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Abstract

A series of fusion techniques are developed and applied to EEG and pupillary record-

ing analysis in a rapid serial visual presentation (RSVP) based image triage task, in

order to improve the accuracy of capturing single-trial neural/pupillary signatures

(patterns) associated with visual target detection.

The brain response to visual stimuli is not a localized pulse, instead it reflects

time-evolving neurophysiological activities distributed selectively in the brain. To

capture the evolving spatio-temporal pattern, we divide an extended (“global”) EEG

data epoch, time-locked to each image stimulus onset, into multiple non-overlapping

smaller (“local”) temporal windows. While classifiers can be applied on EEG data

located in multiple local temporal windows, outputs from local classifiers can be fused

to enhance the overall detection performance.

According to the concept of induced/evoked brain rhythms, the EEG response

can be decomposed into different oscillatory components and the frequency character-

istics for these oscillatory components can be evaluated separately from the temporal

characteristics. While the temporal-based analysis achieves fairly accurate detection

performance, the frequency-based analysis can improve the overall detection accu-

racy and robustness further if frequency-based and temporal-based results are fused

at the decision level.

Pupillary response provides another modality for a single-trial image triage task.

We developed a pupillary response feature construction and selection procedure to

extract/select the useful features that help to achieve the best classification perfor-

mance. The classification results based on both modalities (pupillary and EEG) are

further fused at the decision level. Here, the goal is to support increased classifi-

cation confidence through inherent modality complementarities. The fusion results
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show significant improvement over classification results using any single modality.

For crucial image triage tasks, multiple image analysts could be asked to evalu-

ate the same set of images to improve the probability of detection and reduce the

probability of false positive. We observe significant performance gain by fusing the

decisions drawn by multiple analysts.

To develop a practical real-time EEG-based application system, sometimes we

have to work with an EEG system that has a limited number of electrodes. We

present methods of ranking the channels, identifying a reduced set of EEG channels

that can deliver robust classification performance.
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Chapter 1

Introduction and Background

1.1 Introduction and Background

1.1.1 Physiological computing and human computer inter-

face

Physiological computing provides the direct interface between human physiology and com-

puter technology ([1]). Physiological sensors can be used to acquire bioelectrical signals (e.g.

heart beat signals, brain signals) and use them as input sources to interactive computer

systems in order to enhance the interactive experience. For example, an electroencephalo-

gram (EEG) signal is used to measure the brain activity and a pupillometry signal is used

to measure the pupil size change in this study.

Both EEG-based and pupillometry-based methods are non-invasive methods that can be

used to monitor the brain and nervous system activities during performance of a cognitive

task. The successful applications of these two methods offer the potential for new brain-

computer interfaces (BCI) that can detect a user’s cognitive brain states or activity patterns.

This type of BCI requires the real-time assessment of brain/mental activities. The

accuracy and robustness of the detection/classification methodologies and algorithms are

crucial for such systems.

1.1.2 Cognitive categorization process and its EEG based

and pupillography based responses

Categorization is the cognitive process in which objects and ideas are recognized, differen-

tiated and understood. Psychophysiology premises that psychological processes and states

are tightly coupled with changes in physiological activity. As a result, physiological signals
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can be used to monitor psychological states (e.g. categorization states). In this study, we

use EEG-based and pupillography-based responses to detect/classify the cognitive catego-

rization process states.

EEG signals provide a direct command and communication channel from the brain psy-

chophysiology to the computer-controlled output by reading and interpreting the electrical

signatures (patterns) of the brain’s activity and its responses to external stimuli. EEG

recording involves attaching electrodes to the scalp of a person to measure and record elec-

trical activity on the cortex over time ([2]). Human EEG signals represent the aggregate

activity of millions of neurons inside the brain. EEG-based system provides a non-invasive

communication channel from the brain to the external world by reading and interpreting

the electrical signatures of the brain’s activity and its cognitive responses to external stimuli

(e.g. visual stimuli).

Another widely emphasized cognitive response is the pupillary dilation response to a

cognitive event ([3], [4]). The pupil is the expanding and contracting opening in the iris

of the eye, through which light passes to the retina. It is well known that human pupils

dilate in response to emotion evoking stimuli. Pupillary feature changes (e.g. diameter,

diameter change velocity and acceleration) are the human body’s responses to stimuli in

the environment.

1.1.3 EEG-based visual image classification system

Motivation

EEG is the neurophysiological measurement of the electrical activity of the brain as mea-

sured by electrodes placed on the scalp ([2], [5], [6]). Significant advances have been made

in the use of EEG as a method for effective human-computer interfacing, known as Brain-

Computer Interfacing (BCI) ([7], [8], [9], [10], [11], [12], [13], [14]). Additionally, more

recent efforts have begun to investigate the use of high-resolution EEG signals (i.e., in con-

trast with the broader signals considered by BCI) to achieve fine control and responses in
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a human-computer system ([15], [16], [17] and [18]). Such capabilities hinge on reliably de-

coding the fine-grain information carried by the spatio-temporal pattern underlying brain

activities. In particular, we have been investigating the use of instantaneous EEG signal

decoding to control an image analysis application where the user’s brain activity associated

with the detection or recognition of targets of interest (e.g. a tumor in an MRI image) is

used to manipulate image selection and processing. Our goal is to ultimately design systems

that improve the efficacy and throughput of expert image analysts such as radiologists.

In visual image classification applications, human image analysts (IAs) are substantially

more effective than computer visual systems at parsing a scene and recognizing target ob-

jects. Even though researchers have made significant progress in the development of auto-

mated pattern recognition systems which aim to segment image targets from background,

there is still a significant gap between the performance of these computer-based systems

and the capabilities of human image analysts.

A common engineering approach in implementing automated pattern recognition sys-

tems is to design a task-specific image processing algorithm which operates on the sensor

data but lacks the capability to exploit task-related or context-based information. On the

other hand, IAs perform extremely well on target detection tasks due to their keen sense of

task constraints and their reliance on contextual information provided by the characteristics

of the scene and its dynamics.

The main challenge is that we usually have a limited number of qualified human IAs

and, in many applications, an enormous amount of visual images need to be classified. For

a military application example, U.S. Air Force Air Intelligence Agency (AIA) reported that

advances in satellite communications bandwidth generate an enormous amount of intelli-

gence imagery and they cannot afford to put imagery analysts on every single frame ([19]).

For a medical imagery example, it has been demonstrated that the accuracy of mam-

mographic interpretation is superior when experienced and dedicated analysts interpret

mammogram pictures. It was estimated that in 2004 alone, nearly 40 million mammogram
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pictures were taken in United States ([20]). The number of available radiologists fall short

of such overwhelming demands.

To alleviate these problems, effective triage techniques need to be developed to rapidly

screen the high volume of imagery (usually comprising a large amount of non-target/distractor

images and a limited number of target images) and sort out a much smaller subset of images

that merits further detailed analysis.

EEG-based systems have been developed to optimally couple the superior human visual

processing capability with the superior signal processing and classification capability of

high-speed computers ([21], [22], [23]). This type of “cortically-coupled computer vision”

system ([23]) can be used to improve the image processing throughput/speed in high volume

visual triage applications ranging from satellite reconnaissance to medical image analysis.

In addition to visual applications, this type of system can also be used to detect and classify

auditory or information stimuli in various types of detection systems such as a lie detector

or a warning system to detect potential threats.

The conventional image triage usually starts with an image that covers a very big area

(Fig. 1.1). Experienced analysts can identify multiple areas of interest (AOIs) and accord-

ingly zoom in and amplify the details in those AOIs in an attempt to detect the targets.

This process is tedious and inefficient. We advocate the rapid serial visual presentation

(RSVP) based BCI system where the images are prepared automatically by computer soft-

ware and presented rapidly as a continuous sequence of images (Fig. 1.2 and 1.3). RSVP

is equivalent to riffle through a book and allows space to be traded off for time ([24]).

EEG and event related potential

Human EEG signals represent the aggregate activity of millions of neurons on the cortex and

have high time-resolution (capable of detecting changes in electrical activity in the brain on

a millisecond-level resolution). It is well-documented both from neurophysiological evidence

and EEG experiments that a variety of relevant cognitive tasks involve the activation of
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Figure 1.1: Wide-area image used in the experiment: little red blocks mark the
locations of the target chips. The analysts have to zoom in to identify the targets
(Imagery Credit DigitalGlobe).

Temporal
Sequence

Figure 1.2: A wide-area image can be divided into multiple 500x500-pixel image
chips (Imagery Credit DigitalGlobe).
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Target

10 frames/second

Figure 1.3: RSVP sequence at 100 msec/image and examples of a red framed target
image and green framed non-target/distractor images (Imagery Credit DigitalGlobe).

multiple areas in the brain. Both the timing and location of these activities reveal the

nature of the cognitive task. A variety of studies are underway to achieve accurate source

localization and measure temporal coherence throughout the brain ([25], [26], [23], [27] and

[21]).

An event-related potential (ERP) is a stereotypical electrophysiological response to an

internal or external stimulus ([6]). More simply, it is a measured brain response that is

directly the result of a thought or perception. By the nature of recording constraints (e.g.,

poor sensor interface, signal cross-talk, etc.) and unrelated brain activities, EEG signals

of interest have a very low signal-to-noise ratio (SNR) ([2]). For this reason, most research

in the use of EEG utilizes signal average over a large number of trials in order to recover

the signal and suppress the noise. For instance, evidences by Thorpe and colleagues ([28])

suggested a significant amplitude difference between EEG responses to target and non-

target/distractor images can be measured if one averages over a large number of trials

(illustrated in Fig. 1.4). In a similar approach, Tan and colleagues ([29]) applied the

trial-averaged method in the EEG-based brain state classification task.
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Post-stimulus time

(in milliseconds)

Average EEG amplitude (in microvolts ) 
Target trials

Critical temporal window

Non-target/distractor
trials

Figure 1.4: Trial-average ERP and critical temporal window selection illustration;
the temporal window selected is where the average target trial ERP diverges most
sharply from the average non-target/distractor trial ERP.

Single-trial detection

In other contexts, the event or task stimulus cannot be trial-averaged. For example, the

stimulus may occur only once or the application needs to classify the brain response in

real-time. In the context of the application domain we consider here (instantaneous image

triage in response to every single image display), we must apply signal processing techniques

capable of recovering the critical EEG signal from single-trial inputs. The biggest challenge

of single-trial detection is to overcome the low signal-to-noise ratio problem imposed by

event-unrelated background EEG responses which usually have larger amplitude than event-

related responses and could completely obscure the latter ([30]).

Recent advances in adaptive signal processing have demonstrated significant single-trial

detection capability by integrating EEG signals spatially, across multiple channels of high

density EEG sensors ([21], [31]). A weighted sum of all electrodes over a predefined (fixed)

temporal window can be used as a new composite signal that serves as a discriminating

component for the signal of interest (such as a response to a target of interest in an image
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by a human observer).

1.1.4 Pupillary-based visual image classification system

A pupil monitoring system usually records data from one source only (e.g. pupil diameter

size). In this study, we developed a pupillary response feature construction and selection

procedure to extract the useful features that perform the best under the linear discriminant

analysis (LDA) classifier. The single-trial analysis using an LDA classifier is applied using

this group of pupillary response features to detect the pupillary signature of target detection.

1.1.5 Fusion techniques

To further improve the accuracy and robustness of the single-trial detection, we apply a

series of fusion techniques in this study. Fusion techniques combine data from different

sources together. The main objective is to produce a fused result that is more accurate and

reliable.

Fusion can be executed at different levels (data-level, feature-level or decision-level).

Data-level fusion is the combination of the raw data from multiple sources into a single

representation. Feature-level fusion requires the extraction of different features from the

source data and the features are merged afterwards. Decision-level fusion combines the

results (decisions) from multiple algorithms to yield a fused decision. Under different cir-

cumstances, fusions executed at different levels have their own pros and cons. We have

applied fusion techniques at all three levels in our study to improve the single trial classi-

fication performance.

Data-level fusion has advantages of extending spatial and temporal coverage and relying

on the most detailed information. Feature-level fusion has advantages of reducing the

problem dimensionality, simplifying the classifier design and throwing away the irrelevant

information. Decision-level fusion has advantages of handling heterogeneous data sources

well, reducing the problem dimensionality, simplifying the classifier design, shielding from
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the noise better and being interpreted easily.

Fusion algorithms can be applied to various types of data including multi-sensor data,

multi-temporal data, multi-resolution data, multi-parameter data or multi-modality data.

Fusing the EEG data from multiple electrodes is a multi-sensor data fusion example (chapter

three). Fusing the classifiers’ outputs based on multiple temporal windows is a multi-

temporal data fusion example (chapter three). Fusing the results of a temporal-domain

based classifier and the result of a frequency-domain based classifier is a multi-parameter

fusion example (chapter four). Fusing the result of an EEG-based algorithm and the result

of a pupillary response based algorithm is a multi-modality decision fusion example (chapter

five).

1.1.6 Single temporal window based classification scheme

versus multi-level classification scheme for EEG-based

classification system

Single temporal window based classifier

For both the trial averaged approach and the spatial integrated single-trial approach, it

was found that the event-related EEG response is most prominent at a certain critical

time period after stimulus onset. For example, Thorpe et al. ([28]) found that the trial

averaged ERP generated on target and non-target/distractor trials diverge sharply at 150-

200 milliseconds after stimulus onset for a go/no-go image categorization task. Parra et

al. ([32]) applied the logistic regression linear discriminant classifier to EEG data in a

predefined temporal window centering around the time where the target trial averaged ERP

is most sharply diverged from the non-target/distractor trial averaged ERP (illustrated in

Fig. 1.4) and achieved significant classification performance.

In practice, a fixed length (e.g. 1-second wide) EEG data epoch time-locked to im-

age stimulus can be extracted for every trial. This long (“global”) epoch can be further

divided into multiple smaller (“local”) time windows (e.g. 50 msec wide) and the critical
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Figure 1.5: Multiple local classification time windows can be extracted and the
critical classification window can be identified using a training set.

classification window can be identified using a training set (Fig. 2.7).

To further improve the detection performance and robustness, we adopt a multi-level

classification scheme to fuse the global spatio-temporal pattern across the multiple local

windows.

Multi-level classification scheme

The brain response to visual stimuli is not a localized pulse, instead it reflects time-evolving

neurophysiological activities distributed selectively in the brain. To capture the evolving

spatio-temporal pattern, we divide a long (“global”) EEG data epoch (e.g. 1 second wide)

time-locked to each image stimulus onset into multiple non-overlapping smaller (“local”)
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temporal windows (e.g. 50-msec wide). Instead of applying a linear classifier on a single

local temporal window, linear classifiers can be applied on multiple local temporal windows

to capture their individual signatures. To capture the evolving phenomenology of spatio-

temporal changes in overall brain responses to target detection over the extended temporal

window, outputs from multiple local classifiers can be fused to improve the overall detection

performance. This kind of two-level fusion scheme was first proposed in [25] and [23].

In chapter three, we evaluate the performance of fusing the multiple local classifiers’

outputs both at the feature-level and at the decision-level to discriminate between target

and non-target/distractor trials (Fig. 5.5). Two feature-level fusion methods (a Linear

Discriminant Analysis classifier known as Fisher’s linear discriminant and a Relevance Vec-

tor Machine classifier known as RVM) and one Bayesian decision-level fusion method are

implemented and their performance is evaluated in terms of the area under the Receiver

Operating Characteristic (ROC) curves (graphical plots of correct detection rate versus

false alarm rate for a binary classifier system as its discrimination threshold is varied).

More importantly, we propose an effective approach to evaluate the appropriate number of

local temporal windows that should be included in the global fusion. The cognitive process

only lasts a limited amount of time after stimulus onset. For global fusion, we only want

to include the local temporal windows related to the cognitive process. To include extra

temporal windows located beyond the cognitive process completion time adds unnecessary

computational load onto the system and as a result, degrades the processing throughput

and speed.

1.1.7 Enhancement of EEG-based single trial visual recogni-

tion signature detection using temporal and frequency

measures at various frequencies

According to the concept of induced/evoked brain rhythms, the EEG response related to

the visual target recognition can be decomposed into different oscillatory components and
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the frequency characteristic for these oscillatory components can be evaluated separately

from the amplitude characteristic. The previous studies had observed prolonged cognitive

event related synchronization (power-enhancement) or de-synchronization (power blocking)

responses in various frequency bands during experiments with certain cognitive tasks ([33],

[34], [35] and [36]) . While the temporal-domain analysis was found to have fairly accurate

detection performance by previous studies, the frequency-domain analysis can improve the

overall detection accuracy and robustness further if we fuse the frequency-domain result

with the temporal-domain result at the decision level.

