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Purpose: Noninvasive prenatal screening (NIPS) sequences a mixture
of the maternal and fetal cell-free DNA. Fetal trisomy can be detected
by examining chromosomal dosages estimated from sequencing reads.
The traditional method uses the Z-test, which compares a subject
against a set of euploid controls, where the information of fetal fraction
is not fully utilized. Here we present a Bayesian method that leverages
informative priors on the fetal fraction.

Method: Our Bayesian method combines the Z-test likelihood and
informative priors of the fetal fraction, which are learned from the
sex chromosomes, to compute Bayes factors. Bayesian framework
can account for nongenetic risk factors through the prior odds, and
our method can report individual positive/negative predictive values.

Results: Our Bayesian method has more power than the Z-test
method. We analyzed 3,405 NIPS samples and spotted at least 9
(of 51) possible Z-test false positives.

Conclusion: Bayesian NIPS is more powerful than the Z-test
method, is able to account for nongenetic risk factors through
prior odds, and can report individual positive/negative predictive
values.
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INTRODUCTION
In 1997, Dennis Lo and colleagues1 discovered the existence
of fetal cell-free DNA in the plasma of the maternal peripheral
blood. They used polymerase chain reaction to amplify a
segment that is unique to the human Y chromosome;
therefore, the polymerase chain reaction signal detected has
to come from a male fetus. This landmark discovery laid the
foundation for noninvasive prenatal screening (NIPS). More
than a decade later, during which time massively parallel
sequencing technologies made rapid progress, Stephen
Quake’s and Dennis Lo’s groups2,3 reported independent
successes in detecting fetal trisomy by sequencing cell-free
DNA in maternal peripheral plasma. Following these reports,
several clinical trials demonstrated more than convincingly
the benefit of NIPS over traditional screening in detecting
fetal trisomy.4–6 Consequently, next-generation sequencing–
based NIPS has been rapidly integrated into prenatal care.
In light of compelling new evidence, professional societies

endorsed NIPS over the traditional trisomy screen.7–11

Particularly, the American College of Medical Genetics and
Genomics recently revised their early position of restricting
NIPS to high-risk patients12 to recommend that “NIPS can
replace conventional screening for Patau, Edwards, and Down
syndromes across the maternal age spectrum, for a continuum

of gestational age beginning at 9–10 weeks, and for patients
who are not significantly obese.”11 The recommendation for
gestational age and maternal weight is to ensure that the fetal
fraction (the proportion of cell-free DNA that is originated
from the fetus) is large enough for NIPS to be effective.
The American College of Medical Genetics and Genomics
emphasizes the importance of the fetal fraction and
recommends that all laboratories “include a clearly visible
fetal fraction on NIPS reports.” Multiple studies have pointed
out that the fetal fraction plays a crucial role in the
effectiveness of NIPS to detect trisomy.13–16 The consensus
for the detecting limit of the fetal fraction appears to be 4%,
although theoretical studies have suggested that 2% also
works,14 and more optimistic authors have suggested that as
long as GC bias is accounted for and sequence depth is
unlimited, NIPS can be effective for an arbitrarily small
fraction of fetal DNA.17

The prevailing method used to analyze NIPS data sets, first
outlined in ref. 3, is the Z-test method, which calculates a
Z-score that measures deviation of a chromosomal dosage
from a set of euploid control samples. The Z-test pays no
special attention to the fetal fraction, other than that the
deviation approximately equals the fetal fraction for a trisomy
fetus. (For a euploid fetus, the deviation is approximately 0.)
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A chromosomal dosage can be estimated reliably from low-
coverage sequencing reads (Supplementary Materials and
Methods online). NIPS uses euploid control samples to define
a baseline. Their chromosomal dosages are estimated, the
sample mean μ and the sample standard deviation σ are
computed, where μ is expected to be 2, but varies slightly from
chromosome to chromosome, and different chromosomes
have markedly different σ estimates (Supplementary Figure
S1). Suppose a euploid mother carries a fetus, and denote c
the estimated dosage of an autosome. Let h be the fetal
fraction, then c is expected to be μ + h when the fetus is
trisomy, and μ − h when the fetus is monosomy. We have
either h = c− μ (for trisomy) or − h = c− μ (for monosomy);
combined together, h = |c− μ|. Define x = c− μ, which is the
centered chromosomal dosage, then |x| is an unbiased
estimator of h for a trisomy or monosomy fetus. (Note
when the fetus is euploid, x is expected to be 0 and irrelevant
to h.) The Z-score is defined as Z = x/σ. Obviously, a larger h
tends to produce a more significant Z-score.
We identify three inadequacies of the Z-test method in

