of α translates to less congestion in

the labor market, as adding more available workers increases the number of matches

at a higher rate.

The matching model is under-identified with the available data. I will therefore

use the available data to derive an implied value of the match efficiency. Doing

so leverages the firm’s zero expect profit condition. Setting expect profits to 0,

substituting the match function in for the unobserved vacancies, and solving in logs,

I obtain:

logpnq �
2α

1 � α
logppq �

1 � α

1 � α
rlogpwq � logp

1 � δ

δ
q � logpcqs
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Recall that the vacancy cost function introduces the decreasing returns to scale

that set city size. I will therefore set φ � logp1�δ
δ
q � logpcq separately for each city

to pin down its average size. I set φ so that it produces a value of α � 0.72 at the

average values of wages, employment, and population.28 Then with φ set, I use the

observed employment, population, and wages to derive implied match efficiency:

α �
logpnq � logpwq � φ

logppq � logpn
p
q � logpwq � φ

(2.10)

The intuition of using (2.10) to derive the implied match efficiency is simple. In

periods with high unemployment (low n relative to p), match efficiency must have

been poor; conversely, low unemployment corresponds to higher values of α. The

productivity of workers, captured through the wage, also provides information on the

match efficiency, as firms should be willing to creating more vacancies when workers

are more productive; if they do not and employment does not grow, then match

efficiency must have been poor.

I back of the time series of values of α for each city. With the time series for w

and α in hand, I estimate the process for transitions in the states. The estimates of

these processes are used to form workers’ expectations of future states in the dynamic

rational expectations equilibrium. I use a simple AR(1) process with trend.

wt�1 � ψ0 � ψ1wt � ψ2t� ωt (2.11)

αt�1 � a0 � a1αt � a2t� νt (2.12)

Before estimating (2.11) or (2.12), I test the data for a unit root. If the data fail

to reject the null in a Dickey-Fuller test of a unit root with trend, I assign ψ1 � 1

or a1 � 1, and I regress the log differences on a constant to check for a trend in the

process.

28 Shimer (2005) sets α � 0.72 in a Cobb-Douglas matching technology for the aggregate labor
market.
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Housing Prices

The model specified a relationship between demand the price of housing, with the

elasticity coming from the slope of the housing supply function. Estimation will

recover the extent to which housing prices change as demand shifts within in each

MSA. As with the wage and employment cost processes, estimating each location

separately is important for recovering location heterogeneity.

Demand can shift with changes in population size or income. To reflect both,

I use local total income–the sum of all wages paid to workers in the period–as the

demand statistic; I denote this measure I. I then use a log-linear specification to

recover the housing price elasticity.

ht � τ0 � τ1It � ξ (2.13)

Note that I endogenous because it contains current population, so that EpIξq � 0.

If housing prices are, for example, temporarily higher due to an unobserved cost

shock, fewer people will choose the location. To account for this, I instrument for I

with its lagged value.

2.5.3 Stage 2: Migration Model

With first-stage estimates in hand, I now turn to the estimation of the dynamic

equilibrium model of worker location.

Utility Specification

I parameterize utility over consumption as CARA with scaling parameter γ1 and risk

aversion parameter γ2.

uper, w, hq � γ1rer � p1 � expp�γ2pw � hqqq � p1 � erjtq � p1 � expp�γ2p�hqqqs
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Moving costs are parameterized as a linear function of the log distance between

two cities in miles. This is parsimonious, while establishing an intuitive concave

relationship between moving costs and distance. The exception is migration to or

from the aggregated outside option, j � 0, which has no definable distance. In these

cases the intercept is permitted to vary but distance is not assigned.

mc � mc0 �mc1pk, j � 0q �mc2pk � 0, jq �mc3logpmilesq

The structural parameter vector of interest in this stage is then θ � rγ1; γ2; mc1s,

the scaling and risk aversion parameters, and the vector of moving costs parameters.

The amenity parameters µ are backed out for each candidate value of θ to make

average population shares fit their observed shares, similar to Berry (1994).

The Estimation Algorithm

The estimation routine is as follows. First, for each candidate vector of parame-

ters, the dynamic equilibrium approximation routine is conducted to estimate how

agents value the future. To do so, I began with the basis states and form the ap-

proximating polynomial terms, gqpxq. I then use the parameters and residuals from

the estimation of the evolution of wages and employment cost, (2.11) and (2.12), to

form the expected future states conditional on the basis, Epgqpx
1|xqq. I then find

the fixed point of the equilibrium sorting problem through PPI, using the full set of

basis states to estimate the approximation parameters, λ. Within the PPI routine,

utility is calculated using the elasticity of housing price estimated in the first stage

and the structural parameters. Because each location has its own housing price elas-

ticity and own process for evolution of the labor market states, there are separate

approximation parameters for each location.

The output of the equilibrium approximation is the value agents place on an

arbitrary vector of states, given the structural parameters, the expected evolution of
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states, and the equilibrium actions of other agents. The next step is to apply this

estimate of the value judgment encapsulated in λ to the observed location decisions of

workers. To do so, I feed the actual wage and match efficiency data into a simulation

of the model, with the value of each choice expressed as:

v̂kj � uj �mkj � µj � βEp
¸
q

λ̂qgqpx
1q (2.14)

The choice values (2.14) are plugged into (2.8) to get the predicted migration flow

matrix Σ̂. Further nested within the fixed point problem is the Berry-style contrac-

tion to make each city’s average population shares fit their observed shares for each

candidate value of θ.

The output of the simulation is the predicted flow matrix and the population size

of each location in each period. The model is simulated at a quarterly frequency,

but the migration flow data is at an annual frequency, so the quarterly migration

matrices are aggregated to a predicted annual flow matrix.

The matrix equation representing this for the rth guess at θ is:

Pt�1Σ̂pXt, θ
rq � P̂t (2.15)

where

Σ̂pXt, θ
rq �

�
����

σ̂11pXt, θ
rq σ̂12pXt, θ

rq � � � σ̂1JpXt, θ
rq

σ̂21pXt, θ
rq σ̂22pXt, θ

rq � � � σ̂2JpXt, θ
rq

...
...

. . .
...

σ̂J1pXt, θ
rq σ̂J2pXt, θ

rq � � � σ̂JJpXt, θ
rq

�
���


The procedure predicts the spatial distribution of population and the migration

flows in each time period for each candidate value of θ. Values for θ can be chosen to

minimize the distance between the prediction population distribution and its values

in the data. Following Pesendorfer and Schmidt-Dengler (2008), the moment condi-

tions are the system of equations characterized by the (approximated) equilibrium
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of the model. With labor force population at a quarterly frequency and migration

shares at an annual frequency, the moment conditions in use are:

EpP̂tpθq � Ptq � 0, EpΣ̂tpθq � Σtq � 0, @t (2.16)

Let M be the collected moment conditions. This suggests the weighted least squares

estimator

θ̂ � argminΘ

Ţ

t

J̧

j

WjtpM̂jtpθq �Mjtq
2 (2.17)

where W is the weight.29 A search over candidate values of θ is conducted, with the

equilibrium approximation technique nested inside the routine.30

Identification

The risk aversion parameter γ2 governs how much agents are willing to trade off

higher wages versus the risk of being unemployed. Thus, the parameter is identified

by the average level of congestion in locations (i.e. how much unemployment risk

the agents accept to have a chance at a wage/housing price pair in a location).

Clearly, the migration flow data idenfiy the moving cost parameters. Less obviously,

however, the scaling parameter γ1 is identified from migration as well. The parameter

γ1 captures how important in the location choice problem utility from consumption

is relative to idiosyncratic location shocks, so the level of idiosyncratic migration (i.e.

flows driven opposite of consumption differentials) helps identify this parameter.31

Also not obvious is that moving costs are helpful for predicting population size as

29 The weighting metric I use is the inverse of the magnitude of the moment, treating the errors as
percentage differences; this prevents the large cities from dominating the objective function. Work
in progress incorporates the suggestions of Pesendorfer and Schmidt-Dengler (2008) for the efficient
weight matrix.
30 As the parameters near their converged values, using the policies from the previous iteration as
starting values speeds convergence.
31 The variance of the shocks was implicitly normalized to 1, but estimation of the scaling parameter
is isomorphic to estimation of the variance of the idiosyncratic shocks.
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well. This is because the persistence and variance of the states is heteogenous between

locations, and since the moving costs affect how easily workers change locations,

they affect how willing workers are to choose, for instance, a location with a large

but short-lived shock to the local labor market. This of course also depends on γ1

and γ2, so these parameters must be jointly estimated in a way that can handle the

dynamic implications of location choice, such as the proposed method of this paper.