In chapter four, using multiple human subjects across multiple test sets, we are able to

show that the frequency-domain classifiers have different visual target detection signatures

compared with the temporal-domain classifier. Significant performance improvement can

be achieved by fusing the temporal-domain decision and the frequency-domain decision.

1.1.8 Decision level fusion of EEG-based and pupillary re-

sponse feature based single trial visual recognition de-

tection

Pupil response is another psychophysiological modality we can use as a basis for single trial

target image detection tasks. The pupil is the opening in the iris of the eye that expands

and contracts, allowing light to pass to the retina. The expansion and contraction of the

pupil are mediated by the sympathetic and parasympathetic nervous systems (both are

parts of the peripheral nervous system). Task-evoked pupil dilations have been found to be

a function of the cognitive workload and attention required to perform the task ([3], [4]).

It also has long been known that the pupil dilates in response to emotion evoking stimuli

([37]).

In chapter five, we developed a pupillary response feature construction and selection

procedure to extract the useful features that perform the best under the linear discrimi-

nant analysis (LDA) classifier. The single-trial analysis using a LDA classifier is applied
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using this group of pupillary response features to detect the target detection signature. At

the same time, we apply a two-level LDA classification scheme on cognitive task-related

EEG response. The classification results based on the two modalities are further fused

at the decision level. The fusion results show significant improvement over classification

performance using any of the single modalities (EEG or pupil).

1.1.9 Multiple-subject decision fusion

To further improve the classification performance of the cortically-coupled computer vision

system, multiple human subjects can be used so that multiple decisions can be drawn on

the same image set by multiple subjects. The fused decisions based on the multiple indi-

vidual decisions are found to have improved classification performance than each individual

decision.

In chapter six, we examine the performance improvements that can be achieved by

fusing classification decisions drawn by multiple subjects on the same test sets.

1.2 Outline of the Dissertation

The remainder of the dissertation is organized as follows: Chapter two presents the ex-

periment setup, signal acquisition and preprocessing procedures. Chapter three examines

the role of multi-level classification schemes and the appropriate number of local time win-

dows that should be included in the multi-level classification scheme. Chapter four presents

the approach of using EEG-based frequency domain classifier to enhance the EEG-based

temporal domain analysis. Chapter five presents the single-trial detection method using

pupillary response and the decision fusion combining the pupillary response based results

and the EEG-based results. Chapter six examines the performance improvements that can

be achieved by fusing classification decisions drawn by multiple subjects. Chapter seven

concludes the dissertation and presents some ideas for future research.
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Chapter 2

Experiment Setup, Signal Acquisition and

Signal Preprocessing

2.1 Experiment Description

2.1.1 Participants

To evaluate the true benefit and speedup of the EEG and pupillary response based image

triage systems, multiple professional image analysts (both females and males) participated

and received no payment. All had normal or corrected to normal vision and reported no

history of neurological problems. All participants had at least five years of experience with

image analysis.

2.1.2 Behavioral paradigm

During the visual target detection task, participants were presented with a continuous

sequence of urban scene images. Images may or may not contain the object of interest

(a helipad). Each experimental run consisted of tens or hundreds of target images and

thousands of non-target/distractor images (distractors are objects that could be targets in

other contexts but were not part of the experimental task). For every experimental session,

each subject went through several experimental runs (5-6 minutes on average) while taking

a short break (1 minute) after each run to allow them to relax their eyes. The subjects

were instructed to push a button as soon as they detected a target image.

Images were presented at 10Hz (ten images per second) using a rapid serial visual pre-

sentation (RSVP) paradigm where a continuous sequence of images was presented rapidly

in a fixed (centered on the screen) location, thereby offering an alternative to the conven-

tional concurrent display of images in the space domain. RSVP can help users to browse
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faster than normal because the eyes do not need to move.

2.1.3 Stimuli

Computer-based image processing software was used to divide wide-area urban scene images

(each image covers approximately 300 square kilometers) into thousands of 500 x 500 pixel

image chips (Fig. 1.2 and 1.3). Target images were selected so that they contained targets

(helipads) located at the center of the images (examples are shown in Fig. 1.3 where

the green framed are non-target/distractor images and the red framed image is a target

image). The target image density ratio per sequence in different experiment sets ranges

from 1% to 5%. These ratios reflect the realistic target density of practical image detection

task (i.e., helipads in large metropolitan areas). Target versus non-target/distractor image

presentation events were recorded and EEG/pupillary data were segmented based on the

image presentation events.

2.1.4 Visual detection task and brain process categories

The chief brain cognitive functions related to the visual target detection are to distinguish

targets from their background and to compare them with brain memory content. The

perception must be initiated to associate the visual detected object with the existing ex-

perience stored in memory or at least find the similarity between the observed object and

existing experience related to the target in brain memory. For such reasons, different parts

of the brain are involved in the visual detection task.

A subject may engage in multitasking with multiple brain processes at the same time.

The possible brain processes (thoughts) can be categorized as ([38]):

Task-relevant thoughts: those thoughts which are directly related to performing the

visual detection task including pattern recognition, stimulus identification and response

selection.

Task-related thoughts: those thoughts which are related to the task but have no direct
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Figure 2.1: Locations of the 64 electrodes based on the international 10-20 EEG
electrode placement standard.

effect on performance. For example, the performance evaluation on himself/herself or other

subjects (“How am I doing compared to the other guys?”) or attitudes towards the task

(“The presentation speed is too fast.”).

Task-irrelevant thoughts: those thoughts which are unrelated to the task and have no

direct effect on performance. For example, a song that keeps running through your mind,

trying to decide where to have lunch after the experiment, worry or obsessive thoughts.

2.2 Signal Acquisition

2.2.1 EEG data acquisition

EEG data were acquired in a sound isolating chamber using a 64-channel Biosemi EEG cap

and amplifiers (http://www.biosemi.com) for human subjects while they were executing

visual detection tasks. The 64 EEG channels were placed according to the international

10-20 EEG placement standard shown in Fig. 2.1. Continuous EEG signals were digitized

at 512 Hz and subsequently sub-sample to 120Hz to reduce the computational load.
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Pupil Diameter Tracker

64 EEG Electrodes

Figure 2.2: EEG signal and pupil signal recorded simultaneously while the subject
views the image sequence.

2.2.2 Pupil data acquisition

Pupil data were acquired using an EyeLink1000 video based eye-tracking device (http://www.sr-

research.com) that offers a 1000Hz sampling rate using an infrared camera (Fig. 2.2 and

2.3). The area of the pupil was measured by the number of pixels. These area measures can

be converted to pupil diameters in millimeter units (13.5 pixels per square millimeter). The

data were further sub-sampled to 120Hz so that it can be synchronized with EEG data.

2.3 Signal Preprocessing

2.3.1 EEG signal preprocessing

The EEG signals observed on the scalp are in the microvolt range. Added to the actual

signals from the brain sources are external artifacts (such as signals generated from eye

blinks and facial muscle activities). The artifacts and other noises pose serious threats to

the accurate analysis of EEG signals because the EEG signals usually need to be amplified

tremendously before they can be used for further analysis.
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Signal Processing and
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Figure 2.3: Both the EEG and pupil data are fed into the signal processing and
classification algorithms for real-time processing.
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Figure 2.4: EEG preprocessing

A signal preprocessing procedure was applied on the recorded continuous EEG data

(Fig. 2.4). The DC baseline drifts caused by slow skin conductivity changes and abrupt

voltage jumps caused by muscle movements are removed by second-order Butterworth band-

pass filter (passband 2Hz-100Hz) (Fig. 2.5).

The muscle activity of eye blinks generates strong electrical signals that can have much

higher amplitudes than the signal amplitudes for signals of interest. To preserve the sig-

nals of interest, the electrical signals generated by eye blinks have to be removed. The

conventional method of eye blink removal is to detect eye blinks and simply discard the

corresponding segments of data and interpolate the corrupted segments with neighboring

valid data. In practice, this conventional method is not feasible because we would lose too

many useful signals of interest embedded in the corrupted segments due to frequent eye

blinks and eye motions.
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Figure 2.5: EEG signal before and after bandpass filtering; The DC baseline drifts
are removed.

A better algorithm for subtracting the artifacts using linear regression is proposed in [39]

and we adopt the method in our procedure. At the beginning of each experimental session,

participants were asked to have an eye blink calibration experiment during which they

were instructed to blink their eyes. This enables the determination of linear components

associated with eye blinks ([39]).

Let x(t) be the observed EEG reading, y(t) be the eye blink signal, and s(t) be the

remaining signals of interest, then

x(t) = ay(t) + s(t) (2.1)

where a is the linear coupling of the eye blink source y(t) with the EEG sensors. Given

a, we can generate a new signal x̃(t) which only contains the signal of interest after the

orientation of the eye blink is removed.

x̃(t) = (I − aaT )x(t) = (I − aaT )s(t). (2.2)

The coupling a can be derived by separating EEG channels into two sets: frontal channels

containing strong eye blink signals x1(t) and the remaining parietal, temporal and occipital

channels containing weak or no eye blink signals x2(t). The partitioned x(t) = [x1(t)
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Figure 2.6: EEG signal on frontal channel Fp1 before and after eye blink removal;
The eye blink sections of the signal are suppressed.

x2(t)] and correspondingly a(t) = [a1(t) a2(t)]. a1 can be identified as the first principal

component of x1(t) estimated during eye blinks because y(t) >> s(t) in blink periods.

Given a1, the estimated eye blink signal can be derived as ỹ(t)=aT
1 x1(t). a2 can be derived

with conventional regression as the linear predictors of x2 given ỹ(t). The derived signal of

interest x̃(t) is used for further processing so that the impact of eye blink artifact can be

projected out. A comparison of EEG signal on frontal channel Fp1 (which is located right

above the eye) before and after the eye blink removal is shown in Fig. 2.6.

After the eye blink artifact removal, the average voltage amplitude of 64 signal channels

was used as the reference signal and this reference signal was subtracted from each of the

signal channels in order to remove the unnecessary noise in the “reference free” data that

was acquired by active electrodes ([40]). The overall signal-to-noise ratio can be improved

by removing an averaged reference signal because 64 EEG channels have various noise levels

due to their locations and how well they are placed on the scalp.

The preprocessed EEG data (after bandpass filtering, eye blink removal and reference

removal) were segmented into 1-second epochs locked on visual stimulus onset events for

each trial (Fig. 2.7). As a result, 1-second epochs of 64-channel data were saved for each
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target and non-target/distractor trial. These segmented epochs were used as inputs for

single-trial analysis.

2.3.2 Pupil dilation signal preprocessing

Signal preprocessing procedures were applied on the recorded continuous pupillary data

(Fig. 2.8). The pupil size data can be corrupted by eye blinks. The pupil size monitoring

device has an eye blink detection mechanism implemented. First we removed all corrupted

pupil size data associated with eye blink regions. Then we interpolated data to fill in

missing data segments created by eye blinks. In Fig. 2.9 we illustrate an example of the

continuous pupil size data before and after the eye blink data segment interpolation.

Averaging filter was applied on the pupil area data to improve signal to noise ratio.

Pupil diameter data (in millimeter unit) were generated using pupil area data (13.5 pixels

per square millimeter).

Event markers for target/distractor stimulus onset were set upon the preprocessed pupil

diameter data (after eye blink segment interpolation, averaging filtering). As a result, the

data were segmented for each target and non-target/distractor event. The segmented data

were used for further classification analysis.

2.3.3 Summary

EEG data are high dimensional and noisy due to unpredictable neurophysiological processes

in the brain. As a result, a well-organized experiment setup and a proper sequence of signal

preprocessing procedures to clean up the noisy data are crucial to the success of classification

algorithms that will be applied as the next step.

Pupillary diameter is a single-channel signal and we generate multiple features based on

that single-channel signal. A proper sequence of signal preprocessing procedures to clean

up the noise is crucial to the success of classification algorithms that will be applied as the

next step.
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Figure 2.7: Epoch extraction: each epoch is 1-second long and time locked to
stimulus onset.
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Figure 2.8: Pupil signal preprocessing procedure.
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Figure 2.9: Pupil area data (unit: square millimeters) before and after eye blink
segment interpolation.
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Chapter 3

The Role of Multi-Level Fusion in
EEG-Based Classification for Image

Triage Tasks

3.1 Motivation

Recent advances in adaptive signal processing have demonstrated significant single-trial

detection capability by integrating EEG data spatially, across multiple channels of high

density EEG sensors ([21], [31]). A weighted sum of all electrodes over a predefined temporal

window can be used as a new composite signal that serves as a discriminating component

between responses to target versus non-target/distractor stimuli.

For both the trial-averaged approach and the spatially integrated single-trial approach

(see section 1.1.3), it was found that the event-related EEG response triggered by target

detection is most prominent at certain critical time periods after stimulus onset. For ex-

ample, Thorpe et al. ([28]) found that the trial-averaged ERP generated on target versus

non-target/distractor trials diverged very sharply at 150-200 milliseconds after stimulus on-

set for a go/no-go image categorization task. Parra et al. ([32], [21], [39], [31]) applied the

logistic regression linear classifier on EEG data in a predefined temporal window centering

around the time where the target trial averaged ERP is most sharply diverged from the

non-target/distractor trial averaged ERP and achieved significant single-trial classification

performance.

However, the brain response to visual stimuli is not a localized pulse, instead it reflects

neurophysiological activities located in selectively distributed sites of the brain evolving
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Figure 3.1: A plausible route of multiple processing stages between the retina and
the muscles of the hand during a categorization task. Information from the retina is
relayed by the lateral geniculate nucleus of the thalamus (LGN) before reaching the
primary visual cortex (V1). Processing continues in areas V2 and V4 of the ventral
visual pathway before reaching the visual areas in the posterior and anterior inferior
temporal cortex (PIT and AIT), which contain neurons that respond specifically to
certain objects. The inferior temporal cortex projects to a variety of areas, including
the prefrontal cortex (PFC), which contains the visually responsive neurons that
categorize objects. To reach the muscles in the hand, signals probably need to pass
via the premotor cortex (PMC) and primary motor cortex (MC) before reaching
the motor neurons of the spinal cord (reproduced from [41] with the permission of
publisher.

with a continuous time course (Fig. 3.1). To capture the evolving spatio-temporal pattern,

we propose to divide an extended (“global”) EEG data epoch (e.g. 900 milliseconds),

time-locked to each image stimulus onset, into multiple non-overlapping smaller (“local”)

temporal windows (e.g. 50 msec wide). Instead of applying a linear classifier on a single

local temporal window, linear classifiers can be applied on multiple local temporal windows

to capture their individual signatures (patterns). To capture the evolving phenomenology

of spatio-temporal changes in overall brain responses to target detection over the extended

temporal window, outputs from multiple local classifiers can be fused to improve the overall

detection performance. This kind of two-level fusion scheme was proposed in [25] and [23].

In this chapter, we evaluate the performance of fusing multiple local classifiers’ out-

puts, both at the feature-level and at the decision-level, to discriminate between target and

non-target/distractor images (Fig. 3.2). Two feature-level fusion methods (a Linear Dis-
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Figure 3.2: Two-Level fusion scheme: the multiple local classifier outputs are fused
either at the feature-level using a linear discriminant analysis classifier (LDA), a
relevance vector machine (RVM) classifier or at the decision-level using a Bayesian
decision fusion classifier.

criminant Analysis classifier known as Fisher’s linear discriminant and a Relevance Vector

Machine classifier known as RVM) and one decision-level fusion method are implemented

and their performance is evaluated in terms of the area under ROC curves (graphical plots

of correct detection rate versus false alarm rate for a binary classifier system as its discrim-

ination threshold is varied).

More importantly, we develop an effective approach to evaluate the appropriate number

of selected local temporal windows that should be included in the global fusion. The brain

response phenomenology to visual stimuli lasts a limited amount of time after stimulus on-

set. For global fusion, we only need to include a selected number of local temporal windows

that maximize our capability to observe/interpret the brain phenomenology. Extra tempo-

ral windows add unnecessary computational load onto the system, degrade the processing

throughput/speed and yet do not improve (sometimes even degrade) overall classification

performance. Due to inter-subject variability in brain response phenomenology, a “one

size fits all” solution should not be embraced. Instead, each subject should be evaluated

individually to identify the “threshold” local time window so that we can keep the number
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of local classifiers incorporated in the two-level fusion scheme at the minimum.

