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Abstract

The field of quantum transport studies electron motion at low temperatures in nanos-

tructures. Exciting electron phenomenon can be engineered by combining device

designs like quantum dots, Josephson junctions, and interferometers with materials

which host physics such as various quantum Hall effects and superconductivity. Com-

binations of these ingredients can be mixed to design a device which is then cooled

down and has its I ´ V curves measured while tuning key physical parameters, such

as magnetic field, temperature, and gate electrode voltages.

These time independent (DC) measurements can provide a wealth of information,

but ultimately they can only access highly averaged physical properties. Fortunately,

this is not a fundamental constraint. By measuring the emission of and response to

higher frequency signals, we are able to access additional properties of our devices.

This dissertation explores two projects related to time oscillating (AC) measure-

ments of graphene devices with superconducting contacts. The first project is related

to the measurement of “Shapiro steps” in graphene based Josephson junctions. By

applying a gigahertz drive to the junction, it becomes possible to probe the dynamics

of the phase difference of the junction. The work presented here explores the effects

of the RF environment on the Shapiro step pattern, and on a bistability observed in

this system.

The second project addresses the noise measured downstream of a superconduct-

ing contact for a device in the quantum Hall regime. Recent work has observed the
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coupling of superconductivity to a quantum Hall edge, a promising test-bed for mix-

ing superconductivity with topological physics. However, the signal in real devices

remains fairly small compared to the ideal limit. Noise measurements should allow

us to probe the microscopics in these devices, but we find indications that signals

seemingly related to contact heating obscure the desired signal. Additional devices

which should show a tunable signal amplitude show only very small signal variation,

opening questions about what physical phenomena may be suppressing this noise.
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1

Introduction

The last two decades have seen remarkable advancements in condensed matter physics.

Theorists have proposed many new, exciting systems, particularly in terms of topo-

logical behavior [1]. Experimentally, many of these systems have been realized, show-

ing results consistent with theory [2, 3], while other systems are showing promising

preliminary results [4].

A large number of these studies are performed via electrical transport measure-

ments. In such studies, a sample has electrical contacts deposited so that one can

measure I-V curves as a function of various parameters such as gate voltages, applied

magnetic fields and sample temperature. This is a versatile and powerful technique

but ultimately only provides access to averaged properties. Interpreting such mea-

surements is often also very challenging, given that condensed matter systems do not

allow one to know their Hamiltonian exactly.

Studying these materials with higher frequency techniques allows for direct ob-

servation of properties that are otherwise challenging to study or unobservable. Ex-

amples include thermal conductivity [5], the charge of emergent quasiparticles [6, 7],

and fractional statistics [8]. There are a number of engineering challenges associated
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with radio and higher frequency measurement techniques in a cryogenic environment.

Typical transport measurements utilize lossy microcoaxes which effectively filter the

lines from high frequency noise, while also being resistive and therefore having low

heat conductivity according to the Wiedemann-Franz law. In contrast, high fre-

quency lines must be very conductive and RF matched, but carefully designed to not

be too thermally conductive so as to not couple cryostat stages of different tempera-

tures. Lines used for absorption spectroscopy must be carefully attenuated so as to

prevent high frequency noise from outside of the dilution refrigerator from coupling

to the system while still allowing the desired signal to reach the sample. Emission

lines must be carefully designed to avoid back action on the sample and typically

include a large heat load cryogenic amplifier which must be thermally decoupled

from the sample. Despite these challenges, high frequency techniques are beginning

to show exceptional probing and manipluation of condensed matter systems [9].

This PhD is primarily focused on probing graphene superconducting devices with

non-DC techniques. The first portion addresses RF driven graphene Josephson junc-

tions. Such RF drive can give rise to “phase locking” and quantized DC voltage

steps in the IV curve of a junction. This technique also allows one to probe the cur-

rent phase relationship of a device and thus the material properties of the weak link.

While graphene should generally have a relatively standard CPR, work described

in Chapter 3 shows that the electromagnetic environment can effect the observed

pattern of quantized voltage steps in significant ways, which can obscure the ability

to measure the desired physics. We also find that the system forms a very tun-

able bistable system, with rich switching behavior that is not described by standard

activation effects. Experiments utilizing this bistability are addressed in Chapter 4.

The second part of this text addresses measurements of the intrinsic noise of a

quantum Hall superconducting contact. Measurements of the voltage fluctuations

in a mesoscopic sample can tell us a great deal of information about the way in
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which heat and charge are flowing. However, given the significant impedance of the

conductance quantum, few channel samples typically have their fluctuations filtered

before they can be measured outside of the cryostat. To escape this issue, we follow

a common path and use a homemade cryogenic HEMT amplifier with a tank circuit

resonator to measure this noise. The construction and calibration of this setup are

detailed in Chapter 6.

Finally, we address the noise that is measured downstream of a superconducting

contact in the quantum Hall regime in Chapter 7. Recent work from our group has

shown that this system can exhibit chiral Andreev edge states, where by Andreev

reflections cause an incoming electron to be converted to hybridized electron-hole

states [10]. Building on this result, another group has found that there is a signif-

icant noise signal can be measured at a superconductor - quantum Hall interface

which was attributed to shot noise[11]. However, we find that similar noise can be

observed downstream of a normal metal contact, indicating that for short contacts

to a graphene device at low field it is possible that the edge state is not totally ther-

malized. Further, when we measure the noise as a function of gate voltage on a given

plateau, we observe minimal variation of the noise signal, which is in stark contrast

to the non-local resistance which is significantly oscillating. This seems to indicate

that there must be certain equilibration processes at play leading to the suppression

of the shot noise.
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2

Theory I: Superconductivity and Josephson Effects

2.1 Superconductivity

Shortly after liquifying helium, Kamerlingh Onnes first discovered superconductivity

in mercury, observing a sudden drop in resistance as a function of temperature. This

was followed by similar observations in tin and lead, as well as observations of perfect

diamagnetism.

It would ultimately take more than 40 years to develop an understanding of

the microscopics of the most basic superconducting materials. During this time,

several phenomenological models were developed, such as the London equations and

Ginzberg-Landau theory. The details of the failed microscopic models proposed

during the time are quite interesting[12]. Both Bloch and Landau proposed theories

in which the ground state was a finite momentum state[13, 14], although Bloch later

developed a theorem showing that ground states in electronic systems are by necessity

zero net momentum states[15] (although finite momentum superconductivity has

recently reemerged in more nuanced contexts, for example [16]). Kronig developed

a theory where coulomb repulsion of an electron gas is very large compared to the

4



kinetic energy, and current was then carried by the sliding of the electron solid. This

theory predated Wigner’s work on electron crystallization by two years[17].

Ultimately, Bardeen, Cooper and Shrieffer developed the BCS theory of super-

conductivity. This work began with what is now known as the Cooper problem[11],

where it was shown that electron phonon interaction could lead the formation of a

bound state between two electrons.In BCS theory, it was shown that below a critical

temperature, electrons within a certain range of the Fermi surface readily form such

pairs, giving rise to a superconducting gap in the density of states ∆ within which

there are no single particle states.

While many of these properties can be lengthy to derive, we note several proper-

ties of superconductivity that are worth understanding phenomenologically [18]

• Superconducting materials are predicted to be truly dissipationless. While

many precise measurements have placed a minimal upper bound on the actual

resistance of a superconductor, there can be complications in real systems, such

as finite dissipation above HC1 in a type II superconductor (see below).

• In additional to a critical temperature, superconductors also have a critical

current density and critical magnetic field, above which they transition back

to a normal state.

• Superconductors are categorized based off of the ratio of two length scales. The

first is the London penetration depth λL which is the distance over which the

superconductor screens magnetic fields. The second is the Ginzberg-Landau

coherence length ξ. In Ginzberg-Landau theory, a macroscopic superconductor

can be described locally by a complex order parameter field. The correla-

tion function of this complex order parameter at two different points depends

exponentially on the distance between the points, with length ξ being the
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characteristic length. The ratio of these two values κ “ λL
ξ

is known as the

Ginzberg-Landau parameter.

We can naturally consider two limits of behavior here. The first is if λL is

the relatively small length (or more strictly κ ă 1?
2
). In this situation, if we

take such a superconductor and begin applying magnetic field, it is energet-

ically favorable for the superconductor to expel the field and keep the order

parameter smooth, up to thermodynamic considerations potentially leading to

macroscopic normal regions [18]. Ignoring such details, the superconductor

will expel magnetic field until the field exceeds HC , at which point the entire

superconductor transitions to the normal state. Superconductors of this type

are known as type-I, and it includes most simple elemental superconductors.

In the opposite limit, it can be energetically favorable for the superconduc-

tor to form miscroscopic normal regions and have the order parameter wind

around such regions. More concretely, above a certain magnetic field HC1 the

superconductor will allow tubes of magnetic field to flow through it. These

tube regions are known as vorticies[19], and play an important role in the ex-

periment in Chapter 7. Superconductors of this type are known as type-II.

Eventually, the magnetic field will exceed a value HC2 such that the entire

superconductor transitions to the normal state.