The data contain sufficient moments for identification. For each location, there

are data for fours quarters over 21 years, comprising 84J population moments to

match. The IRS migration flows data come at only an annual frequency, but there

are J2 moments for 19 years, for a total of 84J � 19J2 moments. This lightly

parametrized model has only six parameters.

Normalization

As is typically the case in discrete choice models, only the difference in choice values

is identified, so some scale normalization is in order. After selecting J � 1 MSAs

of interest, the rest of the country is collected into one aggregate location, taken to

be the “outside option” (or the “reservation locale” as it is frequently termed in the

urban economics literature). I will normalize by assuming the outside option has a

utility of 0 in all states. The utility in the MSAs of interest is then identified relative

to the outside option, and the moving costs in relation to utility.

2.6 Results

This section presents results of estimation and simulation of the model for an econ-

omy of 30 locations, the 29 largest MSAs in the U.S. plus an outside option aggre-

gating the rest of the contiguous 48 states. The specified MSAs constitute slightly

less than half the workforce population.
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2.6.1 First Stage Results: Location Heterogeneity

The Labor Market States

Table (2.6.1) contains some descriptive statistics of the labor market states of each

location. Presented are the means and standard deviations of the local wage, match

efficiency, and unemployment rates. The cities exhibit significant heterogeneity in

means and volatilities. In wages, there are high mean, high volatility locations (e.g.

New York, San Jose) and low mean, low volatility locations (e.g. Tampa and Pitts-

burgh), but also high mean, low volatility (Washington D.C.), and low mean, high

volatility (Portland). For match efficiency and unemployment rate, a similar picture

emerges, but offering another dimension of heterogeneity. Cities with high volatility

in wages are not necessarily the same as those with high volatility in match efficiency.

Table (2.14) (placed at the end of the article) presents the results from the esti-

mation of (2.11) and (2.12), the transition processes of the labor market states. The

heterogeneity between cities is especially evident in the persistence of the wage pro-

cesses, ranging from cities with low persistence (Houston, St. Louis, Philadelphia)

to others having full persistence (San Francisco, San Jose, Denver, Dallas). Most

cities exhibit a unit root in the employment efficiency process.

Tables (2.7) and (2.7) (end of article) present the full locational matrix of con-

temporaneous correlation in shocks to the labor market states. Shocks are defined

as the residuals from the processes estimated in (2.14). On the whole, while far

from being perfectly correlated, the large degree of correlation in shocks to the local

labor market states indicates a strong national component to shocks, with the local

heterogeneity captured more by the persistence of the processes. Note, however, the

differences in pairwise correlation can be substantial. Also, the mean correlation

statistics show that some places are more “unique” in their labor market. For exam-

ple, wage shocks in Detroit, San Jose, and Seattle are on average less correlated with
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other cities in the system, and similarly, match efficiency shocks in Atlanta, Seattle,

Miami, and Detroit are less correlated with other cities on average.

The Housing Markets

Table (2.3) presents the first stage estimates of housing supply elasticity, sorted from

the largest estimated price elasticity to the lowest. Because virtually every city (and

the national population) is growing over the time period, larger estimates of the

price elasticity indicate higher marginal costs to additional housing in the MSA. The

results are intuitive: the older, more congested cities of the Northeast and much

of California, make up the top of the list as “steep” cities; the Sunbelt makes up

most of the bottom as “flat” cities where quantity can be added without much price

increase. The two exceptions to the growth trend are Cleveland, St. Louis, and

especially Detroit, cities likely on the vertical part of their supply curves.

2.6.2 Second Stage Results: The Dynamic Model

Results for the structural parameters are presented in Table (2.4).32 The costs to

moving to or from the outside option are estimated separately, as this location has

no definable distance from actual cities. Note that the moving costs are “psychic”

in the sense that they are costs to utility, and are therefore identified relative to the

average level of utility. To convert to dollars, I need an estimate of the marginal

utility of consumption, which due to concavity of the utility function varies with the

level of consumption. Still, it is instructive to view the moving costs in dollars, so I

evaluate the derivative at the national mean level of consumption at a unemployment

rate of zero. At the mean, an arbitrary move (of 1 mile) would cost $92,491 dollars

of annual consumption.33 The second panel of Table (2.4) presents moving costs in

32 The standard errors reported are least-squares standard errors and do not account for first stage
error.
33 This is on the order of magnitude of Bishop (2008) and Kennan and Walker (2011), though direct
comparisons to those studies are difficult for several reasons, including their partial equilibrium
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Table 2.3: Housing Price Elasticities

MSA τ1 τ1 se τ0 τ0 se Mean weekly rent (dol)

Los Angeles CA 2.40 0.19 -46.89 4.10 450
New York Nor NY 1.60 0.13 -30.34 2.99 432
Detroit MI 1.58 0.08 -28.09 1.77 193
Miami Hialea FL 1.40 0.11 -23.90 2.28 252
Baltimore MD 1.38 0.10 -22.56 1.95 272
San Francisc CA 1.35 0.11 -22.53 2.25 536
Boston MA 1.25 0.09 -21.03 1.84 310
St Louis MO 1.18 0.08 -19.18 1.54 140
San Diego CA 1.18 0.08 -18.06 1.70 412
Minneapolis MN 1.16 0.06 -18.92 1.23 215
Portland Van OR 1.16 0.05 -17.89 1.04 261
Philadelphia PA 1.11 0.11 -18.39 2.30 243
Tampa St Pe FL 1.07 0.08 -16.66 1.65 161
Chicago Gary IL 1.02 0.08 -16.76 1.72 228
Washington DC 1.00 0.08 -15.62 1.66 343
San Jose CA 1.00 0.09 -14.29 1.95 573
Denver Bould CO 0.97 0.03 -14.58 0.59 258
Cleveland OH 0.94 0.06 -13.88 1.32 203
Seattle Ever WA 0.92 0.06 -13.32 1.33 324
Sacramento CA 0.87 0.10 -11.84 1.93 315
Riverside Sa CA 0.84 0.09 -11.32 1.75 273
Rural/O.O. 0.84 0.05 -15.15 1.22 181
Orlando FL 0.77 0.06 -10.07 1.29 190
Phoenix AZ 0.76 0.05 -10.48 1.05 198
Kansas City MO 0.76 0.03 -10.47 0.69 135
Pittsburgh B PA 0.76 0.05 -10.57 0.93 132
Cincinnati OH 0.52 0.02 -5.38 0.49 158
Atlanta GA 0.50 0.03 -5.25 0.56 187
Houston Braz TX 0.48 0.02 -5.28 0.49 143
Dallas Fort TX 0.28 0.02 -0.89 0.40 147
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Table 2.4: Structural Parameters

Parameter Estimate SE

γ1 1.4547 0.0042
γ2 2.1403 0.0061
mc0: intercept 4.6353 0.0306
mc1: from City to O.O. -3.1328 0.0608
mc2: from O.O. to City 5.8814 0.0478
mc3: Log Distance 1.3043 0.0068

Selected move costs
Boston to: New York, 6.70 Chicago, 8.36 San Francisco, 10.18

$ 136,591 $ 175,679 $ 205,652
Los Angeles to: Riverside/SB, 5.32 San Diego, 6.20 Miami, 10.12

$ 106,240 $ 123,705 $ 201,958
Washington D.C. to: Philadelphia, 6.31 Atlanta, 8.22 Dallas, 9.23

$ 125,870 $ 163,937 $ 184,114

utility and dollar terms (at the mean consumption level) for selected city pairs.

A baseline simulation uses the above structural parameters along with the first

stage parameters to project the population sizes of each city. Figure (2.12) (end

of article) compares the aggregate statistics from the baseline simulation with the

data. Table (2.7) (end of article) presents a city-by-city summary of the model’s

endogenous variables, the local population, unemployment rate, housing prices, and

estimated local fixed effects, µ. Since the labor market states are taken directly from

the data, the labor market statistics from the baseline fit well. Table (2.5) presents

the mean statistics from the cross sectional unemployment distribution in the data

and the baseline model. The quartiles are plotted in Figure (2.7). The model fits

the data well, though is slightly more disperse on average than the actual data. The

decomposition of unemployment variance into temporal and local effects is reported

specification and that wages/consumption enter linearly in their models.
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Figure 2.7: Cross Sectional Unemployment Distribution in the Data and Baseline
Simulation

in Table (2.6).