3.2 Methods

3.2.1 EEG signal classification using a single temporal win-

dow

The high density EEG system simultaneously records surface potentials in multiple elec-

trodes encompassing most of the head surface. The spatial diversity can be explored by

integrating information over space to improve resolution and signal-to-noise ratio (SNR).

By linearly combining EEG channels, an aggregate representation of the data can be

obtained ([31]). Let x(t) be the observed vector of multidimensional EEG amplitude reading

(after signal preprocessing) at time t, an optimal projection weighting vector wamp can be

derived based on a training set and so that a one-dimensional projection yamp(t) can be

generated:

yamp(t) = wamp
Tx(t) =

N∑

i=1

wampixi(t) (3.1)

where N is the number of EEG electrodes (channels). For the visual detection task, we

can find an optimal projection weight matrix wamp, which can generate a yamp(t) that

maximally discriminates at time t corresponding to target and non-target/distractor trial

conditions. It was found that the linear discriminators trained on certain crucial short

temporal windows have robust single-trial discrimination performance when these discrim-

inators were applied to analyze the spatio-temporal changes in neural processing ([31])

during visual cognitive tasks.

A more robust output can be derived by averaging over the T samples in the short

temporal window ȳamp = T−1
∑T

t=1 yamp(t). The hypotheses are H0 (non-target/distractor

in the image) and H1 (target in the image). The posterior likelihood that a trial belongs to

the target class is assumed to follow a logistic function distribution p(H1|yamp) = 1
1+e−ȳamp

([39]).
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ROC curves can be obtained using p(H1|yamp) and comparing it with a threshold θ. θ

can take on values within the range [0, 1]. The decision rule can be

{
p(H1|yamp) ≥ θ, uamp = 1
p(H1|yamp) < θ, uamp = 0

or vice versa where uamp = 1 represents a classifier’s decision to declare a target and uamp

= 0 represents a classifier’s decision to declare a non-target/distractor.

In this chapter, local LDA classifiers are applied on non-overlapping 50-millisecond

temporal windows with onset time ranging from the stimulus onset to 850 milliseconds

following the stimulus onset. Since the length of the trial epoch is 900 milliseconds, 18

local classifiers are trained and used to classify the trials in test sets.

3.2.2 Feature-level fusion of multiple local classifers’ outputs

While LDA classifiers can be applied on EEG data located in multiple local temporal

windows with different window onset times after stimulus events, the likelihood output

values of these local LDA classifiers can be used as inputs to a global classifier as illustrated

in Fig. 3.2. The objective of using the global classifier is to enhance the triage performance

by exploring the global spatio-temporal pattern.

In this chapter we applied two feature-level fusion methods: a linear discriminant anal-

ysis classifier (LDA) and a relevance vector machine (RVM) classifier while previous works

([25],[23]) only considered the LDA feature-level fusion. The feature-level classifiers are

applied on multiple local LDA classifiers’ outputs to capture the linear spatio-temporal

pattern across multiple local windows.

Feature-level linear discriminant analysis classifier (LDA)

By linearly combining local classifier outputs, an aggregate representation of global pattern

can be obtained. Let y be the observed vector of local classifier outputs, a weighting vector

wwindow can be derived based on training data to generate a one-dimensional projection
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z:

z = wwindow
Ty =

M∑

i=1

wwindowiyi (3.2)

where M is the number of local classifiers. The projection z serves as an estimate of global

pattern. The likelihood of a trial belonging to the target class is assumed to follow a logistic

function distribution p(H1|y) = 1
1+e−z .

ROC curves can be obtained using p(H1|y) and comparing it with a threshold η. η

can take on values ranged in [0 1]. The decision rule can be

{
p(H1|y) ≥ η, u = 1
p(H1|y) < η, u = 0

or vice

versa where u = 1 represents a classifier’s decision to declare a target and u = 0 represents

a classifier’s decision to declare a non-target/distractor.

Feature-level Relevance Vector Machine (RVM) classifier

A RVM classifier ([42], [43]) models the likelihood of a trial belonging to the target class

as a sigmoid logistic function distribution:

p(H1|y) =
1

1 + e−fRV M (y)
(3.3)

where fRV M is given by:

fRV M (y) =
M∑

i=1

αiK(y,yi) + b (3.4)

where K(y,yi) is the kernel function (the first order polynomial kernel is used in this study

where K(y,yi) = yTyi + 1), αi is the weight parameter for each local classifier output and

b is a threshold.

To determine the αi using a Bayesian approach, they are encoded to have a sparse prior:

statistically independent from each other and following a zero-mean, Gaussian distribution

with variance λ−1
i . In addition, a gamma distribution is assumed on the hyper-parameter
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λi. Therefore, prior αi are highly concentrated around 0 and generate very few nonzero

terms in fRV M (z).

Let λ∗i be the maximum a posterior (MAP) estimate of the hyperparameter λi. The

MAP estimate for the parameters αi can be obtained by maximizing the posterior distri-

bution of the class labels given the training set. It is equivalent to maximize the following

objective function:

J(α1, α2, ..., αM ) =
M∑

i=1

log(p(Hi|αi)) +
M∑

i=1

log(p(αi|λi
∗)) (3.5)

where the first term represents the likelihood of the class labels and the second term repre-

sents the prior on the parameters αi. Only the samples associated with nonzero coefficients

αi (called relevance vectors) can contribute to the decision function.

ROC curves can be obtained using p(H1|y) and comparing it with a threshold φ. φ

can take on values ranged in [0 1]. The decision rule can be

{
p(H1|z) ≥ φ, u = 1
p(H1|z) < φ, u = 0

or vice

versa where u = 1 represents a classifier’s decision to declare a target and u = 0 represents

a classifier’s decision to declare a non-target/distractor.

3.2.3 Decision-level fusion of multiple local classifers’ out-

puts

Decision-level fusion achieves fusion gain by combining binary decisions (given by individual

local classifiers) optimally to determine the presence or absence of a target in a stimulus

image. While the feature-level fusion relies on detecting a global pattern across multiple

local classifier outputs, decision-level fusion explores complementarities of local classifiers’

decisions ([44], [45]).

An effective approach is to use Bayesian inference where local classifiers’ binary decisions

(target or non-target/distractor) are treated as multiple hypotheses or evidences that need
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to be combined optimally. The hypotheses are H0 (non-target/distractor in the image)

and H1 (target in the image). The local classifier output vector has joint probability

density function P (y1, ..., yk|Hj) under hypothesis Hj , for j = 0, 1 and k = 1, 2, ...,M .

For individual local amplitude-based classifiers, they receive as inputs the N-dimension

observation vector x (amplitude) and make the decisions based on LDA classifier outputs

(given a fixed value of decision threshold). The decisions drawn from M individual local

classifiers are denoted as uk, where k = 1, 2, ...,M and uk = 0 if the kth local classifier

decides H0 and uk = 1 if the kth local classifier decides H1. Individual classifier’s decision

uk depends only on the local classifiers’ output vectors y.

uk = α(xk) =

{
0, kth amplitude-based local classifier decides H0,
1, kth amplitude-based local classifier decides H1.

The performance characteristic of individual classifier k can be specified by P(uk|Hj),

where P(uk=1|H0) = Pf k = probability of false alarm and P(uk=1|H1) = Pdk = probability

of detection.

The global decision fusion classifier receives decisions of the individual local classifiers

as its inputs. The decision at the fused level,

u = ϕ(u1, u2, ..., uk) =

{
0, global decision H0,
1, global decision H1.

depends only on local decisions, their

probability of detection Pdk, probability of false alarm Pf k and how complementary they

are to each other. Since multiple local LDA classifiers base their decisions on EEG raw

signals at non-overlapping temporal windows, the simplest assumption is that these deci-

sions are statistically independent. Assuming the local decision variables are statistically

independent, the likelihood ratio of the fused classifier λ is:

λfusion(u1, ..., uM ) =
P (u1, ..., uM |H1)
P (u1, ..., uM |H0)

=
M∏

k=1

P (uk|H1)
P (uk|H0)

=
M∏

k=1

(
Pdk

Pf k

)uk

M∏

k=1

(
1 − Pdk

1 − Pf k

)1−uk

(3.6)

The optimal fusion decision rule uses the fusion likelihood ratio as a classification decision

variable and compares it to a threshold β for decision u ([44]):
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u = F (u1, u2, ..., uM ) =

{
1, if λfusion(u1, ..., uM ) ≥ β

0, if λfusion(u1, ..., uM ) < β
(3.7)

The chosen threshold β determines the operating point on the ROC curve. By varying

the threshold β value, the entire decision fusion ROC curve can be obtained by deriv-

ing a series of Pdfusion(β) and Pffusion(β). The decision fusion classifier’s probability of

detection and false alarm can be calculated based on equation (3.8) and (3.9):

Pdfusion(β) =
∑

λfusion≥β

P (λ = λfusion|H1) (3.8)

Pffusion(β) =
∑

λfusion≥β

P (λ = λfusion|H0) (3.9)

In practice, to derive the realistic ROC curve, decisions made by individual local classi-

fiers should be compared with the ground truth so that P (u1, u2, ..., uM |H0), P (u1, u2, ..., uM |H1)

and λfusion(u1, ..., uM ) can be evaluated. Using a training set, we can obtain ROC curves

and choose the operating points associated with the specific local classifier thresholds θk,

and the specific global decision threshold β.

Fig. 3.3 and 3.4 illustrate the process of generating a global decision fused ROC curve

by fusing two local classifier ROC curves: originally there are two local ROC curves; each

of them has multiple operating points with different Pd and Pf (shown in Fig. 4.6 subplot

(a)). Every time, one operating point from one ROC curve can be fused with one operating

point from another ROC curve as illustrated in Fig. 4.6 subplot (b) and Fig. 4.5. Five

fused operating points can be generated based on where we set the threshold to compare

with the fused likelihood ratio in equation (3.7). Since each ROC curve can have multiple

(e.g. 100) operating points, a large number of fused operating points (as illustrated in Fig.

4.6 subplot (c)) can be generated to exhaust all operating point combinations. To evaluate

the optimum improvement achievable by the decision-level fusion, the convex hull of these
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points (as illustrated in Fig. 4.6 subplot (d)) is used as the fused ROC curve so that this

ROC curve stands for the best possible Area under ROC curve (Az) for the fused result.

This convex hull based ROC curve is used in this chapter to evaluate the best possible

decision fused classification performance.
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Decision  
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likelihood

Classifier A’s 
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00

for decision 
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for decision 
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Figure 3.3: Fusion of two operating points from two separate ROC curves, five
fused operating points can be generated depending on where the threshold is set
against four fused likelihood ratios. The corresponding decision rules are: (1) never
declare “detection” regardless the decisions made by both classifiers; (2) declare
“detection” if at least one classifier declares “detection”; (3) declare “detection” if the
better classifier (in terms of joint likelihood ratio) declares “detection”; (4) declare
“detection” only if both classifiers declare “detection” (consensus); (5) always declare
“detection” regardless the decisions made by both classifiers.

3.3 Results and discussion

3.3.1 Training and test runs

The same training set of stimulus images was used for three subjects. The number of target

and non-target/distractor images in the training set are listed in Table 3.1. The target

image density was about 10% (while this ratio can be smaller than 1% in real applications,

we have to have enough target trials to train the classifiers). The training set was used

to derive weights for local LDA classifiers at different temporal windows, to derive weights

for the global LDA classifier, to derive MAP weights estimate for the global RVM classifier
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Figure 3.4: Illustration of fusing two local ROC curves: (a) two local ROC curves
with multiple operating points; (b) one operating point on ROC curve 1 fuses with
one operating point on ROC curve two generates five fused operating points; (c) a
large number of fused operating points can be generated by exhausting all operating
point combinations based on ROC curve one and ROC curve two; (d) the convex hull
is used to represent the ideal fused operating points.
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Table 3.1: Number of target and non-target/distractor images in the training set.
Non-target/distractor images Target images

2415 256

Table 3.2: Number of target and non-target/distractor trials in three test sets.
Testset Non-target/distractor images Target images

1 3341 156
2 3464 27
3 2146 83

and to derive the operating points for the global decision fusion classifier.

The classification performance is evaluated based on multiple test sets. There are three

different test sets that were used in the experiments. The number of target and non-

target/distractor images of three test sets are listed in Table 3.2. The ratios of target

versus non-target/distractor images differ in different test sets so that we can evaluate the

classification performance for different target density profiles.

3.3.2 Local linear discriminant analysis (LDA) classifier per-

formance

The classification performance can be evaluated using the area under ROC curve Az: chance

performance corresponds to Az = 0.5 and perfect classification performance corresponds

to Az = 1. Fig. 3.5 shows the average Az time course for running LDA classifiers on 18

50-milliseond local time windows for each subject over three test sets (and variance error

bar). The area under ROC Az value are plotted as a function of the end of 50-millisecond

discrimination windows.

There is variability among different subject’s Az time course as a function of 50-

millisecond discrimination windows. For example, subjects 2 and 3 reach their Az peaks

earlier than subject 1 reaches hers. It shows that each subject has its own consistent visual

target detection signatures across consecutive local time windows after the visual stimulus

onset.

35



We can observe that the classification performance based on 50-millisecond windows is

poor at the first few windows after the visual stimulus onset due to the lag between stimulus

onset and response phenomenology. We can also observe that the Az values significantly

increase at later time windows: for subject 1, Az peaks at the 300-350 millisecond window;

for subject 2, Az peaks at the 200-250 millisecond window; for subject 3, Az peaks at the

150-200 millisecond window. A significant Az value in a specific local temporal window can

serve as the indication that the signature of the visual target detection is very strong for

the corresponding temporal window.
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Figure 3.5: Local LDA classifier performance is evaluated using average area under
ROC curve as a function of time for three subjects across three test sets. The variance
error bars across test sets are also plotted.

3.3.3 Feature-level fusion: feature-level linear discriminant

classifier (LDA) performance

A two-level classification structure described in Fig. 3.2 (with a global LDA classifier) is

used for detecting the global visual target detection signature. The outputs of multiple

local LDA classifiers are fed into the global LDA classifier as inputs. The global LDA

classifier projection weight matrix is trained based on the training set and the performance
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is evaluated on all test sets.

At the end of kth time window (where k can be 1, 2, ... 17 or 18), the outputs of

the local LDA classifiers from time window 1 to time window k are fed into the global

classifier. By feeding the local classifier outputs from all existing windows into the global

classifier, we can take full advantage of all existing information up to kth time window.

The average Az (and the variance errorbar) time course as a function of the end of 50-

millisecond discrimination windows for three subjects are plotted on Fig. 3.6, 3.7 and 3.8.

The classification performance (Az) of the two-level linear classifier structure improves as

outputs from more time windows join in and enhance the global classification performance.

Among all test sets for all subjects, as the k increases to a certain threshold, the clas-

sification performance reaches an asympotote. After that threshold time window, classifier

outputs from later time windows enhance the overall performance, insignificantly or even

degrade the overall performance. For subject 1, the 350-400 millisecond window is the

threshold window. For subject 2, the 200-250 millisecond window is the threshold window.

For subject 3, the 250-300 millisecond window is the threshold window. The performance

threshold can be interpreted as the point at which the classifier maximizes its capture of

the cognitive response phenomenology at this period of time and captured signatures from

later time windows do not contribute significant information.

3.3.4 Feature-Level fusion: feature-level RVM classification

performance

A two-level classification structure described in Fig. 3.2 (with a second-level RVM classifier)

is used for detecting the global visual target detection signature. The outputs of multiple

local LDA classifiers are fed into the second level RVM classifier as inputs. The second-level

RVM classifier is trained based on the training set and the performance is evaluated based

on the test set one, two and three.

At the end of time window k (where k can be 1, 2, ... 17 or 18), the outputs of the
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Figure 3.6: Subject 1: average area under ROC curve as a function of time for
different fusion schemes. The variance error bars across test sets are also plotted.

100 200 300 400 500 600 700 800 900
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

End time of sub−windows (milliseconds)

A
z

 

 

single window
multi−level with second−level LDA
multi−level with second−level RVM
multi−level with second−level decision fusion

Figure 3.7: Subject 2: average area under ROC curve as a function of time for
different fusion schemes. The variance error bars across test sets are also plotted.
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Figure 3.8: Subject 3: average area under ROC curve as a function of time for
different fusion schemes. The variance error bars across test sets are also plotted.

local LDA classifiers from time window 1 to time window k are fed into the global classifier.