2.2 Bogoliubov-de-Gennes

While Ginzberg-Landau theory is typically sufficient to understand a great deal

about Josephson junctions and superconducting device physics, in work on meso-

scopic physics we often need more significant theoretical tools. In particular, we

would like to understand the excitation spectrum, and we would like to be able to

understand the effects of an external potential in our system.
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We begin by writing our electron systems in terms of real space electron cre-

ation and annihilation operators, which are related to the standard second quantized

operators by

Ψpr, αq “
ÿ

k

eik¨rakα

Ψ:
pr, αq “

ÿ

k

e´ik¨ra:kα

(2.1)

with α denoting a spin index

We can easily write a generic Hamiltonian in terms of these parameters, with

just a kinetic energy and a pointlike interaction of electrons (we know that the BCS

interaction can be written in this form because the BCS interaction is of constant

strength, so upon Fourier transforming it becomes a δ function)

Hkin “
ÿ

α

ż

d3rΨ:
pr, αqĤeΨpr, αq (2.2)

Hint “ ´
V

2

ÿ

α,β

ż

d3rΨ:
pr, αqΨ:

pr, βqΨpr, βqΨpr, αq (2.3)

As usual, terms which are fourth order in electron operators are quite complicated.

The most straightforward thing we can do is to perform a mean field approximation

and rediagonalize our new effective Hamiltonian. Applying Wick’s theorem to our

fourth order term and considering that our BCS attractive interaction pairs opposite

spins we find[20][21]

Heff “

ż

d3r
ÿ

α

”

Ψ:
pr, αqĤeΨpr, αq ` UprqΨ

:
pr, αqΨpr, αq

ı

`

ż

d3r
“

∆prqΨ:
pr, ÒqΨ:

pr, Óq `∆˚
prqΨpr, ÓqΨpr, Òq `H0prq

‰

(2.4)
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which when diagonalized takes the form

Heff “ Eg `
ÿ

n,α

εnγ
:
n,αγn,α, (2.5)

It is worth noting that different specifics of the superconductor and the attractive

interaction may modify Heff , but the general procedure presented will be valid (for

example, see [22]).

Following diagonalization, our new operators γ and our electron operators are

related by a unitary transformation

Ψ:
pr Òq “

ÿ

n

”

γ:nÒu
˚
nprq ´ γnÓvnprq

ı

Ψ:
pr Óq “

ÿ

n

”

γ:nÓu
˚
nprq ` γnÒvnprq

ı

(2.6)

where the opposite spin pairing in the unitary transformation follows from the

opposite spin pairing in the effective Hamiltonian. The corresponding annihilation

operators can be easily identified by taking the Hermitian conjugate. We would like

to solve for un, vn in order to understand the quasiparticles in our system. We can

do this by considering the commutators of Heff with the two sets of operators

rHeff ,Ψpr, Òqs´ “ ´
”

Ĥe ` Uprq
ı

Ψpr, Òq ´∆prqΨ:pr, Óq

rHeff ,Ψpr, Óqs´ “ ´
”

Ĥe ` Uprq
ı

Ψpr, Óq `∆prqΨ:pr, Òq
(2.7)

rHeff , γn,αs´ “ ´εnγn,α

“

Heff , γ
:
n,α

‰

´
“ εnγ

:
n,α

(2.8)

Expressing our electron position operators in terms of the diagonal operators we

find
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”

Ĥe ` Uprq
ı

uprq `∆prqvprq “ εuprq

´

”

Ĥ˚
e ` Uprq

ı

vprq `∆˚prquprq “ εvprq
(2.9)

which can naturally be expressed as a matrix equation in an electron hole basis

«

Ĥe ` U ∆

∆˚ ´

”

Ĥ˚
e ` U

ı

ff

„

un
vn



“ εn

„

un
vn



(2.10)

This now allows us to solve for the elementary excitations in the presence of

arbitrary U . It is also a very helpful formulation for considering proximity coupling,

which is addressed in the next section. Lastly, we note that this formulation is

particle hole symmetric – for

„

un
vn



with energy εn,

„

v˚n
u˚n



is a valid solution with

energy -εn. This symmetry is a key ingredient which is often utilized in proposals for

Majorana fermions[23], although there exists interesting work on the ways in which

the subtlties of BDG may effect these results[24].

2.3 From SIS to SNS

Shortly after the development of BCS theory and the understanding of the micro-

scopic mechanisms at play in superconductors, Brian Josephson realized that if two

separate superconductors are connected by an insulating layer (as is shown in Figure

2.1) remarkable effects can be observed. A fairly informal derivation can be con-

sidered as follows[21][25]: we begin with a superconducting lead which we associate

with a single complex order parameter ψ. This is a consequence of Ginzberg-Landau

theory with a long coherence length, and this “macroscopic quantum coherence” is

the fundamental element of our circuit.

By itself the lead obeys i~dψ
dt
“ Eψ. Now we consider two such leads, with a very

thin insulator in between. While initially the leads are decoupled, the thin insulator

9
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Figure 2.1: A side profile of a standard SIS junction. A very thin («5 nm) oxide
layer allows for Cooper pairs to tunnel directly across the junction.

allows some tunneling of Cooper pairs between the two leads. We can suppose that

this coupling is simply proportional to the order parameter in the other lead. To

be slightly more specific, we can refer to the coupling parameter between the two

leads as K. This is connected to the properties of the tunnel barrier. We will take

the energy of the lead to be ˘qV for some voltage difference 2V. This leads to the

matrix equation

„

qV K
K ´qV

 „

ψ1

ψ2



“ i~
„

dψ1

dt
dψ2

dt



(2.11)

We can now rewrite ψ as ψ “
?
Neiχ which gives the differential equations

hdN1

dt
“ ´2K

?
N1N2 sin pχ2 ´ χ1q

hdN2

dt
“ 2K

?
N1N2 sin pχ2 ´ χ1q

(2.12)

and

~N2
dχ2

dt
“ eV N2 `K

?
N1N2 cos pχ2 ´ χ1q

~N1
dχ1

dt
“ ´eV N1 `K

?
N1N2 cos pχ2 ´ χ1q

(2.13)

The first two equations give us the DC Josephson relation

I “ Ic sinφ (2.14)

as the current which can flow through the junction in the absence of a volt-

age. Here φ is the relative phase difference between the leads and IC is a constant

parameter of the device. The second set of equations give the AC Josephson effect

10



~
Bφ

Bt
“ 2eV (2.15)

which relates the instantaneous voltage across the junction to the derivative of

the phase difference with respect to time.

Josephson junctions have become a remarkable tool in technology, from the volt-

age standard[26], to sensing[27], to circuit quantum electrodynamics and quantum

computing[28]. Microscopically, these Josephson junctions with an insulating link are

believed to still follow the above reasonably simple picture. However, it is also pos-

sible to engineer Josephson junctions with other types of weak links. One such weak

link considered throughout this dissertation is the semiconducting or normal metal

weak link. These junctions are typically referred to as SNS for superconducting-

normal metal - superconducting, in contrast to the SIS superconducting-insulating-

superconductor junctions. These devices host much richer microscopic physics. To

emphasize how different these two devices are, note that standard laboratory SIS

junctions can only mediate a supercurrent through an insulating layer of 5 nm. At

longer length scales the tunneling probability simply becomes too low. However,

SNS junctions can easily mediate a supercurrent over distances of microns. This is a

strong indication that the supercurrent is not mediated by the tunneling of Cooper

pairs, so how does it arise?

To answer this question, we must first take a step back and answer an even

simpler question regarding what physically happens at a superconductor normal

metal interface. Naturally the metal or semiconductor transports charge by electrons

or holes, while the superconductor does so by Cooper pairs, but it is not immediately

clear how these carriers are microscopically converted into one another.

We will consider a simple superconductor normal metal interface illustrated schemat-

ically in Figure 2.2. We begin with the BDG equations, and make a semiclassical

11



Figure 2.2: A schematic of Andreev reflection. On the left we see the density of
states of the superconductor. When an electron with an energy within the gap is
incident on the superconducting interface, it is completely transmitted and a hole is
formed so that a Cooper pair can be formed within the superconductor.

approximation

ˆ

u
v

˙

“ eik¨r
ˆ

Upxq
V pxq

˙

(2.16)

where |k| “ kF . Upxq and V pxq are smoothly varying functions on the length scale

1{|k| (note that these are unrelated to the potential energy Upxq discussed earlier).

This can be plugged into the BDG equations. We can assume second order derivatives

of Upxq, V pxq are small and neglect them. If we also assume a system without

magnetic field than we find

´i~vx dUdx `∆V “ εU
i~vx dVdx `∆˚U “ εV

(2.17)

where vx is the component of velocity in the x direction for a given Fermi surface

wave vector. Generically inside the superconductor our solution will be of the form

12



ˆ

Upxq
V pxq

˙

R

“ ceiλSx
ˆ

U0

V0

˙

(2.18)

with λS “

?
ε2´|∆|2

~vx . Inside the normal region we can solve these same equations while

setting ∆ “ 0. We are particularly interested in what happens when an electron is

incident on the superconducting region, but it is immediately clear that the only

way to match the wavefunctions at the interface and match currents is to have a

retroreflected hole.