Table 2.5: Cross Sectional Unemployment Distribution, Data and Baseline Model

90th pctile 75th pctile 25th pctile 10th pctile Std Dev
Data 1.37 0.58 -0.95 -1.49 1.14
Model 1.47 0.62 -0.99 -1.65 1.36

2.6.3 Simulations

I now turn to the counterfactual simulations. The simulations will be used to examine

how the features of space–moving costs and the local housing market–affect the

allocation of population to labor markets as the locations experience productivity

shocks. In all simulations, the exogenous labor market states–wages and match

efficiency–are taken unaltered from the data. Note that this preserves the local

productivity shocks and the national component to the business cycle.

The first experiment removes moving costs, which reduces the dynamic equilib-

rium problem to a series of static equilibria. In a static, free mobility scenario, flow

utilities across locations must be equilibrated; accordingly, I also refer to this case
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Table 2.6: R2 from Regressions of Unemployment Rates on Time and MSA Dummies,
Data and Baseline Model

Data Model
Time dummies .64 .51
MSA dummies .16 .18
Time and MSA dummies .82 .71

as the “Roback” scenario. Using the labor market state data and the estimated γ

parameters, the equilibrium for each period is found by allocating population so that

upwj, αj, pjq � µj � upwk, αk, pkq � µk @ j, k.

The second experiment relaxes the link of the local housing market to the local

labor market. I operationalize this by simulating a world in which residents receive

a subsidy for half their rent in any location. In this scenario, which I refer to as

“reduced rent,” housing is less important a determinant of the differences between

locations, and wages and unemployment rates are more important. Both experiments

are then compared to the baseline simulation of the model.

Before proceeding, a word about location fixed effects. In each of these counter-

factual scenarios, I reset the fixed effects to match the average market shares of each

location. Without this, the scenarios’ effects are primarily to the relative sizes of

cities. Recall that the fixed effects are merely free parameters which soak up average

differences in cities not captured by the model and are identified only in relation

to the other paramters of the model. It is natural to think that, for example, San

Francisco with its high wages might be much larger if people did not have to pay

their rent in full. But these experiments are not about how cities got to their current

sizes. Resetting the fixed effects allows me to focus on the business cycle dynam-

ics of population adjustment without taking too literally the interpretation of the

amenities.
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Local Examples

Perhaps the easiest way to gain intuition from these experiments–and the working

of the model itself–is to look closely at particular locations. Figure (2.8) shows

the population and unemployment rates resulting from the three simulations for

two example cities, Detroit and Seattle. Metropolitan Detroit had a well-known

growth path from 1990-2010, with a significant and persistent decline in wages and

employment after experiencing wage and employment growth in the 1990s. Looking

at the time path of population in top left panel of the figure, the boom-bust cycle is

evident. Notice how the counterfactual scenarios affect population volatility over the

cycle. The Roback scenario admits more population during the growth period and

allows more exit during the decline. The reduced rent scenario does the same to a

lesser extent. The effect of greater population on the unemployment rate during the

growth period is minimal, as the high employment efficiency (high α) exhibits a low

rate of congestion at that time. When the labor market worsened (low α), however,

and the rate of congestion increased, the flow out of Detroit had more impact on

the unemployment rate. While the negative shock to α is still evident, the outflow

of population in the counterfactual scenarios results in a lower unemployment rate

relative to the baseline. The experience of Detroit is consistent with the notion

that the fixity of housing contributes to urban decline, as suggested in Glaeser and

Gyourko (2005).

Seattle is a location with a different path of labor market shocks, and while

not as pronounced as Detroit, the effect of the counterfactuals is evident. Seattle

saw growth in the late 1990s, then a rise in unemployment in the early 2000s, and

then a rebound before another rise in the most recent recession. In the Roback

scenario, population flowing in during the late 1990s expansion leads to an increase

in unemployment over the baseline. Then when unemployment rose in the recession

of 2008 and following, the Roback scenario permitted and outflow which reduces the

unemployment rate relative to the baseline.

The reduced rent scenario actually exhibits an increase in unemployment in the

the most recent recession. While this appears to be opposite of what the simulation
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Figure 2.8: Time Paths of Population and Unemployment in Detroit and Seattle

did to Detroit, the behavior of the model in the counterfactual is in some sense

the same. Recall that the model is working in a closed system. For population to

move out of Detroit or other significantly depressed cities, it has to go somewhere, so

while Seattle also had an increase in unemployment in 2008-2010, relative to Detroit,

the shock was smaller. (Note the difference between the cities in the actual values of

unemployment on the vertical axis.) With a reduced impact of housing price, Seattle

adds population flowing from the worst cities. Detroit was the worst city in terms of

unemployment, so population wants to flow out in both scenarios. Unemployment in

Seattle, on the other hand, was not as extreme. For utility to be equilized in a static

equilibrium, workers still leave Seattle, but workers’ in the reduced rent scenario–still

solving a dynamic problem–value Seattle’s relative long term prospects more highly

and flow into the city, arbitraging the dynamic differences in labor markets. This

case is illustrative of how the two scenarios need not have the same effects on all

cities.

Comparing Scenarios

The purpose of these counterfactuals is to analyze the impact of spatial frictions

on the spatial arbitrage of labor, as evidenced by the cross sectional distribution of
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Table 2.7: Mean Cross-Sectional Unemployment Dispersion Statistics from Simula-
tion Scenarios

Statistic Baseline Free Mobility Reduced Rent
Standard Dev 1.364 1.359 1.221
Interquartile Range 1.611 1.813 1.441
Interdecile Range 3.128 3.595 2.994
Range 6.487 5.350 5.578

unemployment rates. Table (2.7) presents several measures of dispersion in the un-

employment rate. The numbers reported are the means over the 21 years of simulated

data of the cross-sectional statistics. For example, the first row, first column indi-

cates that in the baseline simulation, the average cross-sectional standard deviation

in unemployment was 1.36. From this table we can see that reducing the importance

of housing prices had a greater effect than the migration cost on the dispersion in

unemployment; each statistic is smaller than in the baseline simulation, indicating,

on average, a compression of the unemployment distribution. However, the Free

Mobility scenario shows the largest effect on the range (maximum-minimum), in-

dicating a greater effect on outliers in the distribution, while having less effect on

the center of the distribution as measured by the other statistics. These effects are

also illustrated by the kernel density plot of the cross sectional unemployment rate

distribution, displayed in Figure (2.9).

Figure (2.10) illustrates one of the unemployment dispersion measures, the stan-

dard deviation, over the simulated time series. The figure presents the standard

deviation in the data in blue, and the simulations points as differences to baseline sim-

ulation relative to the data; i.e., for plotted point yt, yt � datat�pcounterfactualt�

baselinetq. The reduced rent scenario, in green, is more consistently below the data

plot, indicating a compression of the dispersion in virtually all states of the economy

in this time period. Note that the effect of the reduced rent scenario on cross-

sectional dispersion of the unemployment rate was larger in later years. There are

two potential explanations here. First, the recession of 2008 and following created a

72



!"

!#!$"

!#%"

!#%$"

!#&"

!#&$"

!#'"

!#'$"

!#("

!#($"

)%!" )*" )+" )(" )&" !" &" (" +" *" %!"

!
"#
$
%
$
&'
&(
)
*

+,-./'#).-,(0*1&2-"-,3-*4"#.*5%('6*7896*:;*/(<=*

,-./012/" 34//"56710189" :/;<=/;":/28"

Figure 2.9: Cross Sectional Unemployment Distribution, Kernel-Density Esti-
mates, by Simulation

large degree of cross sectional dispersion in the unemployment rate, so there is sim-

ply more geographic differentials to arbitrage. Also consider that incomes continued

to grow throughout the time period, raising housing prices. Because prices grow at

different rates in different markets, the cross sectional dispersion in housing prices

also rose.34 Therefore the experiment has more bite in the later years. The Free

Mobility scenario, in red, displays less of an effect, but it does cause a reduction in

the unemployment dispersion in the latter half of the data, especially in the most

recent recession.