NIPS. First, the Z-score is measured relative to σ. A euploid
control sample may have an x estimate that is small enough
to appear by chance, but large enough relative to σ such that a
significant Z-score is obtained, resulting in a false positive.
Second, it is well known that fetal trisomy has an increased
risk with respect to maternal age.18 The Z-test method
has difficulty incorporating such information. Third, with the
Z-score one has to specify a threshold to call positives,
negatives, and no calls. But such a threshold varies for
different investigators3,19 and varies even for the same
investigators over time.3,4 Here we develop a Bayesian method
and demonstrate its advantage over the Z-test method
through analyzing a real data set. The Bayesian method
allows us to emphasize the fetal fraction through informative
priors. The informative priors effectively down-weight a
Z-score whose corresponding |x| is small. This alleviates the
first inadequacy of the Z-test method. The test statistic
produced by the Bayesian method is the Bayes factor.20 Bayes
factor is the change of odds (of trisomy) in light of the
data, and we can compute posterior odds of trisomy by
multiplying Bayes factor by prior odds of trisomy. The prior
odds can be the age-adjusted prevalence of trisomy of an
autosome. This addresses the second inadequacy of the Z-test
method. From the posterior odds, we can compute and report
the positive predictive value (PPV) and the negative predictive
value (NPV). Because both PPV and NPV are probabilities,
they are easily interpretable and more informative than a Z-
score. This mitigates the third inadequacy of the Z-test
method.

MATERIALS AND METHODS
In the Supplementary Materials and Methods we
documented how patients were recruited and data collected.
We also provided details on read quality control; how we
decided the optimal bin sizes when binning reads together;
the hidden Markov model we used to remove maternal copy-

number variants, as well as the regions harboring copy-
number variants at the population level due to reference bias;
how we accounted for GC bias; how we inferred fetal fractions
from sex chromosomes; how we fit candidate probability
densities to empirical distribution of fetal fractions and the
densities we obtained; how we computed Bayes factor; and
how we simulated chromosomal dosages to compare Bayes
factors against Z-scores.

Code availability
R-code implementing methods described in the paper are
available upon request.

RESULTS
Fetal fractions
We first inferred fetal fractions (denoted by h) for each
sample using sex chromosomes. The empirical distributions
of these fetal fractions were used to formulate our informative
priors for Bayesian analysis. For a female fetus the expected
chromosome X and Y dosages are 2 and 0 respectively, and
fetal fraction of a female fetus estimated from sex chromo-
somes is expected to be 0. For a male fetus, the expected X
dosage is 2− h and the expected Y dosage is h. Thus, both
X and Y dosages are informative to the fetal fraction of a
male fetus. Our data suggested that the Y dosage is more
informative than the X dosage (Figure 1a). We estimated the
fetal fractions for all samples using both X and Y dosages
(Supplementary Materials and Methods). Figure 1b shows
the histograms of the inferred fetal fraction (on the log scale).
The two modes correspond to putative female and male
fetuses. To avoid arbitrariness in specifying a threshold, we
used the K-means method to divide the log fetal fractions into
two groups. The inferred threshold of fetal fraction is 0.028.
Of 3,405 samples analyzed, 1,693 (49.7%) had fetal fractions
greater than 0.028 and thus were carrying putative male
fetuses, and the remaining 1,712 (50.3%) samples were
carrying putative female fetuses.
Taking fetal fraction estimates from samples carrying

putative male fetuses, we digressed to investigate how
maternal age, gestational age, and maternal weight affect the
log fetal fraction. Because these investigations relied on the
linear regression, we used the log fetal fraction instead of fetal
fraction, as the former was a better fit to a normal distri-
bution, which is the basic assumption for linear regression.
Maternal age in our sample followed a bimodal distribution,
with two modes at 27 and 35 years of age (Supplementary
Figure S2). Evidently, women in their late childbearing
years took advantage of the new “two-child policy” in China
effective 1 January 2016. Simple linear regression suggested
an association between maternal age and log fetal frac-
tion (P= 6.0 × 10 − 10), but the association disappeared
after controlling for gestational age and maternal weight
(P = 0.12). This nonassociation agrees with a previous
study using American samples of European descents.21 The
gestational age is positively associated with the log fetal
fraction (P = 7.2 × 10 − 24) and maternal weight is negatively
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associated with the log fetal fraction (P = 4.0 × 10 − 49). Both
agree with earlier studies.2,13 Gestational age accounts for
4.2% variation of log fetal fraction and maternal weight
accounts for 13.9%, and combined they account for 15.4%.