The fact that an electron gets retroreflected as a hole and a Cooper pair is formed

in the superconducting lead is the primary result we are looking for. This process

is known as Andreev reflection and it was only explored several years after the for-

mulation of BCS theory[29]. While we can already appreciate this point, we can

proceed formally and confirm that the above intuition works. The solution in the

normal state to Upxq, V pxq must be

ˆ

Upxq
V pxq

˙

L

“ eiλNx
ˆ

1
0

˙

` ae´iλNx
ˆ

0
1

˙

(2.19)

with λN “
ε

~vx Generically, we must match these two equations and solve for a and c,

the reflection and transmission coeffecients. For incident electrons with energy ε ą ∆

it is possible to get somewhat more complicated results. However, we are most inter-

ested in electrons with energy ε ă ∆ and here the results are rather straightforward.

In this case, λs is imaginary, so Upxq, V pxq are exponentially suppressed as their are

no electron or hole states within the gap. Full solution does indeed confirm that

|a|2 “ 1

Now that we have studied a single SN interface we can examine an SNS structure

(Figure 2.3). This is essentially equivalent to doing the above problem twice, noting

that the phase of the electrons and holes in the normal region will evolve by ˘λnd
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Figure 2.3: An SNS device. Cooper pair transport is mediated by successive
Andreev reflections.

in the normal region, where d is the distance traveled by the particle from one

superconducting contact to the other.

More formally, we initially consider the right superconducting contact. Lets sup-

pose the junction has a phase difference φ. Without loss of generality, we will say

the phase on the right contact is φ{2 and the left contact is ´φ{2. If we are initially

considering an electron such that the momentum projection on the x axis is positive,

kx ą 0, the wave function in the right superconductor x ą d{2 is

ˆ

Upxq
V pxq

˙

R

“ d1e
´λ̃Sx

ˆ

Ũeiφ{4

Ṽ e´iφ{4

˙

(2.20)

for some constant d1. This is fairly similar to before, with the additional phase

factor which we have split between the electron and hole components. In the left

contact, we have to note that the coherence factors Ũ , Ṽ are swapped because the

problem should be identical if we take x Ñ ´x and apply a time reversal operator

so that the direction of current also flips

ˆ

Upxq
V pxq

˙

L

“ d11e
λSx

ˆ

Ṽ e´iφ{4

Ũeiφ{4

˙

(2.21)

Matching with the same normal state function as before at both boundaries we

find

ae´iλNd “
Ṽ

Ũ
e´iφ{2 (2.22)

and
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aeiλNd “
Ũ

Ṽ
eiφ{2 (2.23)

Dividing these two equations we thus arrive at

e2ipλNd´φ{2q “
Ũ2

aṼ 2
“
Ũ

Ṽ
“
ε` i

a

|∆|2 ´ ε2

ε´ i
a

|∆|2 ´ ε2
(2.24)

where we have made use of a “ Ũ
Ṽ

for a subgap state. Further simplification ulti-

mately yields

ε “ ˘~ |ωx|
„

φ

2
¯ arcsin

ε

|∆|
` π

ˆ

l ˘
1

2

˙

(2.25)

with ωx “ vx{d and l being an integer. The opposite sign solution comes from

reversing the direction of the particles in the normal region. This formula is initially

unsightly but gives way to two simple limits. If the junction is short, by which we

mean that d ăă ~vx{∆ then ~ωx ąą ∆ ě ε and we can simply find that ε “

˘|∆|cospφ{2q The opposite limit, a long junction, can be found by simply neglecting

the arcsin term. Here, there may be a significant number of different solutions for

different l, as long as ε for a given l is less than ∆.

This εpφq is the Andreev bound state spectrum which is depicted in Figure 2.4[29].

We see that a short junction has an oscillatory dependence on φ while the long

junction is saw tooth. While it is possible to design a 0D or 1D weak link with few

modes, typically a 2D weak link like those studied in this dissertation will have many

such modes. We can very straightforwardly connect these modes to the macroscopics

of the junction. The total energy of this junction can be arrived at by summing over

the occupied Andreev bound states at a given φ. On the other hand, we can also get

the change in energy of the junction between two phases by integrating IV from from

time t1 when the junction is at phase φ1 to time t2 when the junction is at phase
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Figure 2.4: Top: the ABS spectrum for a single mode short device. The spectrum
is sinusoidal, with a phase shift depending on the direction of the current. Bottom:
the bound state spectrum for a longer device with two modes.

φ2. In this situation, V dt “ dΦ owing to the AC Josephson relation. This procedure

ultimately yields

ICpφq “
ÿ

i

´
2e

h

BEi
Bφ

(2.26)

(we can also arrive at this result by noting that for superfluid systems, phase and

particle number are canonically conjugate). This is known as a current phase rela-
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ϕ

Figure 2.5: Tilted washboard potential. The phase particle oscilates in a single
minima, until tilting and noise, be it quantum or thermal, allows the phase particle
to overcome the barrier.

tionship. While SIS junctions typically show a sinusoidal current phase relationship,

here we have seen that SNS devices can show more complicated relationships. While

this can arise from junction length, it may also arise from materials properties, as a

rigorous calculation requires analyzing the properties of the weak link. For example,

graphene weak link devices are predicted to give rise to a skewed CPR because of

the materials linear dispersion [30]. Devices with Majorana fermions are predicted

to host a 4π periodic current phase component[31].

While the picture presented above is useful, it neglects many important facts

related to Andreev bound states in real devices. Beyond the physics of the weak link,

it is also important to consider junction temperature, which effects ABS occupation,

contact transparency, which typically opens a gap in the subgap states, and scattering

within the weak link[32].

2.4 RCSJ and Shapiro Steps

In order to go from the Josephson relations and the CPR to the IV curve of a junc-

tion, we need to incorporate a few additional elements into our circuit. Actually,

it is almost surprising how few elements it takes to capture the basic behavior of a

junction. Typically, we consider a capacitor (which will naturally arise in junction

geometry due to coupling between the leads) and a resistor (to model any dissipative
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processes) in parallel with the junction. This is called the resistively and capacitively

shunted junction (RCSJ) or Stewart-McCumber model. By incorporating the two

Josephson relations and solving for the circuit we can completely solve for the dy-

namics of the phase variable. If this circuit is current biased, than the bias current

must be equal to the sum of the current through each element. This gives

I “
~C
2e

d2φ

dt2
`

~
2eR

dφ

dt
` IC sinpφq (2.27)

There are a few different ways in which we can intuit this equation

• It is the equation for a damped pendulum. The mass here is proportional to

C, the damping is proportional to 1
R

and the gravitational force is associated

with the critical current.

• We can think about this equation as a parallel RLC circuit with a nonlinear

inductor (inductance proportional to sinpφq). This picture can be useful for

internalizing how the junction will respond to changing our device parameters.

• Lastly, and also perhaps most usefully, we can consider the “tilted washboard”

picture (Figure 2.5). We associate the phase with a particle sitting in a sinu-

soidal well. This particle is initially localized to one well and has an intrinsic

small amplitude oscillation (ωp “
b

2eIC
~C in analogy with the pendulum), and

also some noise fluctuations. As we apply a DC current to the device, we begin

to tilt the well. At some point, we tilt the well enough that the particle can

escape its initial minima. What happens afterwards will depend on the system

parameters. In a simple picture, the device will either have huge inertia and

continue rolling down the well, or huge dissipation and just become localized

in the next well.
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This last picture is extremely helpful for explaining what is actually happening

in the IV curve of a Josephson junction. A sample IV curve is printed below (Figure

2.6).

As was eluded to in the discussion of the tilted washboard potential, if a junction

is underdamped (with Q “ ωpRC ąą 1, in perfect agreement with a parallel RLC

circuit) then the system has significant inertia and small damping. This leads to

two significant effects. First, the transition from superconducting to normal is very

sharp, because once the particle escapes the first well it is freely rolling down the well,

corresponding to the normal state. Secondly, there tends to be significant hysteresis

in the IV curve, as the large inertia of the phase particle can cause the particle to

remain rolling even if the DC current is lowered once the particle starts running.

The other limit of overdamped junctions leads to a smoother transition between

the two states, as the low inertial particle can enter a sort of diffusive regime prior to

entering the true normal state. In our equations, this should also prohibit hysteresis,

but nanoscale SNS junctions can exhibit hysteresis even if they are overdamped.

There is some debate as to whether this arises from heating or from capacitance of

the Andreev bound states[33, 34].