By feeding the local classifier outputs from all existing windows into the global classifier,

we can take full advantage of all existing information up to time window k. The average

Az time course as a function of the end of 50-millisecond discrimination windows for three

subjects (and the variance errorbar) are plotted on Fig. 3.6, 3.7 and 3.8. The classification

performance (Az) of the two-level RVM classifier structure improves as outputs from more

time windows join in and enhance the global classification performance.

Again, among all test sets for all three subjects, the classification performance stops

improving significantly after a “threshold time window”. After that time window, classifier

outputs from later windows only enhance the overall performance insignificantly or even

degrade performance. For subject 1, the 350-400 millisecond window is the threshold win-

dow. For subject 2, the 200-250 millisecond window is the threshold window. For subject

3, the 250-300 millisecond window is the threshold window. For each subject, the classifi-

cation performance for the global RVM classifier reaches its threshold at approximately the

same time window as the classification performance for the global LDA classifier reaches

its threshold.
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3.3.5 Global decision-level fusion classification performance

A two-level classification structure described in Fig. 3.2 (with a global decision fusion

classifier) is used for exploring the complementarities among decisions made by local LDA

classifiers. The decisions (instead of classifier outputs) given by local classifiers are fused

to gain enhanced global classification performance. Even though theoretically we can fuse

decisions from as many local classifiers as we want, the computational load and the number

of training cases required to train a global decision fusion classifier increase substantially

as the number of local classifiers increases. We only attempted fusion of two local LDA

classifier decisions in this chapter. At the end of time window k (where k can be 1, 2, ... 17

or 18), decision fusions are attempted on all possible combinations of two local classifiers

located at existing 50-millisecond time windows i and j (i≤k, j≤k, i�=j) and the optimal

combination that gives the best area under ROC curve (Az) is used as the performance

measure of decision fusion for kth time window.

As we can observe from the performance plots (Fig. 3.6, 3.7 and 3.8), the classification

performance improves when additional useful information are added by the new local classi-

fier’s decision and the performance stops improving after a “threshold time window” is hit.

That implies that decisions given by the local classifiers after the “threshold time window”

do not add additional performance. For each subject, the classification performance for the

decision-level fusion classifier reaches its threshold at approximately the same time window

as the classification performance for the global LDA classifier and the global RVM classifier

reach their threshold.

In practice, we can identify the two best local time windows during training and use

the same two local times windows for all test sets.

3.3.6 Appropriate Number of Local Classifiers

Regardless of the global classifier we choose to use, the location of the “threshold time

window” is consistent for each individual subject. To include the local classifier outputs
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from time windows beyond the “threshold time window” into the global classifier does

not contribute significant performance. We are better off to exclude these additional local

classifiers to reduce the computational load, to increase the detection speed and to improve

the processing throughput.

For subjects 1 and 3, the “threshold time window” is located at 350-400 milliseconds.

For subject 2, the “threshold time window” is located at 200-250 milliseconds. Instead of

using all 18 local classifiers that covers from stimulus onset to 900 milliseconds following

stimulus onset, we should use eight local classifiers that covers from stimulus onset to 400

milliseconds for subjects 1 and 3, and we should use five local classifiers for subject 2 that

covers from stimulus onset to 250 milliseconds. The processing speed can be improved

accordingly. For example, the processing speed for subject 2 can be improved 3.6 times by

using five local classifiers instead of 18 local classifiers.

3.3.7 Comparison of global classifiers

On average, the global RVM classifier and decision-level fusion classifier (using two local

classifier decisions) show better performance than the global LDA classifier. RVM classifier

is less susceptible to the noise and channel failure because it only uses the relevance vectors

for its decision function and decision-level fusion classifier is less susceptible to the noise

because decision level is more robust and resistant to noise and channel failures.

Compared to the LDA classifier, the RVM classifier and the decision-level fusion classi-

fier take longer time for training: the RVM classifier has a time-consuming hyperparameter

estimation routine while the decision level fusion classifier has to exhaust all combinations

of operating points from two local classifiers’ ROC curves in order to find an optimized

fused operating point.

On the other hand, the decision-level fusion classifier requires less computational time

for testing. The decision-level fusion classifier using the data from two local classifiers can

achieve equivalent or better performance than the LDA classifier (that requires data from
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five local time windows for subject 2; data from seven to eight local times windows for

subjects 1 and 3 to achieve their maximum performance). In addition, the decision-level

classifier only needs to know two local classifier decisions and it would make the fused

decision accordingly and there is no calculation needed. The RVM classifier takes a similar

amount of computational time as the LDA classfier for test trials but achieves a little better

accuracy than the LDA classifier.

In real applications, the training set is usually much smaller than the testing set and yet

the classification speed for the test set is more crucial. Therefore, the global decision-level

fusion classifier is a favorable solution.

3.4 Summary

This chapter applies a series of fusion techniques to EEG signals during RSVP presentation

of visual imagery, in order to improve the accuracy of single-trial neural signature detection

of object recognition events. Using a two-level fusion scheme, multiple linear classifiers are

applied on EEG amplitude signals from multiple non-overlapping temporal windows and the

local classifier outputs are fed into a global feature-level classifier (either an LDA classifier

or a RVM classifier) to establish the weighting of each local classifier’s output. In the

alternative Bayesian decision fusion scheme, individual decisions obtained by different local

classifiers are combined at the decision-level using Bayesian fusion. The experiment results

show that the decision-level global fusion and the global fusion scheme with a global feature-

level RVM classifier give better classification performance in terms of the area under ROC

curve than the two-level fusion scheme with a global LDA classifier scheme. We also find

that, for each of the individual subjects, the performance of different fusion schemes peaks

at approximately the same time period following the visual stimulus onset. The location

of the “threshold” time window is unique for each individual subject due to his/her unique

brain response phenomenology. In real application systems that require fast processing

speed and high processing throughput, the “threshold” time window for a subject can be
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identified using a training set so that we can keep the number of local classifiers incorporated

in the two-level fusion scheme at a minimum. The global decision-level fusion classifier using

decisions from only two local classifiers can achieve better classification accuracy than the

global feature-level LDA classifier. Even though the decision-level fusion classifier needs

longer training time, the classification computational load for test trials can be reduced

because it only needs decisions from two local classifiers and no computation is needed for

the fused decision.
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Chapter 4

Enhancement of EEG-Based Single Trial

Visual Recognition Signature Detection

Using Temporal and Frequency Measures

at Various Frequencies

4.1 Motivation

While raw EEG signals measured on the scalp are in the form of voltage amplitude, spec-

tral band power measures are frequency-domain signal features that can be extracted from

the raw voltage data. According to the oscillatory brain theory developed by Basar et al.

([46], [26] and [47]), EEG consists of the activities of an ensemble of generators producing

rhythmic oscillations in different frequency bands. The synchronized evoked (event-related)

rhythms (oscillations) can be generated when the generators are coupled in a coherent way

by means of a sensory stimulus or a cognitive event. After stimulation, responses within

certain oscillatory frequency bands reflect different cognitive processes and mental states.

These responses are distributed in the brain in a selective way (they exist in the brain stem,

in the cerebellum, in the thalamus, in the limbic system, and in sensory/association/motor

areas of the cortex). The event-related spectral band power measures can be used to quan-

tify the event-related synchronization/de-synchronization that results in spectral power

enhancement ([35]) or blocking within certain frequency bands ([48]). Thus, it makes sense

to relate the oscillating spectral band power to the dynamics of cognitive processes.

Multiple previous studies provide evidences that the EEG power patterns in the delta,

theta, alpha and gamma frequency ranges are related to the cognitive performance ([47],

[34], [49], [33]). For example:

1. 1. The delta responses were found to be related to target matching recognition and
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decision making tasks ([50]).

2. The event-related theta oscillations were found to be involved in several tasks (focused

attention, signal detection, anticipation and expectation) ([50]).

3. The alpha activity was found to be strongly correlated with phasic alertness (e.g.

alertness change after presentation of a target stimulus) and expectancy ([49]).

4. The gamma oscillatory neural activity was related to the comparison of memory

contents with stimulus-related information and the utilization of signals derived from this

comparison. The early gamma-band response reflects the match between bottom-up and

top-down information and the late gamma-band activity reflects the readout and utilization

of the information resulting from this match ([51]).

5. The desynchronized neural firing (power decrease) within the alpha band and the

synchronized neural firing (power increase) within the theta band can found in response to

a variety of cognitive tasks ([52], [49]).

6. It was found that the frequency components of the event-related potential vary

independently of each other in terms of their relation to the event and their topographic

distribution ([46]).

In this chapter, single-trial analysis using a two-level linear discriminant analysis (LDA)

scheme is applied to EEG spectral power amplitude within delta, theta, alpha and gamma

bands to detect spatio-temporal patterns located at various frequencies. We found that

the spectral power spatio-temporal patterns at various frequencies are different from the

temporal-domain (voltage amplitude) spatio-temporal pattern, and therefore can be used

to enhance the overall detection performance.

In addition, this chapter presents a decision-fusion based enhancement method for de-

tecting brain activity pattern during visual target recognition process by combining the

temporal and the frequency based classification results.

A popular and simple way to think about the relationship between brain (neural ensem-

bles) dynamics and cognitive states is to describe the sequence of brain areas that “light up”
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during the various stages in the performance of a cognitive task ([53]). Consequently, the

evolving spatial pattern in the temporal domain is the most important basis for cognitive

state detection.

A more complex view treats the cognitive dynamics as reverberations of reentrant feed-

forward and feedback processes in a complex neural network ([54]). The interactions of

these parallel, reentrant feed-forward and feed-back processes are better represented by

the coordinated associated oscillations of neuron cell assemblies in a hebbian sense ([55],

[52]). From this perspective, we should focus on analyzing the frequency characteristics

to emphasize the role of oscillation synchronization (power enhancement) and oscillation

de-synchronization (power blocking). In this chapter, a multi-level LDA method is applied

to analyze the EEG delta/theta/alpha/gamma band power amplitude over multiple EEG

channels after visual stimulus onset and draw detect/no-detect decisions.

Since the voltage amplitude based (referred as temporal-domain respose/method in

this chapter from now on) and the power spectral amplitude (referred as frequency-domain

response/method in this chapter from now on) based decisions are founded on alternative

perspectives on brain cognitive dynamics, the fused classification decision derived using

the combination of two decisions can significantly improve target detection accuracy and

reduce false alarm rate.

4.2 Methods

4.2.1 Selective distributed oscillatory systems in the brain

According to the oscillatory brain theory, the brain can generate evoked rhythms (oscil-

lations) when it is brought into an excited state by means of a sensory stimulus or a

cognitive event. These responses are distributed selectively. The event related spectral

power measure can be used to quantify the event-related synchronization that results in

spectral power enhancement ([35]) or event-related de-synchronization that results in spec-

tral power blocking within certain frequency bands ([48]). Thus, it makes sense to relate
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the oscillating spectral power to the dynamics of cognitive processes.

We use the EEG recordings to reveal the activities of an ensemble of neuronal oscilla-

tory generators producing synchronized oscillatory activities at various frequency bands in

response to the cognitive events. The EEG frequencies most commonly under examinations

by cognitive neuroscientists range from 0.5Hz to 100Hz. EEG frequencies are traditionally

subdivided into frequency bands such as delta (1-4 Hz), theta (4-8 Hz), alpha (8-12 Hz),

beta (13-30 Hz) and gamma bands (30-60 Hz) ([2]). For example, the amount of EEG power

enhancement/blocking in the theta and alpha frequency range were found to be related to

cognitive events ([34] [33] [26]).

4.2.2 Time-frequency power map of EEG time series

EEG records a time series of electrical voltages across multiple sites on the scalp. EEG

signals are temporal-domain voltage signals in their raw format. Demiralp et al. ([56])

pointed out that the event-related EEG potential analyses were traditionally executed in

the time-domain, where only the EEG amplitude and latencies of some prominent peaks

and valleys (e.g. P300 response) are considered; therefore, the information contributed by

frequency domain is missing. On the other hand, in frequency-domain representation (e.g.

conventional frequency power spectra), the temporal relations are lost. Demiralp went on

to claim that it is more beneficial to analyze the EEG signals in time-frequency planes so

that patterns at both domains can be captured.

Time-frequency analysis reveals the temporal characteristics of the EEG signal by its

spectral components in the frequency domain so that one can determine both the dominant

frequency of variability and their development over time. Short-Time Fourier Transform

(STFT), developed by Gabor ([57]), provides the time information by computing different

Fourier transforms for consecutive time intervals (windows), putting them together and

maps a 1-D time domain signal to a 2-D time-frequency signal. The drawback is that once

a particular size is chosen for the time window, that window is the same for all frequencies

47



(the resolution is set for both time and frequency). A wide analysis window offers poor

time resolution but good frequency resolution. A narrow analysis window, on the other

hand, offers good time resolution but poor frequency resolution.

The wavelet transform ([58]) overcomes the preset resolution problem by generating

windows from dilation/compression of translating (shifting) and/or scaling a single pro-

totype basis function (so-called parent wavelet function). Narrower windows are used for

high frequency analysis and wider windows are used for low frequency analysis. While

discrete wavelet transform (DWT) produces scales and positions based on powers of 2

(dyadic scales and positions), the continuous wavelet transform (CWT) produces every

scale in range. The redundancy in the continuous wavelet transform offers a more accurate

time-frequency spectrum.

To accurately observe the spectral power of the EEG signal at certain frequency bands

after stimulus onset, the continuous wavelet transform (CWT) based time-frequency de-

composition ([59]) is performed on multi-channel EEG time series. For each single trial,

we have a time series of Q samples (for a 500-millisecond epoch, Q = 60 samples with 120

Hz sampling rate) of xi for EEG channel i. The continuous wavelet transform coefficient is

defined as the sum over all time of the signal multiplied by scaled, shifted versions of the

parent wavelet function ψ(t):

Ci(t, f) = CWT (xi(t), ψ(t), τ, s) =
1√
(|s|)

∫ 0.5s

0
xi(t)ψ∗

(

t− τ

s
)dt (4.1)

where τ denotes the translation parameter and s denotes the scale parameter (s = 1/f

where f is the frequency) that defines the dilation/compression of the parent wavelet. By

choosing different types of wavelets and dilating/compressing them, we can access different

time and frequency resolutions in the time-frequency plane. In our analysis, the wavelet

function selected is the Morlet wavelet ψ(t) = e−t2/2cos(5t) ([60]) because it strikes a good

balance between time and frequency resolutions.

While the inputs are EEG signal xi, a time window (t1, t2) and a frequency range
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(f1, f2), a matrix of the time-frequency power decomposition can be obtained using:

Pi(t, f) = |Ci(t, f)|2 (4.2)

where t is any time between t1 and t2 and f is any frequency between f1 and f2. Each

element of the Pi(t, f) matrix gives us the instantaneous power at a specific time and

frequency combinational cell on the time-frequency plane for EEG channel i.

Examples of average target response and non-target/distractor response for raw voltage

amplitude signals and spectral power amplitude signals at different frequency bands are

shown in Fig. 4.1 based on subject 1’s data. Frequency bands illustrated are the delta

band, theta band, alpha band, beta band and gamma band. The average responses are

based on 2415 non-target/distractor trials and 256 target trials. The plots on the top show

the average response for frontal channel 38 (Fz). The plots on the bottom show the average

response for rear channel 31 (Pz). The plots on the left show the average response for left

parietal channel 14 (C5). The plots on the right show the average response for right parietal

channel 51 (C6). Significant differences can be found:

(1) Between average temporal domain response and average frequency domain responses

at different frequency bands for the same channel. For example, the frontal channel 38 (Fz)

has a negative peak around 200 milliseconds and a positive peak around 300 milliseconds

after stimulus onset for the average temporal domain response; the same channel has peaks

and valleys at different time intervals after stimulus onset for the average frequency domain

responses at different frequency bands.

(2) Among average frequency domain responses at different frequency bands for the

same channel. For example, the frontal channel 38 (Fz) has a positive peak between 500-

600 milliseconds after stimulus onset for the average delta band response, a positive peak

around 500 milliseconds after stimulus onset for the average theta band response, a positive

peak around 600 milliseconds after stimulus onset for the average theta band response, a

positive peak around 100 milliseconds and a negative peak around 500 milliseconds after

stimulus onset for the average beta response, a negative peak around 500 milliseconds after
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stimulus onset for the average gamma band response.