The primary question is, what do these scenarios reveal of the completeness of

the spatial arbitrage of labor supply? A reduction in the cross-sectional dispersion in

unemployment should mean less local variation, with local unemployment tracking

more closely to the national average. To examine whether this is occurring in the

counterfactuals, I repeat the exercise reported in Table (2.1): I take the simulated

paths of unemployment rates, pool together all MSAs, and regress these data points

on a vector of time and MSA dummies.35 The R2 from these regressions indicate how

34 A fact documented on a larger scale by Van Niewerburgh and Weill(2010).
35 A similar exercise was conducted by Blanchard and Katz (1992) on employment growth instead
of unemployment rates.

73



!"#$%

!"$$%

!"&$%

!"'$%

("($%

("#$%

("$$%

("&$%

("'$%

)"($%

(''!%(''(%('')%(''#%(''*% (''$%(''+%(''&% ('',%('''%)!!!%)!!(%)!!)%)!!#%)!!*% )!!$%)!!+%)!!&% )!!,%)!!'%)!(!%

!
"#
$%
&
'
$(
)
$*
)
&
+
,
-.
/
+
&
)
"$
0
1
"&
$2
3
$,
.
()
"4
5$

-./.% 0122%345676/8% 92:;<2:%12=/%

Figure 2.10: Cross Sectional Standard Deviation in Unemployment Rate by Sce-
nario, 1990-2010

much variation is due to national business cycles or, in the time and MSA dummies

case, the combination of national business cycles and persistent unemployment dif-

ferences. Table (2.8) presents the adjusted R2 statistics from each regression.36 That

the R2 is higher in the data generated by the reduced rent scenario suggests more

local/temporal unemployment variation is arbitraged away in this scenario than in

the other simulations. This is the key result of the paper.

Table 2.8: Adjusted R2 Statistics from Pooled Regressions of Unemployment on
Time and Location Dummies

Regression Baseline Free Mobility Reduced Rent
Time dummies 0.64 0.63 0.70
Time, MSA dummies 0.82 0.78 0.93

Other measures of the local/temporal unemployment variation are reported in

Table (2.9). This table reports the mean squared error (MSE) of, in the first row,

36 Reported as yt � datat � pcounterfactualt � baselinetq.
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local unemployment rates from the national average, 1
T

1
J

°
t

°
j purtj � ūrtq

2, and in

the second row, of the time-volatility of local unemployment to the volatility of the

national unemployment, 1
J

°
j pσ

ur
j � σ̄urq2. Like Table (2.8), these demonstrate that

the reduced rent scenario results in less local/temporal unemployment variation and

more spatial arbitrage of labor. The effect is also evident in Figure (2.9), with the

Reduced Rent scenario displaying more density around the center of the distribution

(i.e. the national average) than the baseline or Free Mobility scenarios.

Table 2.9: Mean Squared Error from National Unemployment Rate and National
Unemployment Volatility

MSE Baseline Free Mobility Reduced Rent
Unemployment Rate 1.96 2.06 1.57
Unemployment Volatility 0.324 0.334 0.228

In a similar vein, the reduced rent scenario causes the local unemployment and

income volatilities to be more similar to that of the national time series, further

indication that local variation is diminished in that scenario. Table (2.10) presents

evidence to this effect. For each city, I calculate the volatility (time series standard

deviation) in unemployment and in per-capita income37 and then find the cross-

sectional dispersion from the national average in each statistic; the cross-sectional

dispersion is reported in Table (2.10). The lower amount of dispersion in the reduced

rent scenario indicates that the cities’ time series movements in these variables track

the national cycles more closely. The Free Mobility scenario does not exhibit this

effect.

How much is the average city changing in size in response to labor market shocks?

Table (2.11) presents measures of a location’s population volatility. The coefficient of

variation is the (detrended) standard deviation of population divided by the mean;

the statistic reported in table (2.11) is the average CV taken over all MSAs. Both

37 The per-capita income is pci � er � w, a statistic closely related to the expected income in the
utility specification.
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Table 2.10: Cross-sectional Dispersion in Unemployment and Income Volatility

Cross-sectional standard deviation in: Baseline Free Mobility Reduced Rent
Employment Volatility 8.16 8.76 5.73
Per-capita Income Volatility 189.34 193.02 180.57

Table 2.11: Mean Population Volatility by Simulation

Statistic Baseline Free Mobility Reduced Rent
Average City Population
Coefficient of Variation 0.0265 0.0323 0.0279
Out-Migration Rate 0.009 (na) 0.009

counterfactuals increase the population volatility, with the Free Mobility scenario

having the greatest effect. The second row of the table shows that the reduced rent

scenario does not change the average mobility of workers.38

How is the Free Mobility scenario changing local population volatility so much,

while having less effect on the unemployment rate dispersion? The answer requires

some unpacking of the simulation results. To begin, Table (2.12) reports correlation

of population differences with local wage premia; a positive correlation indicates

that population from the counterfactual is higher than the baseline in periods when

wages are above the city’s trend, and population is lower than the baseline when

below trend. Essentially, a positive correlation indicates more responsiveness of

the labor supply to labor market shocks.39 The reduced rent scenario exhibits a

much higher correlation between population differences and wage premia than does

the Free Mobility scenario. The correlation with α premia is smaller, but at least

positive under the reduced rent scenario. There is also a positive correlation between

migration differences in the reduced rent scenario and both labor market states.

38 The flow condition of the Free Mobility static population equilibrium pins down only the allo-
cation of population, and not its origin-destination flows. Hence, there is no migration statistic for
the Free Mobility scenario.
39 Recall that average population of each city is preserved in the counterfactuals, so that a popu-
lation premium in one period is balanced by a deficit in another.
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Table 2.12: Correlation of Population Differences to Baseline Simulation with Labor
Market States

Statistic Free Mobility Reduced Rent
Correlation of Population Difference:
with wage premia 0.077 0.413
with α premia -0.010 0.028

Correlation of Out-Migration Difference:
with wage premia -0.376
with α premia -0.150

That is, though average migration is not changing in the reduced rent scenario,

the migration is more “targeted” in the sense that it is going to positively shocked

labor markets. A comparable migration statistic does not exist for the Free Mobility

scenario.

The picture of housing prices as a pro-cyclical moving cost is starting to emerge.

When the housing market’s tie to the labor market is relaxed, population is more

able to respond to productivity shocks since the labor market differential is less

absorbed by a coincident move in the price of housing. Housing prices move in the

direction of the labor market shock, mitigating the incentives to relocation; there is

both “lock-in” in the downside of labor market shocks and “lock-out” on the upside.

Reducing the effect of housing, as in the reduced rent scenario, allows the labor force

more easily to follow local labor shocks, hence the positive correlation of the labor

market states with population and the negative correlation with out-migration.

Why does the free mobility scenario yield a weaker correlation? Part of the answer

is that even with free mobility, housing prices still congest good labor markets and

mitigate poor ones. Thus, even if there is no moving cost threshold to overcome,

the consumption differentials between markets will be reduced, and the incentive for

reallocation is smaller. The pro-cyclical cost is still there even when the permanent

cost is removed.

Secondly, there are other sources of utility outside the labor market. Workers in

high amenity locations are more willing to accept poor labor market conditions, as
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Table 2.13: Correlations of Wage Premium/Population Difference Related to Loca-
tional Attributes

Wage Prem/Pop Diff Correlation’s Free Mobility Reduced Rent
Correlation to:
Baseline FE, µ -0.48 0.30
Mean Rent -0.51 0.47
Estimated Rent Elasticity -0.37 0.47

their utility can still be relatively high even when the location is hit with a negative

productivity shock. To the extent that amenities are incorporated into housing

prices, these two effects can be related.

Table (2.13) presents evidence for these arguments. For each location, I found the

correlation of population differences to wage premia, as in Table (2.12). I then found

the correlation of these city-level correlation statistics with city-level measures of

housing prices and amenities. Table (2.13) reports the “correlation of correlations.”

The city-level statistics are reported individually in Table (2.7) at the end of the

article.40 For the Free Mobility scenario, cities with higher amenities (as measured

by µ) show less population responsiveness to labor market shocks. Cities with higher

and more elastic housing prices also show weaker responsiveness. Under the reduced

rent scenario, the opposite relationship holds: these are the more relatively more

responsive locations since they are, in a sense, most affected by the treatment.