We would like to know what happens if we apply an AC current to a Josephson

junction. Unfortunately this problem is not particularly analytically tractable, so

we instead consider an AC and DC voltage bias V “ V0 ` V1cospω1tq. By the AC

Josephson effect, this leads to a phase as a function of time

φptq “ φ0 `
2eV0

~
t`

2eV1

~ω1

sinpω1tq (2.28)

We can plug this relation into the DC Josephson effect in order to get It. Before

doing so, we note that this will involve a term involving sinpsinpxqq which can be

expanded in terms of Bessel functions using the identity eia sinx “
ř`8

k“´8 Jkpaqe
ikx

we find that
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Figure 2.6: The VI curve for a standard graphene Josephson junction. Blue cor-
responds to the forward sweep direction, while orange corresponds to the backwards
sweep, showing significantly different switching and retrapping currents.

I “ Is `
V0

R
“ Ic

8
ÿ

k“´8

p´1qkJk

ˆ

2eV1

~ω

˙

sin

ˆ

φ0 `
2e

~
V0t´ kω1t

˙

`
V0

R
(2.29)

Generically, the sin factor causes the Is portion to oscillate and average to zero.

However, for V0 “ k~ω1{2e the two time dependent factors within the sin cancel out

for a given values of k, resutling in a term with a DC average. While this might

initially seem like an effect that only matters for a measure zero set of bias voltage

values, if the junction has this voltage, than by changing φ0 we see that we can carry

a wide range of supercurrent. Specifcally the halfwidth of step k is ICJkp2ev1{~ω1q.

When current biasing, we find that the device shows steps at well quantized

voltages (Figure 2.7). These steps are referred to as Shapiro steps. Essentially, the

Josephson junction is a near perfect frequency to voltage converter. This is actually

the basis of the modern voltage standards. This effect plays a central role in chapters

3 and 4. Chapter 3 presents a more intuitive picture of how these voltage steps arise.

20



Figure 2.7: Voltage as a function of current for an RF driven graphene Josephson
junction. This measurement was taken at relatively high RF power applied, as can
be seen from the large number of observable steps.
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3

Shapiro Steps in Encapsulated Graphene Josephson
Junctions

3.1 Introduction

As discussed in Chapter 2, Josephson junctions subject to an external RF radiation

demonstrate the inverse AC Josephson effect: the phase difference across the junction

locks to the external frequency [35]. As a result, the phase steadily ramps with time,

and the I ´ V curves form “Shapiro steps” of quantized voltage V “ n~ω{2e, where

n counts the number of periods by which the phase progressed over one period of

excitation [36]. The exact mechanisms of the phase locking and its stability were

investigated in detail in the 1980s [37]. The extremely precise voltage quantization

of the steps is presently utilized in primary voltage standards [38].

Recently, interest in topological Josephson junctions have reinvigorated the use of

the AC Josephson effect as a tool to probe a junction’s current-phase relation [39, 40].

Missing steps and residual supercurrent associated with the anomalous CPR are some

of the signatures which have been explored [41, 42, 43, 44, 45]. Many of these studies

are performed at relatively low power and frequency; in this regime the measured
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maps may be significantly different from the textbook “Bessel function” patterns

even in topologically trivial junctions [37].

We studied the inverse Josephson effect in graphene-based superconductor-normal-

superconductor junctions. Shapiro steps in this topologically trivial material have

been previously explored [46, 47, 48, 49] and used as a reference in the study of topo-

logical junctions [42]. We show that a variety of patterns can be obtained within

the same junction by tuning the gate voltage and magnetic field. Both the Bessel

function regime and the strongly hysteretic regime with “zero crossing steps” are

observed. We directly simulate the observed patterns using an extension [50] of the

RCSJ model to explain the observed trends, showing some notable differences from

predictions based on the conventional model.

One of the unique properties of our junctions is that the superconducting leads

are made by sputtering molybdenum-rhenium alloy [51], which has a relatively large

gap of 1.3 meV. The sample is measured in a dilution refrigerator with the sample

holder temperature of approximately 100 mK, which depends weakly on the applied

RF signal. The actual sample temperature under the RF drive could be higher [52].

The GHz drive is coupled by an antenna placed approximately 1 mm away from

the sample. The exact value of the RF power reaching the sample is difficult to

quantify because of the frequency-dependent coupling between the antenna and the

sample, which are not impedance matched. Therefore, we only list the nominal RF

power emitted by the generator at room temperature, which is a common practice

in similar experiments. To measure the DC voltage across the sample, we perform

multiple DC current bias sweeps while keeping the rest of the parameters fixed. The

resulting I´V curves are then averaged and numerically differentiated to obtain the

differential resistance R “ dV {dI. 200 I-V curves are averaged for each linecut of

the AC Bias - DC Bias figures in this chapter.

This chapter is adapted from Ref[53].
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Figure 3.1: a) Measured differential resistance of the junction as a function of gate
voltage and bias. The central black region corresponds to supercurrent. The current
is swept from negative to positive, resulting in the large difference between IS and
IR. The green dashed line marks the primary gate voltage used throughout the
paper (Figures 3.2-3.4); blue dashed lines correspond to gate voltages used in Figure
3.5. b) Switching current as a function of small perpendicular magnetic field, for
VG “ 0.45 V. This magnetic interference effect is used to tune the critical current of
the junction, while holding other parameters constant. Arrows indicate field values
used in Figure 3.2. c) Schematic of an encapsualted graphene Josephson junction,
subjected to RF irradiation.

3.2 Shapiro Maps

A schematic of the sample and standard characterization measurements performed

without RF excitation are presented in Figure 3.1. Figure 3.1a shows the differential

conductance measured as a function of bias and gate voltage. The dark region of the

map corresponds to supercurrent. As commonly observed in SNS junctions, there

is a large difference between the switching current from the superconducting state

to the normal state (IS) and the retrapping current from the normal state to the

superconducting state (IRq [54, 55]. (The value of IS is slightly lower than the true

value of the critical current of the junction, IC .) Figure 3.1b shows the dependence

of IS on a small magnetic field applied perpendicular to graphene – the “Fraunhofer

pattern” [19]. The sensitivity of IS to magnetic field allows us to conveniently tune

the critical current while holding other parameters constant.

In Figure 3.2, we compare patterns of Shapiro steps measured at frequencies of 3
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Figure 3.2: The maps of differential resistance showing Shapiro steps as a function
of the DC bias current, I, and RF power, PRF . The gate voltage for this figure
through Figure 4 is set at VG “ `0.45 V as measured from the Dirac peak (VD “ ´10
mV is negligible in this sample). The maps are measured at two frequencies (top
row: 5 GHz, bottom row: 3 GHz) and different switching currents (left to right: IS
= 650, 240, 80 and 35 nA), as tuned by perpendicular magnetic field). An important
dimensionless parameter controlling the overall behavior is Ω “ ω{ωP9ω{

?
IS. The

pairs of panels (a and f), (b and g), (c and h) correspond to roughy equal values
of Ω and therefore appear similar. We observe the expected trends, according to
which at high Ω (right panels) the plateaus are centered at fixed voltages and their
vertical extent is described by the Bessel functions. In the opposite limit of low Ω
(left panels), many features of the maps become hysteretic, and the n ‰ 0 plateaus
cross zero bias.

and 5 GHz and several values of magnetic field which are marked in Figure 3.1. The

maps in Figure 3.2 present the differential resistance R; the dark regions correspond

to the Shapiro steps of constant voltage, for which R “ 0, and the narrow bright

lines correspond to the transitions between these steps. As in Figure 3.1a, the current

bias is swept from negative to positive, resulting in pronounced hysteresis in many

of the transitions between the Shapiro steps. Some of the negative steps are found

to cross zero and extend to positive currents, an effect referred to as “zero crossing

steps” [37].

Following Ref. [37], we introduce convenient dimensionless parameters, Ω “
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ω{ωP , and σ “ 1{Q, which are crucial in determining the pattern of Shapiro steps.

(Here, ω is the RF drive frequency, ωP “
a

2eIC{~C is the bare plasma frequency,

and Q is the quality factor of the junction.) Ω grows left to right and bottom to

top in Figure 3.2; σ grows right to left. Shapiro patterns measured at different ω

and IS but comparable Ω, (see the three pairs (a and f), (b and g), and (c and h)

in Figure 3.2) demonstrate qualitative similarity, particularly in the region of zero

crossing steps. We further discuss how Ω and σ influence the shape of the plateaus

in the supplementary.

For the smallest IS (highest Ω, Figures 3.2c, d, and h), the pattern of Shapiro

steps follows the Bessel function dependence [19]. In this regime, the extent of the

steps in the bias direction is roughly equal to ICJnp
2eVAC

~ω q where Jn are the Bessel

functions. [56]. The steps are centered at I “ Vn{Rj, where Rj is the effective DC

shunt resistance of the junction. Experimentally, we can extract the effective value

of the shunt resistance, Rj « 300 Ohms, independent of IS through Figure 3.2. Note

that this value is comparable, but slightly smaller than the normal resistance of the

junction RN « 450 Ohms [19].

As the critical current increases on the left panels of Figure 3.2, the patterns

change due to the coexistence of multiple stable steps for a given bias value [49].