(3) Among channels for the same average temporal domain response or for the same

average frequency domain response. For example, the average alpha band power response

has early peaks for channel 14 (C5) and 51 (C6), but late peaks for channel 31 (Pz) and 38

(Fz).
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Figure 4.1: Topographic plots of normalized after-stimulus voltage (temporal do-
main) and frequency spectral power (frequency domain) amplitudes located at dif-
ferent frequency bands for one of the subjects; each topographic plot is based on
50-millisecond temporal window; the plot shows the evolving patterns from the stim-
ulus onset to 500 milliseconds after onset.

Based on the above observations, we postulate that EEG temporal response and fre-

quency responses at different frequency bands have different spatio-temporal signatures

(patterns). We could draw independent classification decisions by detecting these unique

spatio-temporal signatures located at different frequency bands.
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4.2.3 EEG temporal domain based classification

The spatial diversity of a high density EEG system can be explored by integrating in-

formation over space to improve resolution and signal-to-noise ratio (SNR). By linearly

combining EEG voltage amplitude data from multiple channels, an aggregate representa-

tion of the data can be obtained ([31]). Let x(t) be the observed vector of multidimen-

sional EEG voltage amplitude reading (after signal preprocessing) at time t, an optimal

projection weighting vector wvoltage can be derived based on a training set and so that a

one-dimensional projection yvoltage(t) can be generated:

yvoltage(t) = wvoltage
Tx(t) =

N∑

i=1

wvoltageixi(t) (4.3)

where N = 64 is the number of EEG electrodes (channels). For the visual detection task,

we can find an optimal projection weight matrix wvoltage, which can generate a yvoltage(t)

that maximally discriminates at time t corresponding to target and non-target/distractor

trial condition.

By capturing neurophysiological activities located in selectively distributed sites of the

brain evolving with a continuous time course, a two-level fusion scheme ([61]) can achieve

further classification performance by fusing the output values of multiple first-level LDA

classifiers at the feature-level (illustrated in Fig. 4.3). Let yvoltage be the observed vector

of classifier outputs, a weighting vector wvoltagewin can be derived based on training data

to generate a one-dimensional projection zvoltage:

zvoltage = wvoltagewin
Tyvoltage =

M∑

i=1

wvoltagewiniyvoltagei (4.4)

where M is the number of first level classifiers. The projection zvoltage serves as an estimate

of the global pattern across multiple first-level classifier temporal windows.

In this chapter, LDA classifiers are applied to non-overlapping 50-millisecond temporal

sub-windows with onset time ranging from 0 milliseconds to 450 milliseconds following the
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Figure 4.2: Top subplot shows the average target and non-target/distractor re-
sponses on a single channel; the bottom subplot shows the difference between aver-
age target and non-target/distractor responses; The whole epoch can be divided into
multiple non-overlapping 50-millisecond sub-windows.
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Feature Level Fusion: 
LDA classifier

LDA 
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yvoltage or ypower

Zvoltage or Z power

Figure 4.3: Feature-level fusion of multiple classifiers’ outputs.

stimulus onset (Fig. 4.2). Since the trial epoch length is 500 milliseconds, M = 10 classifiers

based on first-level 50-millisecond windows and one feature-level classifier are trained and

used to test the trials.

4.2.4 EEG spectral band power based classification

In addition to applying the two-level LDA analysis on EEG voltage amplitude, we apply

the two-level linear discrimination analysis on EEG spectral powers inside the delta, theta,

alpha, beta and gamma frequency bands over the full set of 64 EEG channels:

ypower(t) = wpower
Tp(t) =

N∑

i=1

wpoweripi(t) (4.5)

where N = number of electrodes = 64 and p(t) is the vector of multidimensional power

in a specific band. The hypothesis here is that each frequency band has its unique spatio-

temporal signature.

To explore the possible coupled power change patterns in the theta and alpha bands

(power decrease in the alpha band is closely coupled with the power increase in the theta
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band) ([49]), we also applied the two-level linear discrimination analysis on EEG power

inside theta and alpha bands over the full set of 64 EEG channels:

ypower(t) = wpower
Tpαθ(t) =

NP∑

i=1

wpoweripαθ(t) (4.6)

where pαθ is the vector of multidimensional power in both theta and alpha bands, NP =

number of electrodes x 2 = 128 because both the theta and the alpha band powers are cal-

culated for each EEG channel. The corresponding ypower(t) is the maximal discriminating

projection of the EEG power at time t corresponding to target and non-target/distractor

trial condition.

The same feature-level fusion scheme as we used in temporal domain based feature-level

fusion (illustrated in Fig. 4.3) can be used to fuse the LDA classifiers’ outputs and to boost

the classification performance by exploring the global power based spatio-temporal pattern.

By linearly combining LDA classifiers’ outputs, an aggregate representation of the global

pattern can be obtained. Let ypower be the observed vector of local classifiers’ outputs,

a weighting vector wpowerwin can be derived based on the training data to generate a

one-dimensional projection zpower:

zpower = wpowerwin
Typower =

M∑

i=1

wpowerwiniypoweri. (4.7)

where M = 10 is the number of local temporal windows. The projection zpower is the

estimate of the global power pattern.

Similar to what we did for the temporal-domain classification, LDA classifiers are ap-

plied to non-overlapping 50-millisecond temporal windows with onset time ranging from 0

milliseconds to 450 milliseconds following the stimulus onset (Fig. 4.2). Since the length of

the trial epoch is 500 milliseconds, 10 classifiers based on first level 50-millisecond windows

and a feature-level classifier are trained and used to test the trials in test sets.
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4.2.5 Decision-level fusion

In the two-level classification scheme introduced in the previous sections, separate classifica-

tion decisions, one based on voltage (temporal-domain) amplitude and the others based on

spectral power (frequency-domain) amplitude at specific frequency bands, can be derived.

While temporal-based classifier captures the evolving activity levels of neuron at differ-

ent spatial locations, frequency-based classifiers capture the underlying oscillation patterns

associated with detection, decision making, attention and memory associative tasks. An ef-

fective fusion approach is to use Bayesian inference ([62], [44], [63], [64] and [45]) where clas-

sifiers’ binary decisions (target or non-target/distractor) are treated as multiple hypotheses

or evidences that need to be combined optimally. This decision-level fusion method can

improve the overall classification performance further by combining the temporal-domain

decision and the frequency-domain decision (illustrated in Fig. 4.5 and 4.4).

The decision-level fusion optimally fuses all local decisions according to the operating

points on their ROC curves at which the local decisions were made with certain prob-

ability of detection (Pd) and probability of false alarm (Pf ). The EEG voltage ampli-

tude observation vector has joint probability density function P (x|Hj) = P (x1, ..., xN |Hj)

under hypothesis Hj , for j = 0 (non-target/distractor), 1 (target) and N = 64. The

EEG delta/theta/alpha/gamma power observation vector has joint probability density

function P (p|Hj) = P (p1, ..., pN |Hj) under hypothesis Hj , for j = 0, 1 and N = 64.

The EEG theta/alpha power observation vector has joint probability density function

P (p|Hj) = P (p1, ..., pNP |Hj) under hypothesis Hj , for j = 0, 1 and NP = 128. Feature-

level LDA classifiers receive as inputs the first-level LDA classifiers’ outputs. The decisions

drawn by feature-level classifiers are denoted as uk, for k = 1 (temporal-domain) and k = 2

(frequency-domain), where uk = 0 if kth classifier’s decision is H0 and uk = 1 if kth clas-

sifier’s decision is H1. Individual classifier’s decision uk depends only on the observation

vectors x and p.
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u1 = α(x) =

{
0, H0 (classified as non-target/distractor) ,
1, H1 (classified as target).

(4.8)

u2 = β(p) =

{
0, H0 (classified as non-target/distractor) ,
1, H1 (classified as target).

(4.9)

The performance characteristics of kth classifier can be specified by P(uk|Hj), where

P(uk=1|H0) = Pf k = the probability of false alarm (false positives) and P(uk=1|H1) =

Pdk = the probability of detection (true positives). Using these probabilities, the likelihood

ratio value of a binary decision variable has a simple form as

λdecision(uk) =
Pr(uk|H1)
Pr(uk|H0)

=

{
Pdk
Pfk

if uk = 1
(1−Pdk)
(1−Pfk) if uk = 0

(4.10)

The decision-level fusion classifier receives the decisions of the individual classifiers as

its inputs. The decision at the fused level,

u = ϕ(u1, u2) =

{
0, global decision H0,
1, global decision H1.

(4.11)

depends only on local decisions and their probability of detection Pdk and probability of false

alarm Pf k. Since temporal and frequency domain based classifiers derive their decisions on

different aspects of EEG raw signals, the simplest assumption is that these two decisions

are statistically independent. the fused likelihood ratio λ can be derived as:

λfusion(u1, u2) =
2∏

k=1

λ(ui) =
2∏

k=1

P (uk|H1)
P (uk|H0)

=
2∏

k=1

(
Pdk

Pf k

)uk

2∏

k=1

(
1 − Pdk

1 − Pf k

)1−uk (4.12)

The optimal fused decision rule uses the fusion likelihood ratio as a classification decision

variable and then compares it to threshold β for decision u ([44]):
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u = F (u1, u2) =

{
1, if λfusion(u1, u2) ≥ β

0, if λfusion(u1, , u2) < β
(4.13)

The chosen threshold β determines the operating point on the fused ROC curve. By

varying the threshold β value, five operating points can be derived based on one operating

point chosen on the temporal-domain classifier’s ROC curve and another operating point

chosen on the frequency-domain classifier’s ROC curve (illustrated in Fig. 4.5).

The decision fusion classifier probability of detection and false alarm can be calculated

based on equation (5.10) and (5.11):

Pdfusion(β) =
∑

λfusion≥β

P (λ = λfusion|H1) (4.14)

Pffusion(β) =
∑

λfusion≥β

P (λ = λfusion|H0) (4.15)

The entire decision fused ROC curve can be obtained by deriving a series of Pdfusion(β)

and Pffusion(β) using multiple combinations of operating points on temporal and frequency

domain based classifiers’ ROC curves. Fig. 4.6 illustrates the process of generating a fused

ROC curve by fusing two ROC curves. There are two ROC curves; each of them has

multiple operating points with different Pd and Pf (shown on subplot (a)). Every time, one

operating point from one ROC curve can be fused with one operating point from another

ROC curve as illustrated in subplot (b) and Fig. 4.5. Five fused operating points can be

generated based on where we set the threshold to compare with the fused likelihood ratio in

equation (5.8). Since each ROC curve can have multiple (e.g. 100) operating points, a large

number of fused operating points (as illustrated in subplot (c)) can be generated to exhaust

all operating point combinations. To evaluate the optimum improvement achievable by the

decision-level fusion, the convex hull of these points (as illustrated in subplot (d)) is used

57



as the fused ROC curve so that this ROC curve stands for the best possible Area under

ROC curve (Az) for the fused result.

In practice, to derive the decision-level fused ROC curve, the decisions made by the

temporal-domain and frequency-domain feature-level classifiers should be compared with

the ground truth using a training set so that P (u1, u2|H0), P (u1, u2|H1) and λfusion(u1, u2)

can be evaluated empirically. Using a training set, we can obtain ROC curves and choose the

operating points associated with the temporal-domain feature-level classifier, the frequency-

domain feature-level classifier and the decision-level classifier.

Feature-Level LDA 
Classifier

LDA 
Classifier

t1-t2

LDA 
Classifier

t2-t3

LDA 
Classifier

tn-1-tn

Feature-Level LDA 
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Classifier

t1-t2

LDA 
Classifier

t2-t3

LDA 
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Decision Level 
Fusion Classifier

Temporal Domain Frequency Domain

Figure 4.4: Decision-level fusion to combine the temporal-domain classification re-
sults and the frequency-domain classification results; the first-level LDA classifiers ap-
ply to different temporal windows; the second-level LDA classifiers are feature-level
classifiers; the decision-level fusion classifier fuses the decisions made by the fea-
ture-level classifiers.

4.3 Results and Discussion

4.3.1 Training and Test Runs

The same training set of stimulus images was used for four subjects. The number of target

and non-target/distractor trials in the training set are listed in Table 4.1. The training
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Figure 4.5: Fusion of two operating points from two separate ROC curves, five
fused operating points can be generated depending on where the threshold is set
against the four fused likelihood ratios. The corresponding decision rules are: (1)
never declare “detection” regardless the decisions made by both classifiers; (2) declare
“detection” if at least one classifier declares “detection”; (3) declare “detection” if the
better classifier (in terms of joint likelihood ratio) declares “detection”; (4) declare
“detection” only if both classifiers declare “detection” (consensus); (5) always declare
“detection” regardless the decisions made by both classifiers.

Table 4.1: Number of target and non-target/distractor images in the training set.
Non-target/distractor images Target images

2415 256

set was used for training the LDA classifiers applying to different 50-millisecond temporal

windows, the temporal based feature-level LDA classifier, the power (frequency) based

feature-level LDA classifier and the decision-level classifier (Fig. 4.4).

The classification performance is evaluated based on multiple test sets. There were two

different test sets used in the experiments. The number of target and non-target/distractor

images of the two test sets are listed in Table 4.2. Four subjects experimented with both

test sets.
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Figure 4.6: Illustration of fusing two ROC curves: (a) there are multiple operating
points on each ROC curve; (b) five fused operating points can be generated by fusing
any two operating points from each ROC curve; (c) a large number of fused operating
points can be generated by exhausting all combinations of individual ROC curves’
operating points; (d) the convex hull of all the fused operating points can be used to
represent the optimum improved ROC curve for decision fused results.
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Table 4.2: Number of target and non-target/distractor images in the test sets.
Test Set Non-target/distractor images Target images

1 3341 156
2 3464 27

sum 6805 183

Table 4.3: Signals used for different types of classifiers.
Classifiers Signals used for the classification

voltage 64 channels of EEG voltage amplitude
delta frequency band 64 channels of delta band power amplitude
theta frequency band 64 channels of theta band power amplitude
alpha frequency band 64 channels of alpha band power amplitude
beta frequency band 64 channels of beta band power amplitude

gamma frequency band 64 channels of gamma band power amplitude
theta/alpha frequency band 128 channels of theta/alpha band power amplitude

4.3.2 Temporal-domain and frequency-domain classification

results

Classification results are computed based on raw EEG voltage in the temporal domain and

power amplitude at different frequency bands (Table 4.3). The average ROC curves (graph-

ical plots of correct detection rate versus false alarm rate for a binary classifier system) of

two test sets for every subject are plotted on Fig. 4.7. The classification performance can

be evaluated using the area under ROC curve (Az) as the metric. Operating points on an

ROC curve with larger Az have either a higher probability of detection (Pd) and/or a lower

probability of false alarm (Pf) compared to operating points on an ROC curve with lower

Az. The average Az for all four subjects using two test sets are listed in Fig. 4.8.

Each individual frequency band has its own unique classification performance evaluated

by ROC curves, and they are different from the classification result using voltage amplitude

(in temporal domain). For subjects 1, 2 and 4, the classification results using the alpha band

spectral power information outperform the classification result using raw voltage amplitude

signal in terms of the area under the ROC curve. For all four subjects, classification results

using the beta band power have very poor performance (low Az) while delta band, theta
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(a) Subject 1 single band ROC curves
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(b) Subject 2 single band ROC curves
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(c) Subject 3 single band ROC curves
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(d) Subject 4 single band ROC curves

Figure 4.7: ROC curves derived based on temporal domain voltage amplitude and
the frequency spectral powers located at different frequency bands (average perfor-
mance over two test sets for all four subjects).
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Figure 4.8: Average performance of all subjects using temporal domain based
method and frequency spectral band power based method (the average Azs are rep-
resented by X marks).
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band, alpha band perform well.

4.3.3 Decision fusion of temporal domain classification and

frequency domain based classification results

Since the temporal-domain and the frequency-domain classification results contribute dif-

ferent discriminating components, we apply decision-level fusion to combine the classifica-

tion results using powers from different frequency bands and the classification result using

voltage amplitude (fusion scheme is illustrated in Fig. 4.4).

As we can observe from Fig. 4.9, the fused decisions show improved performance in

terms of the area under ROC curve Az for all four subjects over two test sets. The average

Az for all four subjects using two test sets are compared in Fig. 4.10.