Prior specification
The computation of the Bayes factor requires one to integrate
the likelihood, which contains data and the parameter (fetal
fraction here), over the prior distributions of the parameter,
separately for the null and alternative models (Supplemen-
tary Materials and Methods). Thus, we need to specify and
justify priors for both null (euploidy) and alternative
(trisomy) models. Indeed, the art of Bayesian methods is
prior specification. (The toil of Bayesian methods is compu-
tation, but for our application the computation is rather

simple.) The expected fetal fraction estimated from the sex
chromosomes for a putative female fetus is 0, and the
observed variation of the estimates can be regarded as the
variation under the null model. The fetal fractions of male
fetuses can be reliably estimated from the sex chromosomes
(in the absence of mosaicism), and the observed variation can
be regarded as the variation under the alternative model. After
visual inspection of the histograms, we elected to use beta and
log-normal (LogN) distributions to fit the empirical distribu-
tions of the fetal fractions. With fetal fractions of putative
female fetuses, the fitted density was denoted by g0*;
with those of putative male fetuses, g1*; and with those of
female and male fetuses combined, g2*, where * can be either
B (for beta) or L (for LogN). The parameters of the fitted
distributions were determined by matching the means and the
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variances of an empirical distribution and a candidate
distribution. The explicit forms of the fitted distributions
can be found in the Supplementary Materials and Methods,
and Figure 1b demonstrates the goodness of fit.
Using the sharp null is common practice in Bayesian

methods. In our context, the sharp null specifies the null
distribution as a point mass h = 0, as opposed to assuming h
following a distribution that has its density concentrating near
0 but with variations. The sharp null, however, is a choice
often made for convenience rather than merits.22 In our
application, the sharp null produced much-inflated Bayes
factors (Supplementary Figure S3), which would favor the
alternative model to produce false positives. We thus avoided
the sharp null, and instead used g0* as informative prior for
the null model. To choose between B (g0

B) and LogN (g0
L), we

simulated chromosomal dosages (Supplementary Materials
and Methods) and computed Bayes factors (with a prior for
the alternative model to be specified below). Supplementary
Figure S4 shows that the two sets of Bayes factors were almost
identical to each other. We chose g0

B as the null prior in our
data analysis because its computation is easier.
To specify priors under the alternative model, it was

tempting to use g1* as an informative prior. Standard theory
states that the marginal likelihood of a composite hypothesis
is the weighted average of the likelihood over all constituent
point hypotheses, where the prior serves as the weight.23 This
gave rise to our first concern of using g1* as prior for the
alternative model: g1* has almost no weights at or near 0,
which risks being overly against the null model. The second
but related concern was that g1

B placed 10 times more weight
at fatal fraction 0.04 than at 0.02, and for g1

L the weight ratio
between the two fetal fractions is 150. Another choice of the
prior for the alternative model was g2*. We examined the

posterior mean of each candidate prior (in light of the Z-test
likelihood) and used this to guide our choice of prior for the
alternative model. Figure 2 plotted the observed fetal
fractions and their posterior mean estimates under g1* and
g2*. Priors g1* overestimated the posterior mean for small
observed fetal fractions, particularly in region (0.01,0.05).
Priors g2* performed desirably, with B slightly better than
LogN. We therefore chose g2

B as prior for the alternative
model in our data analysis. This prior places 0.7 units
of weight at fetal fraction 0.04 for each unit weight at
0.02. (Supplementary Figure S5 compares g1

B and g2
B

quantitatively using simulated chromosomal dosages.)

Bayesian analysis
Data processing produced a pair (x, σ) for each autosome of
each sample, where x is a centered chromosomal dosage, and
σ is the sample standard deviation of chromosomal dosages of
euploid controls. A Z-score can be computed via z = x/σ.
Treating |x| as a one-sample estimate of fetal fraction h, we
obtained a normal likelihood, which is the natural likelihood
associated with the Z-test. Combining the likelihood with the
priors for h under the null and alternative models we can
compute Bayes factors (Supplementary Materials and
Methods). Bayes factor (BF) is the change of odds in light
of data:

Posterior odds of trisomy oð Þ
¼ Prior odds of trisomy ´BF: (1)