So while free mobility can reduce some dispersion in unemployment, it depends

on where the shocks are hitting. This is the intuition behind why the Free Mobility

scenario reduces the range of the unemployment distribution, but not the inner

percentiles. For locations out in the tail of the unemployment distribution and with

low amenities, such as Detroit in the 2000s as shown in Figure (2.8), free mobility

40 Table (2.7) also shows that house prices and amenities affect the change to per-capita income
volatility induced by the counterfactual. In the reduced rent scenario, income volatility is reduced
in higher amenity, higher house price, and higher rent elasticity cities, but raised in the opposite
types of cities. This effect is not present in the Free Mobility scenario. As in Tables (2.8),(2.9), and
(2.10), this shows that it is the reduced rent scenario that makes cities’ local cycles more like the
national cycle.
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can cause significant reallocation of population.

In contrast, the reduced rent scenario always has a margin for reallocation so

long as housing prices are related to labor market shocks. It affects all locations to

some degree and in any state of the world. To illustrate the more consistent effect

of housing prices, Figure (2.11) displays a scatterplot of each simulation’s effect on

the unemployment distribution versus the degree of underlying dispersion; each point

represents one quarter in the simulation. While the Free Mobility scenario sometimes

reduces dispersion, it sometimes does not. The regression line for the Free Mobility

points is nearly flat and has no explanatory power as measured by the R2. On

the other hand, the reduced rent scenario consistently compresses the dispersion in

unemployment and exhibits an effect that grows in magnitude with the degree of

underlying dispersion.
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Figure 2.11: Experiments’ Differences in Dispersion Plotted Against Dispersion

In conclusion, the marked cross-sectional differences in labor markets owe more to

the pro-cyclical nature of locally priced goods than to generic moving costs. While

both are spatial frictions in some sense, they are not of the same type–one is a

direct cost of distance, while the other is an indirect result of distance, that of local

market clearing conditions for spatially delineated goods. This difference translates
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to dissimilar effects on the dynamics of individual labor markets and on the resulting

dispersion between them. It is the pro-cyclical friction which impacts the spatial

arbitrage of labor.

2.7 Conclusions and Directions for Future Work

This paper considered the impact of spatial frictions on the national economy. Cities

are heterogeneous in their evolution of productivity, but spatial arbitrage by labor

suppliers is incomplete as evidenced by substantial geographic dispersion in unem-

ployment rates. Migration costs, location preferences, and locally traded goods are

non-labor market features that are salient to workers location decisions. To the ex-

tent that these impede labor allocation across space, these features are frictions to

the labor market.

The goal of this line of research is to better understand how space affects the

allocation of labor supply, and ultimately, what geographic segmentation means for

models of the national labor market. This paper quantified the relative importance

of migrations costs and housing prices as frictions to the labor market, finding that

unemployment dispersion–and generally, the spatial arbitrage of labor–owes more to

reactions in housing prices than to generic migration costs. More generally, housing

prices and moving costs may be thought of as pro-cyclical and neutral frictions, re-

spectively. Understanding the nature of spatial frictions–particularly the correlation

of spatial frictions with local labor demand shocks–may be an important insight for

studying the allocation of labor over space.

The model presented herein is well suited for extensions studying the role of

space on labor market and population dynamics at the local and national level. The

current paper has not even leveraged all the attributes of location heterogeneity

available within the model. Future work will study the effect of spatial frictions at a

more local level, such as the effect of geographic isolation or housing supply elasticity

on the differential responses of cities to productivity shocks. Extensions introducing

heterogeneity of workers and/or local industries is another topic left for future work.
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Additional Exhibits

Table 2.14: State Transition Processes

MSA ψ0 ψ1 ψ2 a0 a1 a2

(w cons) (lag w) (w trend) (a cons) (lag α) (a trend)
Rural/O.O. 3.285 ** 0.470 ** 0.001 ** 0.000 1.000 ** 0.000
Atlanta GA 0.000 1.000 ** 0.000 0.025 0.612 ** -0.004
Baltimore MD 3.270 ** 0.486 ** 0.002 ** 0.000 1.000 ** 0.000
Boston MA 2.062 ** 0.685 ** 0.001 ** 0.000 1.000 ** 0.000
Chicago Gary IL 2.841 ** 0.564 ** 0.001 ** 0.000 1.000 ** 0.000
Cincinnati OH 2.084 ** 0.671 ** 0.001 ** 0.000 1.000 ** 0.000
Cleveland OH 2.947 ** 0.540 ** 0.001 ** 0.000 1.000 ** 0.000
Dallas Fort TX 0.000 1.000 ** 0.000 0.000 1.000 ** 0.000
Denver Bould CO 0.000 1.000 ** 0.000 0.000 1.000 ** 0.000
Detroit MI 2.285 ** 0.653 ** 0.000 * 0.000 1.000 ** 0.000
Houston Braz TX 4.055 ** 0.372 ** 0.002 ** 0.000 1.000 ** 0.000
Kansas City MO 3.099 ** 0.510 ** 0.001 ** 0.000 1.000 ** 0.000
Los Angeles CA 3.466 ** 0.467 ** 0.001 ** 0.000 1.000 ** 0.000
Miami Hialea FL 3.464 ** 0.451 ** 0.002 ** 0.000 1.000 ** 0.000
Minneapolis MN 2.114 ** 0.671 ** 0.001 ** 0.000 1.000 ** 0.000
New York Nor NY 5.857 ** 0.131 0.003 ** -0.469 ** 0.469 ** 0.002
Orlando FL 1.990 ** 0.680 ** 0.001 ** 0.000 1.000 ** 0.000
Philadelphia PA 4.532 ** 0.301 ** 0.002 ** 0.000 1.000 ** 0.000
Phoenix AZ 2.150 ** 0.658 ** 0.001 ** 0.000 1.000 ** 0.000
Pittsburgh B PA 5.147 ** 0.189 * 0.002 ** 0.000 1.000 ** 0.000
Portland Van OR 0.000 1.000 ** 0.000 0.000 1.000 ** 0.000
Riverside Sa CA 1.881 ** 0.699 ** 0.001 ** 0.000 1.000 ** 0.000
Sacramento CA 2.572 ** 0.596 ** 0.001 ** 0.000 1.000 ** 0.000
St Louis MO 4.937 ** 0.226 ** 0.002 ** 0.000 1.000 ** 0.000
San Diego CA 1.685 ** 0.734 ** 0.001 ** 0.000 1.000 ** 0.000
San Francisc CA 0.000 1.000 ** 0.000 0.000 1.000 ** 0.000
San Jose CA 0.000 1.000 ** 0.000 0.000 1.000 ** 0.000
Seattle Ever WA 0.000 1.000 ** 0.000 0.000 1.000 ** 0.000
Tampa St Pe FL 3.619 ** 0.416 ** 0.002 ** 0.000 1.000 ** 0.000
Washington DC 3.500 ** 0.466 ** 0.002 ** 0.000 1.000 ** 0.000

41Asterisks (*) indicate significance at 0.01(**) and 0.05(*) levels.
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Figure 2.12: Aggregate Statistics from Baseline Simulation

Chapter Appendix: More on the Equilibrium Approximation Method

The PPI Algorithm

The approximation is to the value of choosing a location, conditional on that location

being the optimal choice. My application of PPI is similar to that of Sweeting

(2010), with the major difference being that instead of firms, I have locations, and

the identity of “players” is therefore not consistent. Indeed, the choice facing the

worker is which player they want to be, i.e where they want to locate. The difficulty

this imposes is twofold. First, the value function approximation parameters, λ, must

be allowed to be unique for each location, due to the heterogeneity of locations in

terms of local markets and position in space. But second, these parameters must all

converge together. I will illustrate the system of equations with a simple two location

example.

The choice values can be written as

v1 � π1 � βrσ1|1Epv1 � σ2|1Epv2qs

v2 � π2 � βrσ1|2Epv1 � σ2|2Epv2qs

where πj � σ1|jpu1 � m1|j � γ � logpσ1|jqq � σ2|jpu2 � m2|j � γ � logpσ2|jqq is the

choice-weighted expected value of flow utility less moving costs, conditional on being

in j. γ is Euler’s constant, the mean of the T1EV distribution. One can think of

π as the expected value of flow utility of the optimal choice before the idiosyncratic

ε shocks are revealed. Putting the expected value of the ε in the flow term will

preserve linearity in the discounted expected value function terms. This expression
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of the value function follows Aguirregabiria and Mira (2007) as well as Sweeting

(2010).