For all four subjects, the classification results by fusing the temporal-domain decision

and the alpha band spectral power based decision have the best performance compared

to the results by fusing the temporal-domain decision and the delta/theta/gamma band

frequency domain decision. Compared to other frequency band powers, alpha band power

based decision seems to maximally complement the temporal domain decision in terms of

the fusion gain.

By fusing the alpha-band and beta-band information using two different methods: a

combined 128-channel LDA classification method and a decision fusion method, we can see

that the decision fusion method gives us better performance (Fig. 4.11). These results

illustrate the importance of choosing the proper fusion methods.

4.4 Summary

This chapter presents a method of improving the EEG-based single-trial visual detection

performance by fusing classification decisions drawn from two separate EEG classification

methods: a temporal-domain method based on raw voltage amplitude and a frequency-

domain method based on frequency spectral power amplitude located at different bands.
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(b) Subject 2 fused ROC curves
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(c) Subject 3 fused ROC curves
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(d) Subject 4 fused ROC curves

Figure 4.9: ROC curves for fused decisions (average over two test sets for all four
subjects).
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Figure 4.10: Average performance of all subjects by fusing temporal domain based
method and frequency domain based method (the average Azs are represented by X
marks).

Oscillatory activity is pervasive and ubiquitous in physiological processes. There are

also a wide variety of engineering tools available to benchmark oscillatory processes (e.g.

continuous wavelet transform). Spatio-temporal patterns in certain oscillatory bands was

found to have the role of binding selectively distributed neuronal elements into functional

assemblies for cognitive/motor tasks.

In this chapter we apply the multi-level LDA classifiers on the EEG spectral power at

the delta/theta/alpha/beta/gamma frequency bands in addition to applying it on the raw

EEG voltage amplitude data. Feature-level LDA classifiers are used to derive the voltage

amplitude (temporal-domain) based global pattern and the spectral band power (frequency-

domain) based global pattern across multiple temporal windows by fusing multiple local

classifiers’ outputs. We observe that the voltage amplitude based feature-level classifier

and the spectral power amplitude based feature-level classifier show different visual target

recognition signatures (spatio-temporal patterns) in terms of the area under ROC curve

performance. The classification performance based on spectral powers located at certain
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(b) Subject 2 fused ROC curves
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(c) Subject 3 fused ROC curves
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(d) Subject 4 fused ROC curves

Figure 4.11: ROC curves for LDA classifier result based on alpha band , theta
band, fused alpha/theta result using LDA classifier and fused alpha/theta result
using decisions fusion (average over two test sets for all four subjects).
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frequency bands (e.g. alpha band) can outperform the voltage-based (temporal-domain)

classification result.

The temporal-domain decision and frequency-domain decision are then fused at decision-

level. The decision-level fusion results show significant improvement over the temporal-

domain results and the frequency-domain results for multiple subjects across multiple test

sets.
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Chapter 5

Decision Level Fusion of EEG-Based and
Pupillary Response Based Single Trial

Visual Recognition Detection

5.1 Motivation

Pupil response is another psychophysiological modality we can use as a basis for single-

trial image triage tasks. The pupil is the opening in the iris of the eye that expands and

contracts, allowing light to pass to the retina. The expansion and contraction of the pupil

are mediated by the sympathetic and parasympathetic nervous systems (both are parts of

the peripheral nervous system). Task-evoked pupil dilations was found to be a function

of the cognitive workload and attention required to perform the task ([3], [4]). It also

has long been known that the pupil dilates in response to emotion evoking stimuli ([37]).

Experiments by Privitera et al. ([65]) found that the pupil responds with dilation for visual

recognition events. For example, a comparison between a time course of pupil diameter

change after a presentation of a target versus a non-target/distractor stimulus image is

shown in Fig. 5.1. The average pupil diameter changes more drastically (dilates) after a

target image display than a non-target/distractor image display.

In this chapter, we develop a pupillary feature construction and selection procedure to

extract the useful features that perform best under an LDA classifier. The LDA classifier

is applied on this group of pupillary response features to detect the target recognition

signature.

At the same time, we apply a two-level LDA classification scheme ([61]) on cognitive

task related EEG response. While the EEG method tries to capture the evolving patterns

of brain dynamics across multiple pathways and functional groups, the pupillary response
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Figure 5.1: Comparison of average pupil area change time course (after removing the
baseline) after a target stimulus image display (left) and after a non-target/distractor
stimulus image display (right) for an experiment subject. The pupil dilates more
drastically after a target stimulus image is displayed.

provides us a direct indicator of emotional arousal or alertness triggered by the visual

detection sensory stimulus.

Since the brain activities measured by the EEG signals are part of the central nervous

system activity while the pupil size is controlled by the peripheral nervous system activ-

ity (Fig. 5.2), these signals provide significantly cognitive complementarities which may

serve to significantly improve classification performance. The fusion results show signifi-

cant improvement over classification performance using either of the single modality (EEG

or pupillary).

5.2 Methods

5.2.1 Pupil dilation feature construction

Unlike the EEG system, which has multiple channels around the scalp, the pupillary re-

sponse recording only gives us one source of information. To characterize the pupillary
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Figure 5.2: Nervous system organization: the brain activities measured by the EEG
signals are part of the central nervous system activity while the pupil size is controlled
by the peripheral nervous system activity.

response more thoroughly and improve the signal-to-noise (SNR) ratio, we identify a set of

features related to the pupillary response and derive them from the original pupil diameter

data. For example, the average velocity and acceleration of the pupil size change of multi-

ple subjects are illustrated in Fig. 5.3. While the significant pupil area difference between

average target response and non-target/distractor response starts to show one second after

stimulus onset and peaks at around 1.5 seconds after stimulus onset, the significant velocity

and acceleration differences start to reveal themselves earlier after the stimulus onset.

To extract pupil dilation features, the pupil diameter D(n), pupil diameter rate of

change V (n), acceleration A(n) and pupil area AR(n) are derived for all time samples

inside the time window where n = {-6, ..., -1, 0, 1,... 25}. The time period of −0.3 seconds

< t < 0 seconds is defined as the before-stimulus period Tbefore. The time period of 0

seconds < t < 1.25 seconds is defined as the after-stimulus period Tafter. In addition, a

smaller time interval between 0.2 seconds and 0.8 seconds after stimulus onset (0.2 seconds
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< t < 0.8 seconds) is regarded as the most likely time period during which the pupillary

response is most salient (we call this time period “critical period” Tcritical) in terms of the

peak velocity and peak acceleration. With 20Hz sampling frequency, the before-stimulus

window contains six samples; the after-stimulus window contains 25 samples; the critical

time period contains 12 samples.
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Figure 5.3: Comparison of the average pupil area/velocity/acceleration time course
after non-target/distractor image display and after target image display for all sub-
jects. The velocity feature shows earlier differentiations between target and non-tar-
get/distractor responses compared to the area feature. The acceleration feature shows
even earlier differentiations between target and non-target/distractor responses com-
pared to the area and velocity feature. We achieve more thorough characterization
of the pupil responses by deriving velocity and acceleration features.

We identified a total of 22 features that could be derived from raw pupil dilation data

(listed in Table 5.1 in this chapter and the mathematics details are described in the ap-
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0 seconds< t < 1.25 seconds

Figure 5.4: Time windows defined for pupil dilation feature extraction: The time
period of −0.3 seconds < t < 0 seconds is defined as the before-stimulus period Tbefore.
The time period of 0 seconds < t < 1.25 seconds is defined as the after-stimulus period
Tafter. A smaller time interval between 0.2 seconds and 0.8 seconds after stimulus
onset (0.2 seconds < t < 0.8 seconds) is regarded as the most likely time period
during which the pupillary response is most salient (we call this time period “critical
period” Tcritical) in terms of the peak velocity and peak acceleration.

pendix). Some of them are general features such as maximum dilation velocity while the

others was studied in [66].

5.2.2 Pupil feature selection

Sequential forward floating selection (SFFS) method introduced in [67] is used for feature

selection. Given the 22 candidate features described in previous section, a subset of d

features, d < 22, is selected that performs the best under the specific classifier we choose

to use (e.g. a linear discriminant classifier). The benefits of feature selection procedure

are two-fold: it reduces the computational cost of classification by reducing the number

of features that need to be calculated, and it improves classification accuracy by fitting a
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simpler model based on finite number of training samples.

Sequential forward selection (SFS) method starts from an empty feature subset and

sequentially selects one most significant feature at a time and adds it to the feature subset

to maximize the cost function J until a predefined feature number is obtained ([68]). The

classification error over a training set is used as the cost function J . Sequential backward

selection (SBS) starts from a subset with all d features and selectively deletes one least

significant feature at a time until a predefined feature number is obtained ([69]). Both SFS

and SBS methods have the so-called nesting problem: once a feature is added/deleted, it

cannot be deleted/added anymore.

SFFS method avoids nesting problem by correcting earlier ‘mistakes’ by backtracking:

first enlarge the feature subset by adding l most significant features using SFS, then delete r

least significant features using SBS. And the l and r are determined dynamically (“floating”)

so as to approximate the optimal solution ([67]).

We choose to use SFFS for feature selection. Only the selected features are used for

further pupil-based classification.

5.2.3 EEG-based classification

Linear discriminant analysis classifier for EEG

The high density EEG system simultaneously record surface potentials in multiple elec-

trodes encompassing most of the head surface. The spatial diversity can be explored by

integrating information over space to improve resolution and signal-to-noise ratio (SNR).

By linearly combining EEG channels, an aggregate representation of the data can be

obtained ([31]). Let x(t) be the observed vector of multidimensional EEG amplitude reading

(after signal preprocessing) at time t, an optimal projection weighting vector wamp can be

derived based on a training set and so that a one-dimensional projection yamp(t) can be
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derived:

yamp(t) = wamp
Tx(t) =

N∑

i=1

wampixi(t) (5.1)

where N is the number of EEG electrodes (channels). For the visual detection task, we

can find an optimal projection weight matrix wamp, which can generate a yamp(t) that

maximally discriminates at time t corresponding to target and non-target/distractor trial

condition. It had been found that the linear discriminators trained on certain crucial

short temporal windows have robust single trial discrimination performance when these

discriminators were applied to analyze the spatio-temporal changes in neural processing

([31]) during visual cognitive task.

A more robust output can be derived by averaging over the T samples in the short

temporal window ȳamp = T−1
∑T

t=1 yamp(t). The hypotheses are H0 (non-target/distractor

in the image) and H1 (target in the image). The posterior likelihood that a trial belongs to

the target class is assumed to follow a logistic function distribution p(H1|ȳamp) = 1
1+e−ȳamp

([39]).

ROC curves can be obtained using p(H1|x) and comparing it with a threshold θ. Thresh-

old θ can take on values within the range [0, 1]. The decision rule can be

{
p(H1|x) ≥ θ, uamp = 1
p(H1|x) < θ, uamp = 0

or vice versa where uamp = 1 represents a classifier’s decision to declare a target detection

and uamp = 0 represents a classifier’s decision to declare a non-target/distractor detection.

In this chapter, LDA classifiers are applied on eight overlapping 100-millisecond tempo-

ral windows with onset time ranging from the 150 milliseconds following the stimulus onset

to 500 milliseconds following the stimulus onset in steps of 50-millisecond. The outputs of

local classifiers are fused at the feature-level in a multiple-level classification scheme.

Multiple-level classification scheme for EEG

While LDA classifiers can be applied over multiple short temporal windows after stimulus

onset, the likelihood output values of these first-level LDA classifiers (called local classifier)
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Figure 5.5: Fusion scheme: two independent classification results are derived using
EEG and pupil signals; thereafter they are fused at the decision-level.

can be used as inputs to a feature-level classifier (called global classifier) as illustrated in

Fig. 5.5. The multi-level LDA classifier approach had been used on EEG amplitude data

in ([31] [22]) and we apply the same approach to capture the linear pattern across multiple

local windows.

By linearly combining local classifier outputs, an aggregate representation of global

pattern can be obtained. Let y be the observed vector of local classifier output, a weight-

ing vector wwindow can be derived based on training data to generate a one-dimensional

projection z:

z = wwindow
Ty =

M∑

i=1

wwindowiyi (5.2)

where M is the number of local classifiers. The projection z serves as an estimate of global

pattern. The likelihood of a trial belonging to the target class is assumed to follow a logistic

function distribution p(H1|z) = 1
1+e−z .

ROC curves can be obtained using p(H1|z) and comparing it with a threshold η. η

can take on values ranged in [0 1]. The decision rule can be

{
p(H1|z) ≥ η, u = 1
p(H1|z) < η, u = 0

or vice

versa where u = 1 represents a classifier’s decision to declare a target and u = 0 represents
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a classifier’s decision to declare a non-target/distractor.

5.2.4 Linear discriminant analysis for pupillary response fea-

tures

By linearly combining multiple pupillary-based features, an aggregate representation of the

data can be obtained ([31]). Let d be the observed vector of selected feature, an optimal

projection weighting vector wpupil can be derived based on a training set and so that a

one-dimensional projection ypupil can be generated:

ypupil(t) = wpupil
Td =

D∑

i=1

wpupilidi. (5.3)

whereD is the number of pupillary features selected using the SFFS method. The projection

ypupil(t) can be assumed to follow some distributions of the exponential family and is

regarded as a better estimate of neurophysiologic activity than any individual pupillary

response feature.

ROC curves can be obtained using p(H1|d) and comparing it with a threshold θpupil.

θpupil can take on values within the range [0, 1]. The decision rule can be

{
p(H1|d) ≥ θpupil, upupil = 1
p(H1|d) < θpupil, upupil = 0

or vice versa where upupil = 1 represents a classifier’s decision to declare a target and

upupil = 0 represents a classifier’s decision to declare a non-target/distractor.

5.2.5 Decision fusion

While classification methods (e.g. linear discrimination analysis) can be applied on EEG

and pupillary response separately and achieve significant classification performance, deci-

sion level fusion can be used to improve the overall classification performance further by

combining EEG and pupil-response decisions.

Here, the goal is to enhance classification confidence through the use of multiple modal-

ities. In addition, the signal-to-noise ratio can be improved by combining two complemen-
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tary modalities. For example, while the EEG signal can be obscured by muscle movement

artifact, pupillary modality is more robust to this effect. On the other hand, while pupil-

lary signal is lost during an eye blink, EEG signal is still available even though it might be

slightly corrupted by the eye blink artifact.

The decision-level fusion optimally fuses two decisions according to the operating points

on their ROC curves at which each of the decisions was made with certain probability of

detection (Pd) and probability of false alarm (Pf ). The EEG amplitude observation vector

has joint probability density function P (x|Hj) = P (x1, ..., xN |Hj) under hypothesis Hj , for

j = 0 (non-target/distractor), 1 (target) and N = 64. The pupillary response feature vector

(assuming the feature vector length is D after the feature selection) has joint probability

density function P (d|Hj) = P (d1, ..., dD|Hj) under hypothesis Hj , for j = 0, 1 and D < 22.

Individual detectors (EEG-based and pupil-based) receive as inputs the N-dimension EEG

observation vector x and the D-dimension pupillary feature observation vector D, and

output the decisions using the LDA classifiers. The decisions drawn by individual classifiers

are denoted as uk, for k = 1 (EEG-based) and k = 2 (pupillary-based), where uk = 0 if kth

classifier’s decision is H0 and uk = 1 if kth classifier’s decision is H1. Individual classifier’s

decision uk depends only on the observation vectors x and d.

u1 = α(x) =

{
0, EEG-based classifier decides H0,
1, EEG-based classifier decides H1.

(5.4)

u2 = β(d) =

{
0, pupillary response based classifier decides H0,
1, pupillary response classifier decides H1.

(5.5)

The performance characteristics of kth classifier can be specified by P(uk|Hj), where

P(uk=1|H0) = Pf k = the probability of false alarm (false positives) and P(uk=1|H1) =

Pdk = the probability of detection (true positives). Using these probabilities, the likelihood
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ratio value of a binary decision variable has a simple form as

λdecision(uk) =
Pr(uk|H1)
Pr(uk|H0)

=

{
Pdk
Pfk

if uk = 1
(1−Pdk)
(1−Pfk) if uk = 0

(5.6)

The decision-level fusion classifier receives the decisions of the individual classifiers as

its inputs. The decision at the fused level,

u = ϕ(u1, u2) =

{
0, global decision H0,
1, global decision H1.

(5.7)

depends only on local decisions and their probability of detection Pdk and probability of

false alarm Pf k. Since EEG and pupillary based classifiers draw their decisions on different

modalities, the simplest assumption is that these two decisions are statistically independent.