While some of the boundaries still resemble the Bessel functions, the plateaus start

to overlap, because the width of plateaus „ IC becomes larger than the distance

between the centers of the plateaus, Vn{Rj. Eventually, the plateaus are no longer

centered around a fixed current bias of Vn{Rj, but instead emerge sequentially from

the normal state boundary and diagonally descend toward zero bias. At high RF

power multiple step boundaries intersect, resulting in an intricate net of transitions

(Figures 3.2a, b, f and g). Finally, for the lowest Ω (Figure 3.2e), the ˘1 steps no

longer reach zero upon the first approach, and the I ´ V curves show a pronounced

region of non-quantized voltage close to zero bias (PRF between 0 and 3 dBm).
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Figure 3.3: a) Differential resistance as a function of I and PRF reproducing Figure
1a (f “ 5 GHz, IS “ 650 nA, sample holder temperature T “ 100 mK). b) A map
identical to (a) but measured at T “ 1.5 K, at which point the hysteresis is largely
suppressed. c) A cut through the map (a) taken at PRF “ 4 dBm (at the dashed
line), which shows the hysteretic switching between the n “ 1 and n “ ´1 steps
depending on the sweep direction. d) A zoom of map (a), with the different plateaus
labeled by pp, qq as described in the text.

We now concentrate on the parameters of Figure 3.2a which is reproduced in

Figure 3.3a. Figure 3.3c shows a line cut extracted from Figure 3.3a (blue), as well

as a similar line measured for the opposite sweep direction (red). This confirms

that the asymmetric features seen in Figure 3.2 are indeed due to hysteresis, and

that for many parameter values multiple solutions are simultaneously stable. Figure

3b is taken under the same conditions, but at a higher temperature (T=1.5 K). At

this temperature, the hysteresis of the Shapiro features is nearly gone, and a regular
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pattern emerges, resembling a distorted honeycomb.

Ultimately, there is little reason to think that the effects observed here are at-

tributable to anything particularly special about the graphene, because Shapiro steps

should only be sensitive to IC and the CPR. However, attempts to model these results

numerically with the standard RCSJ simulations are ultimately fruitless – these simu-

lations show chaotic beavior with irregular transitions between voltage steps, leading

to maps that bear little resemblance to the experimentally observed pattern of steps.

The ingredients which are needed to correctly simulate these results are the subject

of the next section.

3.3 Simulations and Phase Space Trajectories

 C0

RL

Rj Cjc

Figure 3.4: Diagram of the circuit used to simulate the dynamics of the Josephson
junction. In practice, Cj is negligible and is omitted from further consideration.

To simulate the behavior of the junction, we use a modified RCSJ model as

illustrated in Fig. 3.4 [57]. We start with a junction with critical current IC , which is

shunted by a resistor Rj and a capacitor Cj, where Rj represents the dissipation in

the Josephson junction and Cj is the capacitance between the two superconducting

leads. In the experiment, the Josephson junction is further connected to four 150 µm

ˆ 100 µm bonding pads by Cr/Au leads. The capacitance of the bonding pads, C0,
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and the resistance of the leads, RL, must be taken into account to properly simulate

the junction dynamics. The four bonding pads are arranged such that the effective

capacitance is equal to that of one bonding pad to the back gate, which would

yield 1.8 pF for 280 nm thick SiO2. At room temperature, the capacitance between

two bonding pads and bonding wires connected to the chip carrier by bonding wire

was measured to be slightly higher, around 2.5pF, which was the value used in the

simulations. In practice, similar maps have been simulated using a range of C0 values.

The resistance of the evaporated Cr (5 nm)/Au (45 nm) film was measured to

be 0.5 Ohm/l, from which we estimate that RL is a few tens of Ohms for our typ-

ical devices. We use a reasonable value of RL “ 50 Ohms for our simulations The

estimated inductance of the leads for the sample is on the order of 30 pH, and thus

has a negligible effect at the relevant plasma and drive frequencies. Considering this

inductance may be important in other circumstances but also notably increases sim-

ulation time. Finally, Rj “ 300 Ohms is determined from the current corresponding

to the center of the Shapiro plateaus in the Bessel function regime, In “ n~ω{Rj. In

accordance with the experiment, we assume that Rj does not depend on magnetic

field. The same value of Rj “ 300 Ohms is used to simulate all panels in Figure 3.5.

The microwave injection from the antenna can be modeled by an AC current,

IAC “ IRF sinωt where IRF is the current amplitude and ω is the microwave fre-

quency. To achieve qualitative agreement with the experiment, we found it necessary

to add a noise source, which facilitates switching between the plateaus. We lump

the thermal noise of the resistors and any other possible noise in the system into a

broadband Gaussian noise IN . The magnitude of the noise used in our simulations is

listed in the table and discussed at the end of this text. Overall, the current source I

contains three components, the bias current, Ibias, the microwave radiation current,

IAC and the thermal noise, IN .
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I “ Ibias ` IRF sinωt` INptq

“ C0
dV

dt
` IC sinφ`

~
2eRj

dφ

dt
`

~Cj
2e

d2φ

dt2

V “
~
2e

dφ

dt
`RL

ˆ

IC sinφ`
~

2eRj

dφ

dt
`

~Cj
2e

d2φ

dt2

˙

(3.1)

The dynamics of the circuit in Fig. 3.4 is described by Eq. (4.2), where φ is the

superconducting phase difference across the junction, V is the voltage across the

capacitor C0. Solving this third order differential equation numerically gives φptq,

from which we can derive the DC voltage across the junction, Vj “
〈 ~

2e
dφ
dt

〉
. Note

that Cj is about 4 orders of magnitude smaller than C0 for the device studied here.

We numerically confirmed that Cj can be neglected under this condition, simplifying

the above to a second order differential equation. The experimental curves strongly

depend on the bias sweeping direction. To emulate the bias sweep, we use the steady

solution of φptq at a given Ibias as the initial condition for solving the differential

equation at the next value of bias, Ibias ` δI, where δI is the incremental bias step.

Figures 3.5a,b show numerical simulations which reproduce most of the features

in Figures 3.3a,b. These simulations allow us to trace the time evolution of the

phase within each cell of the Shapiro map. The examples of the φptq are shown in

Figure 3.4c for several neighboring cells. By analyzing these traces, a rather simple

qualitative picture emerges, represented schematically in Figure 3.4d: For each cycle

of RF excitation, the phase progresses over p minima of the washboard potential

and then retraces q of them backward. The overall change of phase is 2πpp ´ qq,

and the index of the resulting Shapiro step is n “ p ´ q. This behavior has been

previously identified in the Bessel function regime [37, 58]. In Figure 3.3d, we zoom

in on the data of Figure 3.3a and label select cells by their pp, qq indexes. Note

that in the resulting regular pattern, each cell in the central part of the map has six
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Figure 3.5: a,b) Simulation of dV {dI for different noise levels, to be compared to
RL “ 50 Ohms, Rj “ 300 Ohms, IC “ 540 nA, C0 “ 2.5 pF and f “ 5 GHz. To
reproduce the experiment, the simulation starts at the lowest DC bias, averages over
500 RF cycles, and then uses the final values of φ and dφ

dt
as the initial conditions

for the next value of bias. Ten bias sweeps are produced in this manner and then
averaged to reduce noise. c) Numerical traces of φptq on various plateaus labeled
by the pairs of pp, qq (see text). d) Schematic of the washboard potential and the
four types of phase evolution corresponding to (c). The top two schematics represent
different forms of n “ 0, while the bottom two both show n “ ˘1.

neighbors. The two neighbors in the vertical direction have the same total number

p` q while n differs by two. The four neighbors on the left/right have either p or q

decreased/increased by one.

Figure 3.6 shows simulated Shapiro maps at several values of the critical current,

intended to be compared with the 5 GHz data of Figure 3.2. Remarkably, we are

able to reproduce the four experimental maps in Figure 3.2a-d by changing only IC ,
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Figure 3.6: Simulations of the differential resistance maps at 5 GHz for comparison
to Figure 2a-d. The values of IC used are, from left to right, 540, 200, 80 and 40 nA.
Other parameters are kept the same as in Figure 3 of the main text: C0 “ 2.5 pF,
RL “ 50 Ohms and Rj “ 300 Ohms.

which is the only parameter we expect to be influenced by magnetic field. The values

of C0 “ 2.5 pF, RL “ 50 Ohms, and Rj “ 300 Ohms are kept the same in all panels.

It is instructive to qualitatively consider the circuit in Figure 3.4 after Cj has

been neglected and compare it to the conventional RCSJ model. A key distinction

between our work and the conventional RCSJ model can be seen by considering the

Ω´ σ map (see e.g. Ref. [37]). Here, Ω “ ω{ωP is the reduced drive frequency, and

σ “ 1{Q characterizes the strength of dissipation. Most importantly, the resistor RL

in our case is connected in series with the capacitor and the non-linear inductance

of the junction. As a result, the definition of the quality factor is inverted compared
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to the RCSJ, e.g. higher RL corresponds to stronger dissipation.
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Figure 3.7: Extracted parameters for the data of Figure 2, plotted as a function
of dimensionless parameters Ω and σ “ 1{Q, defined in the text. In the grayed out
region Bessel function behavior is expected.