It is well known that the prior odds of fetal trisomy increase
with the maternal age.18 For example, at age 25 the odds (or
the risk/prevalence) of a woman having a child with Down
syndrome is 1/1,300; at age 35, the odds increase to 1/365; and
at age 45, 1/30. With Bayesian inference this age-dependent
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risk can be conveniently incorporated into our analysis. From
the posterior odds, the posterior probability of trisomy (τ) can
be computed by τ = ω/(1 +ω). Because we choose between
the null and the alternative models, the posterior probability
of euploidy is 1 − τ. For a given sample, if it is called positive,
then the individual PPV is τ. This is because PPV is a ratio
between number of true positives—which is τ in our one-
sample situation—and number of all positive calls—which
is 1. Similarly, if it is called negative then the individual
NPV is 1 − τ.
We compared our Bayesian method with the Z-test method

by down-sampling reads and examining the consistency
between the original data and the down-sampled data. The
counts of positives/negatives were obtained by varying
threshold of test statistics. For log10BF the threshold ranges
from 0.67 to 89.60 and for Z-score, from 3.41 to 21.89.
We counted the number of positives (n+) and number of
negatives (n− ) in the down-sampled data set that were
positive in the original data set. Assuming the positives called
in the original data sets were the truth, a more powerful
method was expected to have a larger n+ (which mimic true
positives) and a smaller n− (which mimic false negatives).
Figure 3 demonstrates that, compared with the Z-test, our
Bayesian method produced more “true positives” and fewer
“false negatives.” In other words, the results were more
consistent between the original data and the down-sampled
data when our Bayesian method was used, and less consistent
when the Z-test method was used.
For each autosome of each individual, we calculated a

centered chromosomal dosage, estimated the fetal fraction,
and computed a Z-score and a Bayes factor. Figure 4 plots Z-
score against fetal fraction. Those dots whose log10BF > 1 are
in black with their sizes proportional to log10BF, and the rest
are in gray with a fixed size. Dots are aligned on lines of

different slopes, and dots associated with chromosomes 21,
18, and 13 are shown in red, green, and blue, respectively, to
confirm this observation. This was expected because Z-scores
associated with the same chromosome shared a common
denominator sample standard deviation, and sample standard
deviations varied with the chromosomal sizes and the
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coverage (Supplementary Figure S1). Figure 4 also shows
that larger Z-scores and fetal fractions tend to associate with
bigger Bayes factors, and most importantly, different dots may
have the same Z-scores but different fetal fractions. While the
Z-test treated two tests of the same Z-score equally, our
Bayesian method assigned them different Bayes factors after
taking into account the fetal fractions.
Our analysis produced 51 positive calls by the Z-test (Z-

scores > 4). We examined whether and how our Bayesian
method would call differently. Figure 5 plots fetal fractions
estimated from sex chromosomes against those estimated
from the (putative) trisomy autosomes, with the size of each
dot proportional to the log10BF. The 28 (of 51) dots
representing putative female fetuses are gray, and the
remaining 23 dots representing putative male fetuses are
black. For a male fetus if the autosome trisomy is true, the
fetal fraction estimated from the autosome will match that
estimated from the sex chromosomes. Thus we focus on the
male fetus below. Of the 23 dots, 14 aligned closely along the
diagonal line, and 11 of the 14 were confirmed positives.
These suggested that the fetal fractions estimated from the sex
chromosomes agreed well with those estimated from the
trisomy autosomes. Of these 14 dots, 13 had Bayes factors
greater than 1,412, and the one exception had a Bayes factor
of 19 (represented by the dot in a gray triangle). The
chromosome in question was chromosome 20 and trisomy 20

is rare,24 which means the prior odds are small, say 1/2,000.
Then the posterior odds are o1/100, so this one was called
negative by our Bayesian method. There were 9 dots that
deviated from the diagonal line. Of these, 7 (in the gray circle)
had Bayes factors smaller than 20, and were called negative by
our Bayesian method. Interestingly, none of these 7 were
associated with chromosomes 13, 18, or 21. The 8th abnormal
sample (in the gray square) had the largest difference in fetal
fraction estimates between the sex chromosomes and the
autosomes. Its Bayes factor was 186 and it was associated with
chromosome 3. This one was also called negative by our
Bayesian method because the prior odds for trisomy 3 with
mosaicism were extremely small. The 9th abnormal dot is
enclosed by a gray diamond. This one was called a true-
positive trisomy 13 with mosaicism because the Bayes factor
was extraordinarily large, more than 33 million. Our results
appear to be at odds with other studies, considering the near-
perfect true-positive rates reported by others.4–6 One possible
explanation is that other near-perfect true-positive reports
focused on trisomy 13, 18, and 21, while the 9 suspected false
positives in our analysis all relate to other chromosomes.