Assuming the decisions are statistically independent, the fused likelihood ratio λ is

λfusion(u1, u2) =
2∏

k=1

λ(ui) =
2∏

k=1

P (uk|H1)
P (uk|H0)

=
2∏

k=1

(
Pdk

Pf k

)uk

2∏

k=1

(
1 − Pdk

1 − Pf k

)1−uk (5.8)

The optimal fusion rule uses the fusion likelihood ratio as the classification decision variable

and compares it to threshold β for decision u ([44]):

u = F (u1, u2) =

{
1, if P (u1,u2|H1)

P (u1,u2|H0) ≥ β

0, if P (u1,u2|H1)
P (u1,u2|H0) < β

(5.9)

The chosen threshold β determines the operating point on the ROC curve. By varying the

threshold β value, the entire decision fusion ROC curve can be obtained by deriving a series

of Pdfusion(β) and Pffusion(β). The decision fusion classifier probability of detection and

false alarm can be calculated based on equation (5.10) and (5.11):

Pdfusion(β) =
∑

λfusion≥β

P (λ = λfusion|H1) (5.10)
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Pffusion(β) =
∑

λfusion≥β

P (λ = λfusion|H0) (5.11)

In practice, to derive the realistic fused ROC curve, the decisions made by the EEG-

based classifier and the pupil-based classifier should be compared with the ground truth

so that P (u1, u2|H0), P (u1, u2|H1) and λfusion(u1, u2) can be evaluated based on the real

classifier decisions based on individual modality and compare the classifier decision vectors

with the actual ground truth. Using a training set, we can obtain ROC curves and choose

the operating points associated with the specific modality based classifier thresholds θk,

and the specific global decision threshold β.

The process of generating a fused ROC curve by fusing two individual ROC curves was

illustrated in section 3.2.3.

5.3 Results and discussion

5.3.1 Training and test runs

The same training set of stimulus images was used for five subjects. The number of target

and non-target/distractor trials in training set for five subjects are listed in Table 5.2.

The training set was used for training the EEG-based local LDA classifiers located at

different local time windows, the EEG-based feature-level LDA classifier, the pupil-based

LDA classifier, the feature selection procedure and the decision fusion classifier.

Classification performance was evaluated based on two test sets (one set has larger

target image density per sequence than the other set). Each subject was tested on both

test sets. The number of target and non-target/distractor images for each subject are listed

in Table 5.3.
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5.3.2 Fusion results

The EEG-based, the pupil-based and the decision-level fusion classifier performance was

evaluated using the area under the ROC curve as the metric. The results for subjects 1 to

5 over two test sets are shown in Fig. 5.6.

For the pupillary response based classification, the classification performance on test

sets with lower target density per sequence are consistently better than the classification

performance on test sets with higher target density per sequence across all five subjects.

This observation is consistent with the stimulus probability effect: a less frequently pre-

sented stimulus elicits a stronger pupillary response while a more frequently presented

stimulus elicits a weaker pupillary response and was also reported by Privitera et al. ([65]).

The results shown in the figures are analyzed for significance using a T-test method.

The results show that fusion results are significantly better than EEG-based results alone

(p < 0.003) and pupil-response based results alone (p < 0.001). Significant classification

performance improvements can be achieved by fusing the EEG-based classification and the

pupillary response classification results at the decision level.

5.4 Summary

Cognitive task related pupillary response provides a complementary modality that we can

use as a basis for single-trial image triage tasks. In this chapter, we developed a pupillary

response feature construction and selection procedure to extract features that perform best

under a specific classifier (linear discriminant analysis classifier). At the same time, we ap-

ply a two-level linear analysis classification scheme on cognitive task-related EEG response.

The classification results based on both modalities are further fused at the decision level.

Here, the goal was to support increased classification confidence through inherent sensor

complementarities. The fusion results show significant improvement over classification per-

formance using a single modality.
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Table 5.1: Pupillary features used for classification.
Features Feature Description

1 maximum accumulated dilation velocity in the Tafter

2 maximum accumulated dilation velocity change
in the Tbefore and the Tafter

3 maximum dilation velocity in Tafter

4 maximum dilation acceleration in Tafter

5 maximum velocity in the Tafter minus mean velocity in the Tbefore

6 maximum velocity in the Tafter minus maximum velocity
in the Tbefore

7 maximum pupil area after 0.2s following stimulus onset
minus mean pupil area before 0.2s following stimulus onset

8 maximum pupil velocity in Tcritical

9 product of features 7 (measure of area change)
and feature 8(measure of velocity change)

10 maximum diameter in the Tafter

11 maximum diameter in the Tafter minus mean diameter in the Tbefore

12 absolute difference between maximum normalized (4-sample)
diameter moving averages in the Tafter and Tbefore

13 difference between maximum normalized (5-sample) diameter
deviations from moving average in the Tafter and Tbefore

14 difference between maximum normalized (5-sample)
diameter slope deviations from moving average

in the Tafter and Tbefore

15 difference between maximum normalized (5-sample) diameter
gradient from moving average in the Tafter and Tbefore

16 difference between maximum normalized absolute value
slopes (using a 4-sample interval) in the Tafter and Tbefore

17 difference between maximum normalized diameter gradient
moving sums in the Tafter and Tbefore

18 difference between the percentage of samples
in the Tafter and Tbefore that have larger

diameter than the diameter at the stimulus onset time
19 difference between the percentage of samples in the

Tafter and in the Tbefore that have diameter values
smaller than the diameter at the stimulus onset

20 average energy in the Tafter and Tbefore calculated
as the mean square value for histogram-based

probability density function of normalized diameter
21 power ratio of the peak samples in a window centered around

the stimulus onset versus all the samples in the window
22 difference between contour energy in the Tafter and Tbefore
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Table 5.2: Number of target and non-target/distractor images in the training set.
Non-target/distractor images Target images

2415 256

Table 5.3: Number of target and non-target/distractor images, target versus non–
target/distractor ratios in test sets for five subjects.
Subject Test set Non-target/distractor Target images Target versus

images non-target/distractor
ratio

1
1 3341 150 1:22
2 3464 27 1:128

2
1 3341 150 1:22
2 3437 27 1:127

3
1 3341 150 1:22
2 3437 27 1:127

4
1 3277 156 1:21
2 3464 27 1:128

5
1 3121 156 1:20
2 3374 27 1:125
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Figure 5.6: Five subjects’ EEG-based, pupillary response-based, and fused results
on test set one and two; Blue curves are the ROC curves for the EEG-based results;
Black curves are the ROC curves for the pupil-response based results; Red curves are
the ROC curves for the fused results.
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Chapter 6

Multi-Subject Decision Fusion

6.1 Motivation

For crucial image triage tasks , multiple image analysts could be asked to look at the same

set of images to improve the probability of detection and reduce the probability of false

positives. From the viewpoint of a cortically-coupled computer vision system, multiple

subjects can be regarded as multiple sensors.

Every individual analyst differs in visual detection capabilities such as acuity and con-

trast sensitivity over ranges of target size and target-background contrast. And each indi-

vidual might have a different level of familiarity with certain image context background.

As a result, there is complementariness among decisions drawn by different analysts, and

overall performance can be improved by fusing the individual decisions. In this chapter we

evaluate the benefit of using multiple analysts on the same test data sets.

6.2 Methods

For each subject, we apply the feature-level fusion method we described in chapter three

using an LDA feature-level classifier. The feature-level LDA classifier approach was applied

on multiple local LDA classifier outputs ranging from 150 to 600 milliseconds in steps of

50 milliseconds. This approach fuses multiple local LDA classifier outputs in an attempt

to capture the linear spatio-temporal pattern across multiple local windows.

The feature-level LDA classifier results for multiple subjects are fused at the decision-

level. Since more training data are required to fuse more subjects, we only tried to fuse

decisions from two or three subjects in our study. The process of generating a fused ROC

curve by fusing individual ROC curves was illustrated in section 3.2.3.
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Figure 6.1: Decision fusion scheme to combine decisions drawn by multiple subjects.

Table 6.1: Number of target and non-target/distractor images in the training set.
Non-target/distractor images Target images

2415 256

6.3 Results and discussion

6.3.1 Training and test runs

The same training set of stimulus images was used for six subjects. The number of target

and non-target/distractor trials in the training set for six subjects are listed in Table 6.1.

The ratio of target versus non-target/distractor trials is about 1:10 (while this ratio can be

smaller than 1:100 in real applications, we have to have enough target trials to train the

classifiers). The training set was used to derive weights for local LDA classifiers at different

time windows, weights for the feature-level LDA classifier, and to decide the operating

points for the global decision fusion classifier.

The classification performance is evaluated based on four test sets. The numbers of

target and non-target/distractor images of test sets are listed in Table 6.2. The ratios

of target versus non-target/distractor images differ in different test sets so that we can

evaluate the classification performance for different target density profiles.
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Table 6.2: Number of target and non-target/distractor images in two test sets.
Test Set Non-target/distractor images Target images Subjects executed

the test set
1 3121 150 1, 2, 3
2 3437 27 1, 2, 3
3 3121 156 4, 5, 6
4 3374 27 4, 5, 6

Table 6.3: fusion gains for test sets by combining decisions from different subjects.
Test Set Subject 1 and 2 Subject 1 and 3 Subject 2 and 3 subject 1, 2 and 3

1 6.21% 10.08% 7.87% 11.01%
2 13.41% 13.55% 8.68% 14%

Test Set Subject 4 and 5 Subject 4 and 6 Subject 5 and 6 Subject 4, 5 and 6
3 1.69% 3.54% 3.17% 4.42%
4 6.46% 9.58% 6.41% 7.83%

6.3.2 Decision-level fusion classification performance

For test set 1, the results of fusing decisions for two of the three subjects (1 and 2, 2 and

3, 1 and 3) and for all three subjects (1, 2 and 3) are shown on Fig. 6.2.

For test set 2, the results of fusing decisions for two of the three subjects (1 and 2, 2

and 3, 1 and 3) and for all three subjects (1, 2 and 3) are shown on Fig. 6.3.

For test set 3, the results of fusing decisions for two of the three subjects (4 and 5, 5

and 6, 4 and 6) and for all three subjects (4, 5 and 6) are shown on Fig. 6.4.

For test set 4, the results of fusing decisions for two of the three subjects (4 and 5, 5

and 6, 4 and 6) and for all three subjects (4, 5 and 6) are shown on Fig. 6.5.

The multiple subject fusion gains are measured using percentage improvement of the

area under the ROC curve for the fused decision versus the area under the ROC curve for

the best single subject. The improvements are listed in Table 6.3. We can observe that for

all test sets, there are significant fusion gains by combining the decisions made by multiple

subjects.
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subject 1: AUC = 0.7359
subject 2: AUC = 0.7790
subject 3: AUC = 0.7556
Decision Fused: AUC = 0.8648

Figure 6.2: Decision fusion performance using subject 1 and 2, subject 1 and 3,
subject 2 and 3 and using all three subjects for test set 1.

6.4 Summary

This chapter presents the method of fusing the decisions made by multiple subjects on

the same set of imagery. The fusion is executed at the decision level and we can observe

significant fusion gains for all four test sets using two-subject and three-subject decision

fusion.
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subject 1: AUC = 0.8294
subject 3: AUC = 0.8022
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subject 2: AUC = 0.8365
subject 3: AUC = 0.8022
decision fused: AUC = 0.9091
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subject 1: AUC = 0.8022
subject 2: AUC = 0.8365
subject 3: AUC = 0.8022
decision fused: AUC = 0.9536

Figure 6.3: Decision fusion performance using subject 1 and 2, subject 1 and 3,
subject 2 and 3 and using all three subjects for test set 2.
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subject 4: AUC = 0.7554
subject 5: AUC = 0.8997
decision fused: AUC = 0.9149
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subject 4: AUC = 0.7554
subject 6: AUC = 0.8258
decision fused: AUC = 0.8550
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subject 5: AUC = 0.8997
subject 6: AUC = 0.8258
decision fused: AUC = 0.9282
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subject 4: AUC = 0.7554
subject 5: AUC = 0.8997
subject 6: AUC = 0.8258
decision fusion: AUC = 0.9395

Figure 6.4: Decision fusion performance using subject 4 and 5, subject 4 and 6,
subject 5 and 6 and using all three subjects for test set 3
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subject 4: AUC = 0.7935
subject 6: AUC = 0.8096
decision fused: AUC = 0.8872
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subject 5: AUC = 0.8719
subject 6: AUC = 0.8096
decision fused: AUC = 0.9278
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subject 4: AUC = 0.7935
subject 5: AUC = 0.8719
subject 6: AUC = 0.8096
decision fused: AUC = 0.9402

Figure 6.5: Decision fusion performance using subject 4 and 5, subject 4 and 6,
subject 5 and 6 and using all three subjects for test set 4
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Chapter 7

Classification Using Reduced Number of

EEG Sensors

7.1 Motivation

Throughout the previous chapters, we relied on a 64-channel EEG system to obtain all the

experiment data and all 64 channels were used for data analysis (for example, the LDA

classifiers used all 64 raw EEG-channel data). For the purpose of developing a practical

real-time EEG-based application system, sometimes we have to work with an EEG system

that has fewer electrodes (channels). The limitations are due to the limited communication

capability and processing power of the mobile system. For example, g-tec medical engineer-

ing GmbH (http://www.gtec.at) developed a portable EEG biosignal research system that

makes mobile biosignal acquisition and analysis possible. The mobile system only supports

6-8 EEG channels. So a crucial question is whether the classification techniques developed

in the previous chapters based on 64-channel data can achieve robust performance using a

fraction of the channels.

In this chapter, we evaluate two methods of identifying the dominant small set of

channels that can deliver relatively robust classification performance. One method is based

on the sequential forward floating selection (SFFS) method introduced in section 5.2.2,

where 64 channels are treated as the candidate features. We selected the limited number

of channels that performs the best under the specific classifier we choose to use (e.g. an

LDA). The other method is a method that used the top channels that had the maximum

absolute weights for the LDA classifier to perform the classification.
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7.2 Methods

7.2.1 Finding the inherent dimensionality of the EEG-based

detection using principal component analysis

The principal component analysis (PCA) transforms a number of correlated variables into a

smaller number of uncorrelated variables (principal components) using eigen analysis (also

known as ‘Singular Value Decomposition’). The first principal component accounts for as

much of the variability in the data as possible in the direction of the eigenvector associated

with the largest eigenvalue.

PCA can be used to discover the dimensionality of the data set. In this chapter, we

apply the PCA on data matrix representing the difference between the average target-trial

and the average non-target/distractor trial response. The matrix is 64 channels (rows) long

and each channel has multiple data samples (columns). The objective is to analyze the

dimensionality of the EEG-based detection problem.

7.2.2 Ranking the EEG channels using a single temporal

window based LDA classifier

For the single temporal window based LDA classifier we described in section 3.2.1, we can

linearly combine EEG channels. Let x(t) be the observed vector of multidimensional EEG

amplitude reading (after signal preprocessing) at time t. An optimal projection weighting

vector wamp can be derived based on a training set and so that a one-dimensional projection

yamp(t) can be derived using:

yamp(t) = wamp
Tx(t) =

N∑

i=1

wampixi(t) (7.1)

where N is the number of EEG electrodes (channels). For the visual detection task, we

can find an optimal projection weight matrix wamp, which can generate a yamp(t) that
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maximally discriminates at time t corresponding to target and non-target/distractor trial

condition.

If we assume the number of EEG channels is 64, now the problem is that we have to

identify a reduced set of channels (e.g. eight channels) that still can have robust classifi-

cation performance. One approach is to adapt the method of ranking the channels based

on their absolute values of projection weight value. After the 64 channels are sorted in de-

scending order based on wamp, we will select the top eight if eight is the maximum number

of channels we are allowed to use. The other way is to treat the 64 channels as features

and use the feature selection (SFFS) algorithm to identify the top ranked channels.

7.2.3 Feature-level fusion of multiple local classifers’ outputs

We use the feature-level LDA fusion classifier to fuse the multiple local classifiers’ outputs

(as described in section 3.2.2). The key observation is that we have to use the same reduced

set of channels (e.g. eight channels) across all eight local classifiers.

Using the 64-channel training data, we can derive the top eight channels for each local

classifier located at different temporal intervals after stimulus image onset. For example,

we might choose to use multiple local LDA classifier outputs ranging from 150 to 600 mil-

liseconds in steps of 50 milliseconds. The temporal window length is 100 milliseconds.