We extract ωP and σ by plugging the full model into a circuit simulator, with

the junction replaced by an inductor of the corresponding Josephson inductance, to

extract both the resonant frequency and the -3 dB frequencies. We also calculate the

anticipated values of ωP and σ by using a simple three element model involving the

just C0, RL and Josephson inductance. We find that it matches the full simulations

quite well – the relatively large junction resistance Rj is found to have negligible

effect on ωP and σ.

The width of the Shapiro steps in the I-V curve is often expected to follow the

Bessel function dependence on the applied RF power, as discussed in Chapter 2.

A small Josephson inductance (high critical current) can lead to the junction be-

ing current-biased by other circuit elements rather than voltage-biased. Since the

Josephson junction is a non-linear element, the mostly sinusoidal current would then
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produce a highly distorted and non-sinusoidal voltage across the junction, violating

the assumptions leading to the Bessel functions.

In the conventional current biased RCSJ model, Bessel function behavior is ex-

pected in octets A, B, F, G and H of the map [37]. Based on our analysis, in our case

the Bessel function behavior is expected only in regions A, B and H. Correspond-

ingly, segments of Bessel functions are visible as plateau boundaries in panels b-d, g

and h of Figure 3.2. Further, in the RCSJ model, zero crossing steps are exclusive

to one of the Bessel function octets, B[37, 59, 60]. In our case, we find zero crossings

in maps a, b, g, and f, which are instead localized in octets F, G and H.

We argue that zero crossings cannot be predicted in our model solely based on

parameters Ω and σ of Figure 3.7. In fact, the existence of the Shapiro steps is

controlled by the so far neglected junction resistance, Rj. Although Rj is too large

to significantly influence the junction dynamics, it sets the position of the Shapiro

steps at In “ n~ω{eRj. Considering for clarity the Bessel function regime, the width

of the plateaus is ICJnp2eVAC{~ωq ă IC . We expect to observe zero crossing if the

width of the plateaus exceeds In, which corresponds to eRjIC " n~ω. We conclude

that larger ICRj product is beneficial for observation of zero crossing steps. Finally,

suppressing Ic by magnetic field keeps the centers of the plateaus fixed at n~ω{eRj

while reducing their width. As a result, the steps no longer cross zero in maps c,d

and h of Figure 3.2.

Note that the above discussion of dynamics was simplified by the assumption

that Rj is large relative to the other elements in the system. In the limit of low Rj,

we would go back to the conventional RCSJ model.

3.4 Gate Voltage Dependence

Finally, we look at the gate voltage dependence of the maps in Figure 3.8. While gate

voltage influences many parameters, the most significant effect is on IS and Rj, the
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latter decreasing by about a factor of roughly 4 between Figures 3.8a and 3.8d. We

find that near the Dirac peak the hysteresis is very large (Figure 3.8a), while further

away from the Dirac peak the hysteresis of the transitions between the plateaus is

significantly suppressed (Figure 3.8d). This suppression is partially explained by

increased damping, rather than the purely thermal smearing as observed in Figure

3.5b. However, in order to reproduce the data measured at larger gate voltage,

we find that it is also necessary to increase the simulated noise level. We list the

noise level used in all simulations in the supplementary. In general, the noise in our

simulation could represent a number of possible sources, but we do not attempt to
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Figure 3.8: a-d) Shapiro maps for gate voltages of 0, 0.375, 0.75 and 1.125 V,
respectively. Near the Dirac peak, the hysteresis is the most pronounced, with a
gradual decline in hysteresis at higher gate voltages. The higher doping both lowers
the junction resistance Rj (resulting in higher dissipation) and increases the critical
current.
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relate the simulated noise to its physical origins. Noise processes in ballistic SNS

junctions require further study both in the equilibrium case and under RF drive.

Next, we reproduce the gate voltage dependence measured in Figure 3.8 via sim-

ulations. Between the four maps of Figure 3.9, we adjusted the values of IC and Rj,

where the former can be obtained from the value of the switching current at zero RF

power, and the latter could be roughly extracted from the positions of the Shapiro

steps, In “ n~ω{RJ .
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Figure 3.9: Simulations of differential resistance maps corresponding to Figure 5
of the main text, measured at different gate voltages. We use the values of Rj “

850, 500, 300, 180 Ohms and IC “ 350, 500, 600, 800 nA in panels (a) to (d).
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Figure 3.10: Two maps of Shapiro steps measured at a) the central lobe and b) the
first lobe of the Fraunhofer pattern in Figure 1b. Magnetic field is tuned so that the
values of critical current are very similar. We conclude that magnetic field primarily
affects the dynamics of the junction through the value of IC , without influencing
other parameters.

3.5 Additional Considerations: Andreev Bound States, CPR Depen-
dence and Heating

In this section, we consider a few more details and how they effect the observed

Shapiro step patterns. Throughout this chapter, we have assumed that the effect

of magnetic field is limited to changing the value of IC without influencing other

parameters of the system. To verify this assumption, in Figure 3.10 we present

two maps measured at very similar values of the critical current, but with magnetic

field fixed respectively at the central and the first lobe of the Fraunhofer pattern of

Figure 3.1b. While the spatial distribution of supercurrent should be very different

in the two maps (necessitating a change in the Andreev bound states), we find

minimal differences between the plots. We conclude that it is reasonable to model

the system dynamics assuming that magnetic field only tunes IC while keeping the

other parameters fixed.

Figure 3.2d shows strong fractional Shapiro steps [61], although there are no signs

of fractional steps in the measurements with higher IC . Our simulations are in an
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Figure 3.11: Middle row: Simulations corresponding to Figures 2a and S3a with
the skewness of the CPR increasing from left to right (the CPRs are shown in the
insets). Even severe skewness does not give rise to fractional steps, although it
does slightly alter the map in ways akin to changing parameters such as IC and Rj.
Bottom row: Simulations corresponding to Figures 1d and S2d with the same range
of CPR skewness. In this regime, the CPR gives rise to enhanced fractional steps.
Top row: CPRs corresponding to the figures below.

agreement with the experimental results, showing that a skewed CPR has minimal

effect on a sample in the strongly hysteretic regime. Intuitively, we understand the

hysteresis of the high IC maps as arising from regions of overlapping stability of

integer steps. Thus it may be expected that for such parameters the fractional steps

are less stable compared to overlapping integer steps.

For comparison to the experiment, we took our simulation for Figures 3.2a and

3.2d and employed CPRs with varying degrees of skewness [62, 63]. In the top row,

IC “ 540 nA, corresponding to Figures 3.2a and 3.6a; in the bottom row, IC “ 40 nA,

corresponding to Figures 3.2d and 3.6d. The three columns correspond to: sinusoidal

CPR (left), a slightly skewed CPR, Ipφq “ ICrsinpφq ´ 0.2 sinp2φq ` 0.04 sinp3φqs
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(middle); and a maximally skewed sawtooth CPR (right). The insets in the top

panels demonstrate the corresponding CPRs. For large IC simulations, increasing

the skewness of the CPR only slightly distorted the map, but did not give rise to

any additional plateaus. For small IC , increasing the skewness resulted in increasing

fractional plateaus. Surprisingly, for small IC even a perfectly sinusoidal CPR shows

some half-quantized steps (Figure 3.11d). We attribute this behavior to the high

frequency environment, which gives rise to some effective skewness. Comparing these

simulations to the measured data, we find that the slightly skewed CPR appears to

most accurately reproduce the strength of the fractional steps, as expected.

Recent work has shown that the effect of RF heating on a nanoscale SNS junction

can be quite significant, reaching a few Kelvin for high RF power plateaus [52]. In

our case, heating is likely substantial too, but the temperature rise appears to be

smaller. Namely, by comparing Figures 3.5a (base temperature) and 3.5b (T=1.5

K): the patterns are different even at the highest RF power, therefore the sample

temperature in 3.3a is likely to be less than 1.5 K.

We can directly estimate the temperature of the junction from the power dissi-

pated in the resistor Rj. The heating of RL can be neglected, as RL represents the

large metallic leads, which should cool more efficiently than the small volume of the

junction. For the first Shapiro step, the power could be estimated as p~ω
2e
q2{Rj « 0.4

pW. Here we assume that the AC component of the voltage is smaller compared to

the DC component ~ω
2e

. At high RF power, the AC voltage across Rj could be large,

even if the DC voltage and current are zero, as could be judged from the simulations

of φptq in Figure 3.5d. As an example, we estimate the AC voltage for zero bias on

the (5,5) plateau (see the notation in Figure 3.3). In this case, during each cycle,

the phase moves by 5x2π and then returns back. The resulting voltage is « 10 times

larger than in the previous estimate, resulting in « 40 pW of dissipated power.

The superconducting gap blocks cooling through the leads, which would be the
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leading cooling mechanism for samples with normal contacts. Therefore, the elec-

trons of the junction must cool through the electron-phonon coupling. Unfortunately,

the question of electron-phonon coupling in encapsulated graphene is complicated.

There are good reasons to believe that most of the cooling occurs near the edges of

graphene, resulting in P9T 3 behavior instead of 9T 4 expected in the clean case [64].