DISCUSSION
We developed a Bayesian method to analyze a NIPS data set
to detect fetal trisomy such as Down syndrome, and
demonstrated that our Bayesian method is more powerful
than the traditional Z-test. One source of power gain of our
Bayesian method is the reduced false positives. A euploid fetus
can have an estimate of centered chromosomal dosage x of,
say, 0.012, just by chance. (Recall |x| estimates fetal fraction h,
and a female fetus, whose h estimate from the sex
chromosomes is expected to be 0, can have an h estimate as
large as 0.028.) If the corresponding σ = 0.003, which is
realistic according to Supplementary Figure S1, we have
Z = 4, which would be (falsely) called positive by the
Z-test method. On the other hand, Bayes factor is likely to
remain small because the prior under the null favors small x.
In fact, plugging x = 0.012 and σ = 0.003 into our Bayes
factor program, we have a Bayes factor of 0.001. Another
(undemonstrated) source of power gain is the reduced false
negatives. Our Bayesian method can incorporate age-adjusted
prior odds into decision making, which is more likely to call
out true positives among high-risk pregnancies. Currently
NIPS is being developed to detect microduplications (and
microdeletions), which loosely is equivalent to detecting
trisomy (or monosomy) of a much smaller chromosome; we
expect our Bayesian method to make valuable contributions.
We used Z-test (normal) likelihood to compute Bayes

factors. This perhaps was not the best likelihood to use. At the
minimum, since σ was not known but estimated, the correct
distribution of Z-scores should be the t instead of the normal.
We can easily incorporate other forms of likelihood into
our Bayes factor calculation. For example, we can use the 100-
kb bin as a unit to produce a composite likelihood
for each chromosome (by multiplying the normal likeli-
hood of each bin), which might perform better than the
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normal likelihood at a chromosomal level, because the
bin-based likelihood accounts for the different variances
among bins.
Our Bayesian method pays extra attention to the fetal

fraction. We learned distributions of the fetal fractions from
the sex chromosomes to formulate priors under the null
and alternative models, and incorporated these informative
priors into our Bayesian method to test for fetal auto-
somal trisomy. This agnostic approach to specify infor-
mative priors avoided subjective bias on prior specification
that often drew critiques. The parallel nature of the genetic
data affords us an opportunity to specify informative
priors for our Bayesian analysis. To be specific, the data
collected from the sex chromosomes can be viewed as
independent of the data collected from the autosome. We
estimated the fetal fractions from the sex chromosomes,
learned their distributions, and applied these distributions
as priors to perform Bayesian analysis of autosomes. In doing
so, we did not “use the data twice,” which would violate
the first principles of Bayesian analysis. Rather, we picked the
informative part of the data (sex chromosomes) to learn
about the parameter, and then applied the learned knowl-
edge to analyze other—nonoverlapping—parts of the data
(autosomes).
The learned priors provided us an opportunity to avoid

the sharp null. The sharp null hypotheses often used in
the literature are seldom exactly true. They exist because they
are simple and often a good enough approximation.22 The
testing of a null hypothesis can usually be made more realistic
by “spreading” the hypothesis over a small region.22 It is
noted that in testing a normal mean the sharp null is a good
approximation to an interval null as long as the width of
the interval is less than about one-half of the standard error of
the sample mean.20,25 The genetic data sets we analyzed
here, however, suggested that using a sharp null favors the
alternative model (Supplementary Figure S3). This is
because the variation of the fatal fraction under the null
(estimated from the putative female fetuses) is substantial
compared with the sample standard deviations of the
autosomal chromosomal dosages from euploid control
samples.
Our method can conveniently incorporate, through

prior odds, factors such as maternal age and the odds
change obtained from the traditional first-trimester screen.
Using posterior probability, our method can directly compute
individual PPV and NPV, which makes our method more
useful to clinicians and genetic counselors. Both PPV and
NPV are of important clinical utilities but difficult to obtain
from the Z-test. This is because the Z-test is a classical null-
hypothesis significance test, which does not allow researchers
to state evidence for the null hypothesis, while NPV is a
confidence measurement for the null hypothesis.

SUPPLEMENTARY MATERIAL
Supplementary material is linked to the online version of the
paper at http://www.nature.com/gim
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