Altogether there are eight local classifiers located at different temporal intervals (150-250

millisecond, 200-300 millisecond, 250-350 millisecond, 300-400 millisecond, 350-450 millisec-

ond, 400-500 millisecond, 450-550 millisecond, 500-600 millisecond). For each of the local

classifiers, we can identify eight top ranked channels. They are different for different local

classifiers. We use the top ranked channels from the local classifier that gives the best

classification performance in terms of the Area under the ROC curve (Az). This reduced

set of channels is then used in all eight local classifiers during both the training and test

phases.
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Table 7.1: Number of target and non-target/distractor images in the training set.
Non-target/distractor images Target images

2415 256

Table 7.2: Number of target and non-target/distractor images in multiple test sets.
Test Set Non-target/distractor Target images Subjects

images executed the test set
1 3341 150 2, 3
2 3464 27 2, 3
3 3121 156 1, 4, 5, 6, 7
4 3374 27 1, 4, 5, 6, 7

7.3 Results and discussion

7.3.1 Training and test runs

The same training set of stimulus images was used for seven subjects. The number of target

and non-target/distractor trials in the training set for seven subjects are listed in Table 7.1.

The training set was used to derive weights for local LDA classifiers at different temporal

windows, to derive eight top-ranked EEG channels (using the top weight selection method

or the feature selection method) and to derive weights for the feature-level LDA classifier.

The classification performance is evaluated based on multiple test sets. There are

four different test sets that were used in the experiments. The number of target and

non-target/distractor trials of these test sets are listed in Table 7.2. The ratios of target

versus non-target/distractor trials differ in different test sets so that we can evaluate the

classification performance for different target density profiles. Each subject had worked on

a test set with a higher target density and a test set with a lower target density.

7.3.2 Principal component analysis results

For each of the seven subjects, we use the training set data (2415 non-target/distractor

images and 256 target images) for PCA analysis. Using the data samples located between

150 milliseconds and 600 milliseconds after stimulus onset (54 data points given 120Hz
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sampling rate), the average target trial matrix and the average non-target/distractor trial

matrices are both 2-dimensional matrix of size 54 x 64 (54 sample points for each channel

and 64 channels). The difference between the average target trial matrix and the average

non-target/distractor trial matrix is a matrix of size 54 x 64 too. We apply the PCA on

this matrix that represents the difference between target and non-target/distractor images.

The resulting eigenvalues give us the estimation of the dimensionality of this detection

problem. The amplitude of the eigenvalue indicates the importance of each corresponding

component in terms of the variance represented by each component. By plotting the eigen-

values on a graph (Fig. 7.1), we can observe that the points on the graph tend to level out

after the first few components. Those eigenvalues after the level-out are usually very small

and they can be ignored.

For each of the subjects, we can observe that the graph starts to level out after the first

5-8 components. This gives us an estimation on the dimensionality of EEG-based detection

problem related to visual target trials and non-target/distractor trials.

7.3.3 Classification performance using reduced number of

channels

Using the two test sets for each subject, we can identify the single 100-millisecond window

that gives us the best area under the ROC curve performance for each subject. For subject

1, the best performing window is located at 250-350 milliseconds after stimulus onset; for

subjects 2, 4 and 6, the best performing window is located at 300-400 milliseconds after

stimulus onset; for subjects 3, 5 and 7, the best performing window is located at 150-250

milliseconds after stimulus onset;

The top ranked eight channels are selected based on the best performing window. The

reason is that we are using a two-level fusion scheme; there are eight local classifiers and we

can identify eight channels on every individual local classifier. While we cannot optimize

the classification performance of every local classifier, we can optimize the performance
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for one of the local classifiers located at the ideal position so that the overall classification

performance can be maintained at a satisfactory level.

For the top weight selection method, we derive the LDA weight vector using the training

data set, and we choose the eight channels that have the top absolute weights. For the

feature selection method, we derive the top eight channels or less using the sequential

floating forward selection (SFFS) method explained in section 5.2.2. The selected eight

channels (or less) are then used for training, testing and the classification performance is

compared with the performance derived using a full 64-channel system.

Fig. 7.3 shows the comparison of classification performance using 64 channels versus

8 channels (using the top weight selection method and the feature selection method based

on the LDA classification) for the higher target density test set in terms of the Area under

the ROC curve (Az). Fig. 7.4 shows the comparison of classification performance using

64 channels versus eight channels (using the top weight selection method and the feature

selection method based on LDA classification) for the lower target density test set in terms

of the Area under the ROC curve (Az).

We can conclude that there is no significant performance degradation by using fewer

channels (8 channels instead of 64 channels). The approaches we adapt to identify the top

ranked channels are effective methods for the multi-level LDA-based classification scheme.

7.4 Summary

This chapter presents the method of identifying a reduced set of EEG channels that can

deliver robust classification performance. We adapt both a selection method of ranking the

channels based on their absolute projection weight values and a feature-selection method.

By applying these methods on both a high target density and a low target density test

sets using multiple subjects, we are able to show that there is no significant performance

degradation by using fewer channels (8 channels instead of 64 channels).

In real application, these methods offer us an effective way to identify and position the
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limited number of EEG electrodes on a wireless mobile EEG system.
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Figure 7.1: PCA eigenvalues for seven subjects.
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Figure 7.2: Single window classifier performance for four subjects.
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Figure 7.3: Comparison of classification performance using different number of
channels for the higher target density test set.
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Figure 7.4: Comparison of classification performance using different number of
channels for the lower target density test set.
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Chapter 8

Conclusions

8.1 Conclusions and Future Works

8.1.1 Conclusions

The EEG brain-machine interface systems provide a nonmuscular communication and con-

trol method for a wide range of applications because they do not require invasive surgical

implants ([70], [71] and [72]).

Conventional neuroimaging methods typically seek to determine which regions of the

brain are activated (encoded) in a particular perceptual and cognitive task. The activities

from tens, hundreds or thousands of locations are recorded repeatedly during the task

time period and each location is analyzed separately. Those individual locations that show

significant average difference under opposite cognitive states (e.g target versus non-target)

can be used to determine which one of those two cognitive states reflects the current state.

For example, the fusiform face area (FFA) is a region in the human ventral visual stream

that responds strongly to faces than to any other object category ([73], [74]). The drawback

of this method is that it is very difficult to isolate and monitor signals from those crucial

locations using noninvasive (e.g. EEG) methods.

The pattern-based multivariate analysis based on the full spatial pattern of brain activ-

ity measures simultaneously at many locations so that the distributed information can be

accumulated efficiently and jointly analyzed ([23], [75], [76]). The pattern-based approach

also facilitates the accurate detection/classification from single-trial inputs.

In this study, we apply fusion techniques on visual target recognition applications and

demonstrate the ability to improve the detection/classification accuracy further from the

state-of-the-art pattern-based analysis method. In chapter three, we fuse multiple EEG-
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based local classifiers’ outputs, both at the feature-level and at the decision-level, to dis-

criminate between target and non-target/distractor images, in order to capture the global

neurophysiological activities located in selectively distributed sites of the brain evolving

with a continuous time course. In chapter four, we apply decision-level fusion to combine

the EEG-based temporal domain classification decision and the EEG-based frequency do-

main classification decision because they contribute different discriminating components

that are established on alternative perspectives on brain cognitive dynamics. In chapter

five, we developed a pupillary response feature construction and selection procedure that

facilitates a pupil response based detection/classification algorithm. Further classification

accuracy through inherent complementarities can be achieved by fusing the EEG-based and

pupil-based classification results at the decision level.

Chapter six presents the fusion gain of combining the decisions made by multiple sub-

jects on the same set of imagery. The reason behind the fusion is that every individual

analyst differs in visual detection capabilities such as acuity, contrast sensitivity and level

of familiarity with certain image context background.

Chapter seven addresses a practical aspect of applying EEG-based visual target de-

tection method. We proposed methods of identifying a reduced set of EEG channels that

can deliver robust classification performance so that we can obtain significant detection

performance using a reduced set of EEG electrodes (channels).

8.1.2 Future works

The future goal is to develop a fully integrated system for optimal image presentation, analy-

sis of physiological signals, and classification of imagery into target and non-target/distractor

using physiological signals (EEG and pupillary signals). The architecture can be composed

of multiple input data streams such as EEG and pupil signals. The corresponding pro-

cessed signals are then combined in a multi-sensor fusion module to provide a mechanism

for decoding target recognition events. The techniques introduced in the previous chapters
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can be incorporated into this fully integrated system.

The goal of the integrated system is to generate the classification results in real-time.

Further works should be done to optimize and speed up the classification algorithms. For

example, the frequency domain based classification algorithm relies on the spectral power

calculation using wavelet transform that requires significant computational time. A faster

solution is required for an integrated system with a real time response capability.
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APPENDIX A: Pupillary response feature extrac-

tions

Tbefore ∈ {−0.3s < t < 0s} where t = 0 is the stimulus onset time. Tafter ∈ {0s < t < 1.25s}
where t = 0 is the stimulus onset time. Tcritical ∈ {0.2s < t < 0.8s} where t = 0 is the

stimulus onset time. With 20Hz sampling frequency, the before-stimulus window contains

6 samples; the after-stimulus window contains 25 samples; the critical time period contains

12 samples.
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Table A-1: Pupillary features used for classification.
Features Feature Calculation

1 argmaxa(
∑i=a

i=0 V (ti))
where a ∈ {1, 2, ..., 25} for the post-stimulus period

2 max(
∑i=a

i=0 V (ti)) - max(
∑j=6

j=0 V (tj)),

where a ∈ {1, 2, ..., 25} for the Tafter

and b ∈ {1, 2, ..., 6} for the Tbefore

3 max(V (ta)) where a ∈ {1, 2, ..., 25} for the Tafter

4 max(A(ta)) where a ∈ {1, 2, ..., 25} for the Tafter

5 max(V (ta)) - mean(V (tb))
where a ∈ {1, 2, ..., 25} for the Tafter

and b ∈ {1, 2, ..., 6} for the Tbefore

6 max(V (ta)) - max(V (tb))
where a ∈ {1, 2, ..., 25} for the Tafter

and b ∈ {1, 2, ..., 6} for the Tbefore

7 max(AR(ta)) - mean(AR(tb)) where a ∈ {4, 5, ..., 25}
for the Tafter, b ∈ {1, 2, ..., 6} for the Tbefore

and b ∈ {1, 2, 3} for the Tafter

8 max(V (tc)) where c ∈ {1, 2, ..., 12} for the Tcritical

9 product of feature 8 (measure of area change)
and 9 (measure of changing velocity)

10 max(D(ta)) where a ∈ {1, 2, ..., 25} for the Tafter,
11 max(D(ta)) - mean(D(tb)) where

a ∈ {1, 2, ..., 25} for the Tafter and b ∈ {1, 2, ..., 6} for the Tbefore

12 |max( D̃(a)

max(D̃(m))
) − max( D̃(b)

max(D̃(m))
)|

where a ∈ {1, 2, ..., 25} for the Tafter,
b ∈ {1, 2, ..., 6} for the Tbefore,

m ∈ {1, 2, ..., 31} for all sample points

in Tafter

⋃
Tbefore and D̃(k) = 1

4

∑k
i=k−3 D(i)

13 max( D̃(a)−D(a)

max(D̃(m)−D(m))
)- max( D̃(b)−D(b)

max(D̃(m)−D(m))
)

where a ∈ {1, 2, ..., 25} for the Tafter,
b ∈ {1, 2, ..., 6} for the Tbefore, m ∈ {1, 2, ..., 31}

for all sample points in Tafter

⋃
Tbefore

and D̃(k) = 1
5

∑k
i=k−4 D(i)

14 max( (D̃(a)−D(a))−(D̃(a−1)−D(a−1))

(D̃(m)−D(m))−(D̃(m−1)−D(m−1))
) -

max( (D̃(b)−D(b))−(D̃(b−1)−D(b−1))

(D̃(m)−D(m))−(D̃(m−1)−D(m−1))
)

where a ∈ {1, 2, ..., 25} for the Tafter, b ∈ {1, 2, ..., 6}
for the Tbefore, m ∈ {1, 2, ..., 31} for all sample points

in Tafter

⋃
Tbefore and D̃(k) = 1

5

∑k
i=k−4 D(i)
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Table A-2: Pupillary features used for classification.

15 max( ∇̃D(a)

∇̃D(m)
) - max( ∇̃D(b)

∇̃D(m)
)

where a ∈ {1, 2, ..., 25} for the Tafter, b ∈ {1, 2, ..., 6} for the Tbefore,
m ∈ {1, 2, ..., 31} for all sample points in Tbefore and Tafter,

∇̃D(k) = 1
5

∑k
i=k−4 ∇̃D(i)

16 max(
D̃(a)−D(a)

max(D̃(m)−D(m))
− D̃(a−3)−D(a−3)

max(D̃(tm)−D(tm))

max(| D̃(m)−D(m)

max(D̃(m)−D(m))
− D̃(m−3)−D(m−3)

max(D̃(m)−D(m))
|)
)

−max(
D̃(b)−D(b)

max(D̃(m)−D(m))
− D̃(b−3)−D(b−3)

max(D̃(m)−D(m))

max(| D̃(m)−D(m)

max(D̃(m)−D(m))
− D̃(m−3)−D(m−3)

max(D̃(m)−D(m))
|)
))

where a ∈ {1, 2, ..., 25} for the Tafter, b ∈ {1, 2, ..., 6} for the Tbefore,
m ∈ {1, 2, ..., 31} for all sample points in Tafter⋃

Tbefore and D̃(k) = 1
5

∑k
i=k−4 D(i)

17 max(
�a+5

k1=a(∇D(k1))

max(|�m+5
k2=m(∇D(k2))|)) − max(

�b+5
k3=b(∇D(k3))

max(|�m+5
k4=m(∇D(k4))|))

where a ∈ {1, 2, ..., 20} for the Tafter, b ∈ {1, 2} for the Tbefore,
m ∈ {1, 2, ..., 26} for all sample points in Tbefore and Tafter,

D̃(k) = 1
5

∑k
i=k−4 D(i)

18 (P1 − Q1)/M where P1 is the number of D(a) > D0,
a ∈ {1, 2, ..., 25} for the Tafter, Q1 is the number of D(b) > D0

where b ∈ {1, 2, ..., 6} for the Tbefore and M is the number
of D(m) > D0 where m ∈ {1, 2, ..., 32} for all sample points

in Tbefore and Tafter, D0 is the diameter size at the stimulus onset.
19 (P2 − Q2)/M where P2 is the number of D(a) < D0,

a ∈ {1, 2, ..., 25} for the Tafter, Q2 is the number of D(b) < D0

where b ∈ {1, 2, ..., 6} for the Tbefore and M is the number
of D(m) > D0 where m ∈ {1, 2, ..., 32} for all sample points

in the Tbefore and Tafter, D0 is the diameter size at the stimulus onset.

20 E = ln1
g

∑g−1
i=0 D(i)2pi using the probability density function (pdf)

of the normalized diameter in the Tbefore

⋃
Tafter where pi = ni/N ,

N is the number of the samples represented by g diameter
values, ni is the number of samples having value i for i ∈ {0, 1, ..., g − 1}

so that N = n0 + n1 + ...ng−1.

21 P =
�

i=1MD(i)
�

j=1ND(j)
) where N = 16 samples = window size,

M=8 samples that have maximum diameter values
in the window are used to calculate the peak powers
the window is centered around the stimulus onset.
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Table A-3: Pupillary features used for classification.
22 Econtour = Econtinuity + Ecurvature + Egradient + Eamplitude

The Econtinuity measures the spacing between the the samples
along the signal: Econtinuity = d̄ − |v(sj) − v(si−1)|

The Ecurvature measures the smoothness of the signal:
Ecurvature = |v(si−1) − 2v(sj) + v(si+1)|2,

The Egradient is the gradient magnitude at each point along the signal:

Egradient = Gmin−�(v(si))
Gmax−Gmin

,

The amplitude energy is computed as Eamplitude = v(s)
max(v(s))

,

where v(si) is the current point, v(si−1) is the predecessor point to v(si),
v(si+1) is the successor point to v(si),

v(sj) is a point located in the neighborhood of v(si),
G = �v(s) is the gradient magnitude for the entire signal.

The Econtinuity and Ecurvature are computed for each neighborhood point
and then normalized to fall within the range [0,1].

The Egradient is negative and falls within the range of [-1, 0].
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