Taking the value P “ 30 pW/K3T 3 from prior work on encapsulated graphene de-

vices [65], and scaling it by circumference of the sample, results in P «15 pW/K3T 3.

This yields temperatures in the 0.3-1.4 K range for 0.4-40 pW of heating.

The simulations do not incorporate any heating effects which limits our ability to

simultaneously match the high power and low power results. Similarly, there is no

attempt to incorporate the mechanism that gives rise to the large difference between

IS and IR in SNS junctions, although this seems to have minimal impact on matching

the simulation to the experimental data outside of the low power regime.

3.6 Data from a Second Device

To confirm reproducibility of our results, we have measured an additional junction.

The second device studied featured a smaller length (200 nm) while the contact

width was identical (3 µm) to the primary junction studied. Figure 3.12 mirrors

Figure 3.2a-3.2d, with IC being controlled by magnetic field. Figure 3.13 studies

the gate voltage dependence at the same frequency and zero magnetic field, showing

suppression of the zero crossing hysteresis at higher doping. High quality graphene

Josephson junctions tuned near the Dirac peak thus appear to be a reliable recipe

for observing zero crossing steps.

3.7 Conclusion

In conclusion, we have studied the AC Josephson effect in a non-topological graphene

junction, which allows one to directly tune many of the relevant parameters. Our
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Figure 3.12: Differential resistance measured as a function of IDC and PRF at 5
GHz in the second sample. Once again, small magnetic field is used within the first
Fraunhofer lobe to modify the critical current. We observe zero crossing steps for
the two larger critical currents and Bessel function behavior for the smallest IC .

results demonstrate the important role played by the local electromagnetic environ-

ment in determining the shape of Shapiro steps in nanoscale junctions. The type

of samples studied here provides a highly tunable platform to probe the unexplored

aspects of driven-dissipative dynamics of a quantum system. Understanding the

variety of Shapiro patterns obtained in a prototypical graphene SNS junction will

help to identify the non-trivial features in junctions made of topological materi-

als [41, 42, 44, 43]. It also opens interesting perspectives for studying multi-terminal

junctions [66, 65, 67], which could reveal topological bands when subject to RF

drive [68, 69]. Finally, since the Hamiltonian of the RF-driven junction is periodic
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Figure 3.13: Bias-power maps of the second device at several gate voltages, from
left to right: 0.5 V, 1 V, 1.25 V and 1.5 V. The Dirac peak in this sample is around
0.5 V. Similar to the main sample, the hysteresis of the boundaries between the
Shapiro steps is reduced at higher doping.

in the phase difference and time, it could be considered in the context of Floquet

physics, potentially resulting in topologically non-trivial bands (see e.g. Ref. [70]).
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4

Bistability in RF Driven Graphene Josephson
Junctions

4.1 Introduction

Electronic nanoscale systems have recently arisen as a platform for studies of stochas-

tic effects and quantum thermodynamics [71, 72]. Such systems are often gate tun-

able, provide high quality data across a wide range of bandwidths and allow for the

study of both classical and quantum fluctuations. Several recent works have utilized

quantum dots and single electron transistors tuned between charge states in order

to achieve the bistability necessary to perform these experiments [73, 74].

As has been discussed in the previous two chapters, Josephson junctions subject

to an RF radiation demonstrate an inverse AC Josephson effect: the phase difference

across a junction locks to the external frequency [35]. As a result, the phase steadily

ramps with time, changing by n periods per RF cycle. The I ´ V curves of the

junction show “Shapiro steps” of quantized voltage, V “ n~ω
2e

[36]. The exact mech-

anisms and stability of the phase locking were investigated in detail in the 80’s, with

an emphasis on chaotic dynamics [37]. The extremely precise voltage quantization
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of the steps is presently utilized in primary voltage standards [75].

In this chapter, we study stochastic switching between these phase locked dy-

namical states in a gate-tunable graphene Josephson junction. Stochastic switching

between Shapiro steps has recently been observed in this system, with switching

times exceeding the time scale of the dynamics by many orders of magnitude [49].

A slight change of the RF amplitude changes the switching time over an exponential

range, from milliseconds to hours. The tunability and degree of control enabled by

the Josephson junctions make them particularly appealing to study the switching

dynamics in a driven-dissipative system.

4.2 Bistability of the Zero Crossing Step

The previous chapter focused on a pattern of Shapiro steps which are rather different

from the conventional Bessel function behavior [19]. Notably, at some intermediate

RF power both n “ `1 and n “ ´1 are stable solutions at zero current, while

n “ 0 is not, resulting in “zero-crossing steps” in the I ´ V curves [37, 49, 53].

In the tilted washboard picture commonly used to describe Josephson junctions,

zero current corresponds to zero average tilt of the the washboard. The n “ ˘1

states correspond to the “phase particle” ratcheting one period per RF cycle either

forward or backward along the washboard, therefore representing a peculiar example

of broken time-reversal symmetry in a driven-dissipative system. Over the course

of many drive cycles, rare fluctuations knock the phase particle so that it switches

the direction of motion. We find that the temperature dependence of this switching

lifetime shows a striking non-monotonicity and a reduction of the quantized voltage,

which necessitates non-trivial phase space dynamics at long time scales.

In this chapter, we study the same junctions formed from graphene encapsulated

in hBN. The superconducting contacts are made from MoRe alloy (TC « 10K). Such

junctions are gate tunable and mediate supercurrent via Andreev bound states [19].
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Figure 4.1: a) A standard RF power vs DC Bias current map of the differential
resistance for these devices. Bridge regions highlight the transitions between Shapiro
steps. b) The transition between the +1 and -1 Shapiro steps of the device studied,
extracted by numerically differentiating several averaged DC sweeps. At 0 DC bias,
within the region between the dashed white lines, stochastic switching between the
two voltages was observed. c) A sample of the output voltage measured over a small
interval of time. The average time between switching events was extracted from
these and similar traces, and care was taken to operate in the regime where the
distribution of measured voltages remained bimodal. d) The probability distribution
of switching times, taken from the full two minute trace corresponding to (a)

However we believe the physics presented in this work does not depend on the mi-

croscopic properties of the sample and could be realized in other types of Josephson

junctions. The sample is measured in a dilution refrigerator with a microwave an-

tenna placed close to the sample for AC biasing. For all Figures except for Figure

4.4, a 5 GHz microwave signal is applied to the sample.

In Figure 4.1a, we reproduce the map of differential resistance vs bias and mi-
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crowave power[53]. The dark regions correspond to Shapiro steps, where dV {dI

vanishes. The map is measured by sweeping bias IDC from negative to positive. The

hysteresis in switching between the plateaus results in the pronounced top-bottom

asymmetry of the map, noticeable as arching of the transition boundaries. Sweeping

the current bias in the opposite direction would flip this map and that of Figure 1b

about the horizontal axis.

Figure 4.1b shows a zoom-in map of the region in which the system switches

between the n “ ´1 and `1 steps. To obtain this map, multiple I ´ V curves are

measured by sweeping the bias IDC ; these curves are then averaged and numerically

differentiated. Therefore, the bright band of high dV {dI in the middle of the map

corresponds to the average value of the switching current. Furthermore, the cross-

section of the band represents the histogram of the switching currents.

For applied RF powers in the middle of Figure 4.1b, the n “ ˘1 states at IDC “ 0

could persist for hours. The lifetimes are much shorter at the edges of the region,

allowing us to observe multiple transitions between the quantized steps while holding

all control parameters constant. The primary region studied in this paper is just

above the first bifurcation point, PRF « 2.6 dBm, at which the n “ 0 state first

becomes unstable and n “ ˘1 states are observed. The studied range is marked by

the dashed white lines in Figure 4.1b.

In Figure 4.1c, we plot a portion of a typical time trace measured at zero bias and

PRF “ 2.9 dB. The voltage stochastically switches between the two plateaus with an

average time of τ0 ” xτy « 10 ms. The probability for a step to last a given time ρpτq,

as observed over the full time trace, is plotted in Figure 1d, demonstrating a clear

exponential dependence with a slope of logpρq “ 1{xτy as expected for uncorrelated

random processes.

Despite the fact that the two states of the system are dynamical in nature, it

remains possible to consider this as a double well problem in an effective “quasipo-
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tential” [37, 76, 77]. This double well potential can be tuned with DC bias which

can be observed in Figure 4.2a. At zero bias, the quasipotential double well is very

close to symmetric, with the lifetime of each state lasting an equal length of time.

By applying a small bias, on the order of 1 nA, it is possible to break the symmetry,

shifting the imbalance in favor of one of the two states. Both times follow a clear

exponential dependence logpτ˘{τ0q “ ˘αI, consistent with bias linearly increasing

the activation gap. As a result, the product τ` ˆ τ´ remains nearly constant as a

function of bias.