Recall that the approximation of vj uses a linear-in-parameters function of the

states. Let Z denote the matrix representing the terms gkpxq comprising this func-

tion for location j; let λj denote the parameters on this function for location j; Ẑ 1

denotes the expected value of this function in the next period, with the expectation

incorporating the exogenous process for the states and the current guess at the choice

probabilities. Note that because choice probabilities of atomistic agents correspond

to migration flows, the expectation of future population is degenerate; that is, choice

probabilities predict one spatial distribution of population. The system of equations

is represented in matrix form as:

�
Z1 0
0 Z2


�
λ1

λ2



�

�
π1

π2



� β

�
σ1|1Ẑ 1

1 σ2|1Ẑ 1
2

σ1|2Ẑ 1
1 σ2|2Ẑ 1

2


�
λ1

λ2




The lefthand side matrix is block diagonal of the row vectors Zj. This can be

rearranged as

�
Z1 0
0 Z2



� β

�
σ1|1Ẑ 1

1 σ2|1Ẑ 1
2

σ1|2Ẑ 1
1 σ2|2Ẑ 1

2



loooooooooooooooooooooooomoooooooooooooooooooooooon

Q

�
λ1

λ2



�

�
π1

π2



loomoon

y

This matrix equation is evaluated for N points in the basis state space. Shortly

I describe how the basis is drawn.

The terms λ are chosen to minimize the distance between the two sides of the

approximated contraction. (This is step 5 of the algorithm.) Doing so represents

the policy iteration step of PPI. Since the λ terms enter linearly, the distance can be

minimized and the λ updated by a simple ordinary least squares formula:

λ̂ � pQ1Qq�1pQ1yq

For step 6 of the algorithm, the choice probabilities (“policies” in PPI) can then be

updated according to (2.8) using:

vj|k � uj �mj|k � βẐ 1
jλ̂
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This update returns the algorithm to step 4, the guess of the policy. This routine

is iterated until convergence in the policy function, which is the migration share

matrix. Convergence in the parameters λ occurs concomitantly.

State Aggregation

The states used for approximating the conditional value function are the location’s

own wage, match efficiency α, and population, and the average wage and α of other

locations. All states are expressed relative to the value of states in the outside option.

I also experimented with use of other locations’ population but found that in the

closed system, it was too highly correlated with own population to be of use. To

see this, consider two nearby locations, j and k at an iteration of PPI away from

the fixed point. Conditional of all other states, higher population in k should be

bad for j since it means those workers could flow into j and congest utility. The

intermediate guess of the policy is ‘incorrect’ and, without loss of generality, puts

too much population into location j at the expense of k. Utility in j is then too low,

but at a time when population in k is low. The correlation then picked up by OLS

in the step recovering λ is that low population in k is associated with low utility in

j. Thus population in k is deemed good, in contradiction of the theory. Because

of this bias in the OLS step, convergence was much faster and more reliable when

population of other locations was left out of the aggregated state space.

Z and EpZq

With the five state variables–‘own’ three and aggregated two–I construct a fully

interacted polynomial of the states. For illustration, the terms contained in the

polynomial were

Z � r1 z1 z2 z3 z4 z5 z1z2 z1z3 ... z2z3 z2z4 ... z1z2z3 ... z1z2z3z4z5s

A constant was included for each city to allow the mean value to vary across locations.

The higher order terms permitted the value function to have nonlinear shape; the

highest order term was a fifth order interaction of all the states. Some columns of
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the Z matrix were highly collinear which was troublesome in the inversion of the

matrix Q. In these cases, the extraneous columns of Z were simply suppressed to

facilitate matrix operations.

Recall that because agents are assumed atomistic, the policy predicts the popula-

tion shares exactly. Thus, conditional of the policy, there is no uncertainty regarding

the endogenous states. This turns out to be a very convenient feature. Since the

expectation of future states is taken over the exogenous variables only, the EpZq

matrix can be precomputed outside the PPI routine. EpZ|P q is then converted to

EpZ|P 1q using a simple linear operation within the PPI routine. The computational

time savings are substantial.

The EpZq matrix is found through simulation using the residuals from the state

transition process estimation as the empirical distribution of shocks. To allow for

correlation across locations in the labor market states, simulation draws use the

empirical shock covariance matrix.

Choosing the States

Just as any regression is determined by its data, the λ parameters on the approxi-

mating function depend on the state points at which the value function is evaluated.

Choosing a “good basis” therefore means not only specifying the parametric form of

the approximating function, but also selecting “good data” on which to evaluate the

approximating function.

As in any estimation, the more data points the better, but these basis points come

at a computational cost. Some judgment on the part of the researcher is necessary to

parsimoniously choose points that still yield a good approximation to the underlying

value function. I draw basis points in three ways. First, I use states that actually

occur in the data, randomly choosing the points from the empirical distribution from

each city. This draw is intended to give the approximating function relevance for the

equilibrium played in the data. Second, I randomly draw points from a range slightly

larger than the empirical distribution. For example, if the population of a city in the

data ranges from 1 to 1.2 million, I draw from a range such as 0.9 to 1.3 million. This
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draw is intended to add information to the approximating function for counterfactual

points in the state space, while adding density to the data-relevant range. Third, I

draw points imposing some negative correlation between the three types of states for

each city. (In the first two draws, the states are drawn independently. In the data,

the states are naturally correlated.) Which pairs of the three states are negatively

correlated and the actual magnitude of the correlation is chosen by a preliminary

random number draw for each vector of points. This third draw is intended to add

information for potential counterfactual scenarios as well as improve the performance

of the matrix operations that find the approximating parameters.

The same set of basis points is used for all evaluations of the approximating

function, both within estimation and for counterfactuals. Otherwise, the simulation

error inherent in the draw of basis points would affect comparison of candidate values

for the structural parameters, impeding convergence. Similarly, the same basis was

used for the counterfactual simulations.
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3

Housing Regulation and Labor Market Growth

3.1 Introduction

The following chapter describes another type of experiment conducted using the

modeling and empirical framework of the previous chapter. Unless otherwise noted,

the setting is same as the last chapter, and I refer the reader to it for any further

details.

The counterfactual experiments from the previous chapter were designed to un-

derstand how workers respond to high frequency productivity shocks when faced

with different moving and housing cost regimes. The location fixed effects were re-

calibrated under each experiment so that the average size of the city over the span of

the data was unchanged. In contrast, the following experiment seeks to understand

how city size would evolve under a different housing market regime.

The intuition of the experiment is straightforward. The housing price elastici-

ties were estimated for each city, and they enter the dynamic model as parameters

calibrated to most nearly replicate the response of local housing prices to demand.

Changing any of the housing price elasticity parameters creates an alternate sce-
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nario: cities with counterfactual housing supply functions. The experiment is then

simply to alter the housing price elasticities in a particular way, simulate the model,

and see how city sizes evolve. The productivity states–the local wages and matching

efficiencies–are left unchanged in order to isolate the impact of the housing supply

functions.

Any alteration to a housing price parameter creates some type of experiment, and

one of the key advantages of the equilibrium framework is that the simulations predict

how all cities evolve, even if the experiment affects the the housing price elasticities

of a subset only. While many experiments can yield interesting results and helpful

intuition, I focus on a particular type of policy-relevant experiment, the effect of

local housing supply regulation on city growth. This question has been examined in

the reduced form by Saks (2008), but to my knowledge, never in a structural setting

capable of policy simulations. The experiment asks, if cities altered their housing

supply regulation, how would it affect their housing price elasticities and ultimately

the constraint on city growth?

3.2 Developing The Experiment

Housing supply regulation is an important determinant of housing price volatility, as

recognized by the housing literature.1 However, natural constraints to supply–chiefly

the amount of available land–are very important as well. The housing price estimates

I reach are based on high frequency demand variation which did not distinguish be-

tween inputs in housing construction. To conduct the desired counterfactual, I must

first ascertain how much of the price elasticity estimate is due to local regulation.

And to do this, I lean heavily on Saiz (2010).

Saiz’s 2010 study “The Geographic Determinants of Housing Supply” addresses

this question directly. Using detailed geographic information, he quantifies for many

1 See Paciorek (2010) and numerous references therein.
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U.S. metro areas how much land is available for building; that is, not ocean, inland

lake, river or wetland, too steeply sloped for construction, etc.2 Saiz also reports a

measure of local housing supply regulation, the Wharton Regulation Index (WRI)

developed in other studies with his colleagues.3 Saiz reports both of these measures

in his Table I; I re-report the measure for the cities in my data in Table 3.1 below.

Figure 3.1 plots each of these versus my estimates of housing price elasticity. There

is clear positive correlation of both measures with my estimates.

Saiz then uses a cross section of metro areas to regress housing supply elasticity

on the determinants of housing supply, including useable land and the WRI. This is

exactly the decomposition of housing price elasticities that I need.

Saiz’s estimation of housing price elasticities uses data very different from what I

employ, which is both explanation and disclaimer. First, his demand side variable is

quantity of housing, whereas mine is income. He uses a long horizon of three decades

(1970-2000), whereas I use quarterly variation in income. He observes one data point

per city and uses the spatial variation in the cross section to identify the average

contribution of available land and supply regulation to price elasticity, whereas I use

temporal variation in demand to estimate average price elasticity separately for each

city. The correlation displayed in Figure 3.1 is reassuring that the techniques are

not drastically different, but rather than try to rationalize all the differences and

evaluate the strengths and weaknesses of each, I simply normalize his estimates in

order to convert my own.

Specifically, my experiment changes all cities’ level of regulation to that of the

average city; Saiz (2010) reports the average value of the WRI to be -0.1. Table 3.1

displays the conversion of my estimates under this counterfactual regime. Table III

of Saiz (2010), column (5), reports the average contribution of the percent unusable

2 Note that “usuable” land does not necessarily mean vacant.
3 See Gyourko et al. (2008)
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land to be 0.516, while the impact of regulation is estimated to be 0.268. (Saiz

uses the transformation of ˆWRIj � logp3 � WRIjq, where WRIj is the index as

reported in Table 3.1 in his estimating equation. I make the same transformation.) I

use these point estimates and the local measures of unusable land and regulation to

generate a baseline local housing price elasticity ppeq for each city. This calculation is

pepbaselineqj � 0.516�ULj�0.268�logp3�WRIjq, where ULj is the city j measure

of unusable land and WRIj is the city j regulation measure. The counterfactual is

then pepcounterfactualqj � 0.516 � ULj � 0.268 � logp3 � 0.1q. I use the ratio of

the “Saiz-normalized” estimates,
pepbaselineqj

pepcounterfactualqj
, to find the percentage change to

the price elasticity for each city, which I then use to scale my own price elasticity

estimates. These latter two numbers are reported in the last two columns of Table

3.1.

Note that the experiment is twofold: 1) how regulated is the city, and 2) how much

does the regulation affect its price elasticity vis-a-vis geographic constraints? As

Table 3.1 shows, the size and direction of the experiment can vary between locations

for either or both reasons.

To conduct the experiment, I feed in the counterfactual price elasticities4 to the

PPI algorithm to approximate the value functions under the counterfactual regime.

Then I feed in local productivities and the approximating parameters from PPI to

simulate the model from 1990 to 2010, generating the endogenous variables: local

population, employment, and housing rental price.

4 Recall that the price elasticity–the slope of the housing price function–was estimated jointly with
the intercept of the housing price function. Tilting the slope without adjusting the intercept would
affect the average housing price at any and any demand levels. Therefore I adjust the intercepts of
each city’s housing price function so that the housing price in the initial period is consistent with
the baseline simulation.
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Table 3.1: Conversion of Price Elasticities Using Saiz’s Estimates

My Saiz: Saiz: Pct Change to Price
City Elasticity Unusable Regulation Elasticity Elasticity

Estimate Land (%) Index When WRI=-0.1 In Experiments
Atlanta GA 0.50 4.08 0.03 -3.69 0.48
Baltimore MD 1.38 21.87 1.60 -23.69 1.05
Boston MA 1.25 33.90 1.70 -21.95 0.98
Chicago Gary IL 1.02 40.01 0.02 -2.16 0.99
Cincinnati OH 0.52 10.30 -0.58 16.72 0.60
Cleveland OH 0.94 40.50 -0.16 1.15 0.96
Dallas FortW TX 0.28 9.16 -0.23 3.84 0.29
Denver CO 0.97 16.72 0.84 -16.84 0.81
Detroit MI 1.58 24.52 0.05 -3.18 1.53
Houston Braz TX 0.48 8.40 -0.40 9.77 0.53
Kansas City MO 0.76 5.82 -0.79 30.02 0.99
Los Angeles CA 2.40 52.47 0.49 -8.19 2.20
Miami Hialea FL 1.40 76.60 0.94 -10.77 1.25
Minneapolis MN 1.16 19.23 0.38 -9.64 1.05
New York Nor NY 1.60 40.42 0.65 -11.10 1.42
Orlando FL 0.77 36.13 0.32 -7.14 0.71
Philadelphia PA 1.11 10.16 1.13 -21.91 0.87
Phoenix AZ 0.76 13.95 0.61 -14.11 0.66
Pittsburgh B PA 0.76 30.02 0.10 -3.90 0.73
Portland Van OR 1.16 37.54 0.27 -6.29 1.09
Riverside Sa CA 0.84 37.90 0.53 -9.87 0.76
Sacramento CA 0.87 12.05 0.59 -14.13 0.75
St Louis MO 1.18 11.08 -0.73 23.71 1.46
San Diego CA 1.18 63.41 0.46 -7.17 1.09
San Francisco CA 1.35 73.14 0.72 -9.15 1.23
San Jose CA 1.00 63.80 0.21 -4.24 0.95
Seattle Ever WA 0.92 43.63 0.92 -13.66 0.79
Tampa St Pe FL 1.07 41.64 -0.22 2.32 1.10
Washington DC 1.00 13.95 0.31 -9.02 0.91

3.3 Results

This section reports the results from two experiments in this counterfactual regime.

In the first experiment, the price elasticities of all cities are changed to reflect their

projected values at a mean level of regulation; this results in lesser regulated cities

having steeper housing price functions, and more regulated cities having flatter hous-

ing price functions. The second experiment only affects the more regulated cities and

leaves the lesser regulated cities unchanged.

3.3.1 Experiment 1: All Cities

Table 3.2 reports the results from the first experiment. The simulated endogenous

variables are reported for each city. The values reported are the average percentage
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Figure 3.1: Price Elasticity Estimates Plotted Against Measures of Unusable Land
and Regulation

difference from the baseline simulation of the last two years of the counterfactual

simulation; the end of the data period was selected in order to allow the simulation

to have taken effect.5

By and large, lowering the slope of the housing price function permitted more

labor market growth in terms of population (Denver, San Francisco, Seattle), and

increasing the slope restricted growth (Dallas, Houston, Tampa). However, it is not

5 First running the economy to a new steady state at the beginning of the data–a simulation
“burn-in”–had little impact on the end of period values.
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a perfect mechanical correlation, and there are several counterexamples of cities that

saw no gains or even losses of population despite being deregulated (Boston, New

York, Orlando, Miami). Figure 3.2 displays the scatterplot of population change

to price elasticity change. The direction of the correlation is clear, but so is the

heterogeneity in the size of the effect.

The reason for this is twofold, with both parts highlighting the subtleties of using

an experiment in a dynamic equilibrium framework. First recall that the economy is

a closed system–adding population anywhere means subtracting it from at least one

other place–so some places may see declines despite flatter housing price functions by

a simple adding-up constraint. But why so much heterogeneity in the magnitude of

the effect? This reflects the dynamic decision process embedded in the model. The

values functions which are directing location choices are capturing not just current

housing rents, but expectations of future rents, future wages, future employment

growth, the option value of a city’s point in space, and so on. Thus some places with

minor deregulation (e.g. San Francisco) may be a lot more attractive than cities with

larger deregulation (e.g. Philadelphia) because they have more valuable amenities

and labor markets, both today and in the future.

The next column of Table 3.2 reports the corresponding city housing price differ-

ence. (Recall that the housing prices are expressed as one-period rents.) Here also we

see two competing effects in play, something like a price and income effect, because

of the equilibrium effects. On one hand, a flatter housing price function means lower

housing rents (the price effect), but lower housing rents, especially when coupled

with good current and future labor market prospects, means more demand for the

city (the income effect), so the net effect is ambiguous a priori. Thus a city like

San Francisco sees a rise in its rents despite lower regulation, Dallas sees lower rents

despite the increase in regulation, and Cincinnati sees higher rents despite the fall in

demand. The housing price effect is not ambiguous if a city is both deregulated and
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Figure 3.2: Experiment 1: Population Change Plotted Against Price Elasticity
Change

sees a fall in demand due to the adding-up constraint, such as Atlanta.

The last two columns show the effect on the local labor markets. By the model’s

design, a rise in population necessarily means a rise in the unemployment rate.

However, a rise in population does mean a rise in the employment level, which

translates to a rise in the local total income.

The last two rows of Table 3.2 report the aggregate statistics for the nation (the

whole system, including the rural/outside option), and the urban system (the named

cities only). Compositional effects in the average lead to a slight increase in average

housing prices. There are minor effects to the unemployment rates, though there is

a modest but meaningful increase in the total income of the economy, resulting from

workers on average being able to have more access to higher wage markets.
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Table 3.2: Experiment 1: All Cities at Average Regulation Level–Mean Percentage
Difference in Simulated Variables at End of Period

City Experiment Population House Unemployment Local Total
Size Price Rate (pct point) Income

Rural/O.O. 0.00 -0.120 -0.070 -0.030 -0.080
Atlanta GA -3.69 -4.970 -2.220 -1.560 -3.260
Baltimore MD -23.69 1.170 -10.330 0.400 0.730
Boston MA -21.95 -0.940 -6.670 -0.250 -0.670
Chicago Gary IL -2.16 -2.660 -2.690 -0.590 -1.990
Cincinnati OH 16.72 -4.370 1.460 -1.340 -2.900
Cleveland OH 1.15 -2.900 -1.870 -0.720 -2.100
Dallas FortW TX 3.84 -2.980 -0.480 -0.670 -2.250
Denver CO -16.84 8.650 -6.060 2.070 6.380
Detroit MI -3.18 -1.960 -2.360 -0.630 -1.210
Houston Braz TX 9.77 -3.510 0.350 -0.750 -2.710
Kansas City MO 30.02 -4.250 3.740 -1.070 -3.080
Los Angeles CA -8.19 1.120 -0.870 0.280 0.810
Miami Hialea FL -10.77 -5.160 -1.580 -1.670 -3.320
Minneapolis MN -9.64 -0.630 -4.600 -0.230 -0.380
New York Nor NY -11.10 -0.330 -5.040 -0.080 -0.240
Orlando FL -7.14 -2.520 -3.170 -0.600 -1.860
Philadelphia PA -21.91 -2.290 -5.940 -0.730 -1.490
Phoenix AZ -14.11 2.150 -5.490 0.460 1.650
Pittsburgh B PA -3.90 -2.940 -2.580 -0.680 -2.180
Portland Van OR -6.29 18.280 11.040 3.980 13.830
Riverside Sa CA -9.87 4.340 -1.070 1.200 2.970
Sacramento CA -14.13 3.510 -2.390 1.070 2.300
St Louis MO 23.71 -3.930 1.670 -0.980 -2.850
San Diego CA -7.17 2.270 -1.560 0.770 1.440
San Francisco CA -9.15 11.560 7.360 3.720 7.630
San Jose CA -4.24 3.930 1.650 1.050 2.730
Seattle Ever WA -13.66 10.150 -0.120 2.140 7.780
Tampa St Pe FL 2.32 -3.360 -1.400 -1.220 -2.010
Washington DC -9.02 -1.400 -3.860 -0.460 -0.910

National 0.000 1.730 -0.014 0.066
Urban 0.000 3.070 0.013 0.200

3.3.2 Experiment 2: Reducing Regulation in Highly Regulated Cities Only

The second experiment is the same as the first, except that the lightly regulated

cities–those with below average measures of regulation–are left out of the treatment.

The reason is to highlight “push” versus “pull” effects; that is, how much of the

population in lightly regulated markets is there not because it was pulled by the low

regulation and low housing prices, but because it was pushed out of more regulated

markets. (Detroit was also left unaltered depsite having above-average regulation

because it was experiencing declining housing demand; that is, its housing supply

curve was likely estimated on the “vertical” downside rather than the upside.)
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The results are much the same as the first experiment, so the discussion will focus

on the push versus pull effects. Note that several of the lightly regulated markets

(Dallas, Houston, Tampa, Cleveland) see losses in population very similar to the first

experiment. This suggests that the population losses in the first experiment were

not so much due to increases in the housing price function as they were due to being

the losers in the population adding-up constraint, because of poorer labor markets

and/or amenities. Thus, some measure of their population is there for push reasons,

not pull reasons.

Figure 3.3 plots the population change versus the experiment size; the points on

the y-axis are the untreated markets. I included two trend lines, one for treated

markets, and one for all markets. The line for all markets displays the negative

correlation of the first experiment because the untreated markets are still losers of

population. For the treated markets, the heterogeneity of the regulation effect is

evident, and there is little correlation between size of the experiment and population

change. That is, the housing is not a binding constraint all cities. This is because of

the varying dynamic values of the cities, as discussed earlier.

3.4 Conclusion

This chapter presented a policy-related counterfactual exercise of my dynamic equi-

librium model of local labor markets. The experiment focused on the impact of local

housing supply regulation on population growth. Decreasing regulation lowers the

constraint to population growth, but does not necessarily increase population growth,

as workers are choosing some deregulated cities over others. The effect of changing

regulation on housing rents is ambiguous a priori and depends on the size of the

change in demand for housing. Finally, a second experiment shows how some popu-

lation in lightly regulated markets is there from being pushed out of more regulated

markets, and not because of the inherent demand for the low regulation cities.
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Table 3.3: Experiment 2: Reducing Regulation in Highly Regulated Cities–Mean
Percentage Difference in Simulated Variables at End of Period

City Experiment Population House Unemployment Local Total
Size Price Rate (pct point) Income

Rural/O.O. 0.00 -0.120 -0.070 -0.030 -0.080
Atlanta GA -3.69 -5.000 -2.230 -1.570 -3.280
Baltimore MD -23.69 1.110 -10.370 0.380 0.700
Boston MA -21.95 -1.000 -6.710 -0.270 -0.710
Chicago Gary IL -2.16 -2.710 -2.730 -0.600 -2.030
Cincinnati OH 0.00 -3.320 -1.140 -1.010 -2.210
Cleveland OH 0.00 -2.980 -2.030 -0.740 -2.150
Dallas FortW TX 0.00 -3.010 -0.670 -0.680 -2.280
Denver CO -16.84 8.570 -6.100 2.050 6.330
Detroit MI 0.00 -2.420 -2.360 -0.780 -1.500
Houston Braz TX 0.00 -3.370 -1.310 -0.710 -2.590
Kansas City MO 0.00 -2.980 -1.650 -0.750 -2.160
Los Angeles CA -8.19 1.100 -0.910 0.270 0.790
Miami Hialea FL -10.77 -5.210 -1.620 -1.690 -3.350
Minneapolis MN -9.64 -0.660 -4.620 -0.240 -0.400
New York Nor NY -11.10 -0.390 -5.100 -0.100 -0.280
Orlando FL -7.14 -2.560 -3.180 -0.610 -1.890
Philadelphia PA -21.91 -2.360 -5.980 -0.750 -1.540
Phoenix AZ -14.11 2.070 -5.530 0.440 1.590
Pittsburgh B PA -3.90 -3.010 -2.630 -0.700 -2.240
Portland Van OR -6.29 18.170 10.940 3.950 13.740
Riverside Sa CA -9.87 4.280 -1.100 1.190 2.930
Sacramento CA -14.13 3.460 -2.420 1.060 2.270
St Louis MO 0.00 -2.920 -2.490 -0.720 -2.110
San Diego CA -7.17 2.240 -1.580 0.760 1.420
San Francisco CA -9.15 11.490 7.300 3.700 7.580
San Jose CA -4.24 3.890 1.620 1.040 2.700
Seattle Ever WA -13.66 10.050 -0.180 2.120 7.700
Tampa St Pe FL 0.00 -3.190 -2.050 -1.160 -1.900
Washington DC -9.02 -1.460 -3.900 -0.490 -0.950

National 0.000 1.610 -0.015 0.640
Urban 0.000 2.850 0.012 0.190

These experiments highlighted the power of the dynamic equilibrium framework,

illustrating how to implement locally-heterogenous policy experiments. The frame-

works picks up subtleties of a dynamic equilibrium setting: the price and income

effects, adding-up constraints, and option value. The dynamic equilibrium model

can be a powerful tool for studying cities and labor market dynamics.
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Change
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