4.3 Nonmonotonic Temperature Dependence of the Switching Rate

While all the features are so far consistent with a standard double well potential

problem, the temperature dependence of τ is surprisingly not. This is shown in

Figure 4.2b for temperatures form 100 mK to 400 mK and for a range of powers

identified in Figure 4.1b. Considering first the power range PRF ą 3.1 dBm, τ0

behaves as might be expected: it increases upon decreasing T and moving away from

the bifurcation point, qualitatively consistent with thermal activation. However, for

lower powers, PRF ă 3.1 dBm, τ0 develops a peculiar non-monotonic behavior, where

it increases at higher temperatures.

We have excluded possible trivial explanations for the observed effect. First, we

measured voltages traces remain distinctly bimodal with two well-defined voltage

states throughout the full temperature range. Second, Figure 4.3 shows data mea-

sured just before the second bifurcation point (located at P “ 5.1 dBm). The τ0pT q

curves (supplemental material) show a qualitatively similar behavior to Figure 4.2a.

Namely the non-monotonicity moves to lower temperatures the closer we move to the

bifurcation point, which here corresponds to higher applied RF powers. We believe

this excludes the possibility that non-monotonicity of τ0pT q arises from a change

of the system parameters with temperature. For example, a gradual reduction of
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Figure 4.2: a) Switching times from n “ ´1 to n “ `1 (τ`)and in the reverse
direction(τ´). The balance between the two states is tunable by application of a
small current bias. b) Dependence of τ0 on temperature at several fixed PRF . While
the higher power show the expected steady decrease of lifetime with temperature,
τ0pT q is non-monotonic for lower temperatures. It is important that the raw voltage
traces show two well defined voltage states for all temperatures and powers shown. c)
α, the slope of logpτ˘{τ0q vs. I (see Figure 1d) plotted as a function of temperature
for several applied powers. While at low temperatures the values of α are similar,
elevated temperatures show a rapid increase of α, particularly at lower powers. d)
Temperature dependence of τ´ at several values of bias I. Note that in the low tem-
perature regime, where τ0 decreases with temperature, the τ´pT q curves are parallel
indicating a roughly constant α. The curves start to diverge at higher temperatures,
where τ0 increases with temperature and α is no longer a constant.
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IC would cause the non-monotonicity to arise at lower powers for both bifurcation

points. We return back to the surprisingly non-monotonic τ0pT q curves later in the

chapter.

We next explore the combined effect of bias current and temperature on τ0. In

Figure 4.2c, we plot the dependence of the slope α “ d ln τ`

dI
on temperature at several

values of PRF . While at low temperatures α saturates at roughly the same level for

different PRF , at higher temperatures α rapidly increases. This result is similarly

unexpected, as the picture of a particle in a bistable potential tilted by current would

predicts an activation behavior of α. We note that for a given microwave power, α

eventually begins to increase, which happens at temperatures just below the onset

of non-monotonic behavior of τ0.

The interplay between τpT q and αpT q is best seen in Figure 4.2d, which plots τ`

vs. T at PRF “ 2.9 dBm for five values of bias. The middle curve corresponds to zero

bias, at which τ` “ τ0. At low T , where τ0 decreases with T , all curves are roughly

parallel to each other (on a log scale), indicating a constant α. However, at high

temperatures they start to diverge, which indicates that α is no longer saturated;

this occurs just before τ0 starts to grow with T .

It has been shown through both analytical studies and numerical simulations[37],

that the transition rate between the two distinct steady state solutions in the tra-

ditional RCSJ model is expected to follow an activation temperature dependence.

This effective model can essentially be reverse engineered, as the two dynamical

states will be connected by a single most probable path, which can then be mapped

to a saddle point of energy EA in the classic double well potential picture. Clearly,

the non-monotonic τ0pT q dependence cannot be explained by such activation.
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Figure 4.4: a) Time traces measured at PRF “ 2.9 dBm and temperatures of 90
mK (blue) and 380 mK (orange). The 380 mK trace clearly shows the loss of voltage
discretization. b) The probability distribution of measured voltages as a function of
temperature. High probability shown in yellow can be seen smoothly merging from
two peaks at ˘hf
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into one peak at V “ 0. c) Two individual histograms from 100

mK (blue) and 380 mK (orange).
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Figure 4.5: a) Traces of the measured voltage as a function of time. Blue shows
the raw signal, which seems to not show bistable behavior. Orange shows the same
trace with higher frequencies filtered out, indicating clear bistability. b) A small cut
of the same traces, showing that while orange remains discretized, the raw signal
shows many very short jump between the two steps. c) histogram of the measured
voltage over the course of 10 minutes. While the data is clearly bimodal, there is
also significant data in the region between the peaks.
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4.4 Non-Markovian Switching

Inspection of the measured voltage traces in the non-monotonic regime reveals that

while the voltage still switches between positive and negative steps, their values have

become significantly reduced from ˘~ω
2e

. One such trace, as well as a low tempera-

ture trace, are presented in Figure 4.3a for comparison. Here, the temperatures are

selected such that the average switching times are comparable. Figure 4.3b shows

the corresponding histogram of the measured voltages, which clearly demonstrates

that at high temperature the average voltage corresponding the n “ ˘1 states is

reduced.

The map in Figure 4.4c is made of the voltage histograms similar to panel (b)

taken at different temperatures. The resulting “pitchfork” feature is non-trivial. As

the thermal noise is increased, the system should switch faster. Eventually, when

the switching rate exceeds the measurement bandwidth, an averaged voltage should

be observed [78]. In our case this would correspond to the appearance of a broad

peak centered at zero, which would grow while the peaks at n “ ˘1 shrink. Instead,

we observe that the two peaks are shifting towards each other, before eventually

merging. We argue below that the n “ ˘1 states still survive, but the system

rapidly spikes from e.g. ´1 to `1, before returning back to ´1. If these spikes are

too fast to be experimentally resolved, or if there are similar spikes attributed to

wandering trajectories in the phase space [79, 80], the average voltage of both states

would appear to be reduced.

To illustrate this behavior, in Figure 4.5a we show a 600 second time trace (blue)

measured on a second device under a 5.2 GHz RF drive. The data demonstrates

very rapid switching at a rate of at least 1{τ ě 200 Hz. Surprisingly, by numerically

smoothing the signal to remove the high frequency component, we recover bistable

behavior with a very slow switching between two well-defined but non-discretized
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states (red curve). Figure 4.5b plots a 30 ms segment of the raw trace right around

one of the points at which the averaged signal switches between the n “ ´1 and `1

states. It is clear that there are two regions with different averaged behavior: on

the left, the system mostly stays around ´1, while on the right if mostly stays close

to `1. In both cases, there are many spikes reaching to the opposite state, which

rapidly return back. This indicates that while the smoothed data in 4.5a may be

Markovian, the originally rapidly switching data is certainly not. Instead, the system

has memory: the switching probability depends on how long the system spent in a

prior state.

We believe this memory effect arises because of additional poles in the Bode plot

of our measurement circuit. Physically, the capacitance of the cryogenic RC filter is

charged by the DC voltage produced via the inverse AC Josephson effect. When the

system attempts to switch between dynamical states, e.g. from ´1 to `1, the charged

capacitor discharges through the junction, biasing it back to the original ´1 state.

At low temperature, when the dynamics are slow, this current will typically decay

before the system switches back to the original state. But at higher temperatures,

the system has a higher probability to return from `1 back to ´1 while the capacitor

has not yet discharged. The additional RC stage therefore stabilizes both ˘1 states,

leading to the highly correlated switching (spikes) observed in Figure 4.5b. This

effect may be viewed as a form of noise enhanced metasability [81], although the

specific model, and the enhancement in a dynamical bistability are both novel.

4.5 Toy Models and Numerical Simulations

To quantitatively verify this picture, we have performed simple simulation with qual-

itatively reproduces the observed behaviors, including the correlated spikes of Figure

4.5 and the original non-monotonic temperature dependence of Figure 4.2.

For a toy model, we consider a triple well potential, with minimas corresponding
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Figure 4.6: Generic symmetric triple well potential forming the basis of our toy
model

to the quasipotential of n “ ´1, 0,`1. We assume that the particle begins in the

n “ ´1 minima and that we want to find first passage time to the n “ `1 minima.

Purely activational behavior will simply result in multiplying the two escape rates.

This effect is then monotonic with time. A generic schematic of this potential is

shown in Figure 4.6. It is worth noting that even if the potential is asymmetric, the

activational behavior remains.

To incorporate the effect of the external circuitry, we consider the simplest pos-

sible time dependence of the escape rates. For escape rates from the n “ 0 minima

to n “ ´1 (n “ `1q we assign the name Γ´ (Γ`q. Initially we assume Γ´ ąą Γ`.

However, after some time t0, we assume all capacitances have fully discharged. In

the absence of a DC bias, this implies Γ´ “ Γ`, so after t0 this leads to an equal

probability to go to either other well. To simplify matters, we assume that after re-

turning to n “ ´1 the process starts over. This neglects certain correlated switching

events, but it is a reasonable approximation if Γ´1´ą0 ăă 1{t0. This assumption

leads to a geometric series, giving the total first passage time

xτ´1Ñ`1y “ τA
Γ` ` Γ´

Γ` ` pΓ´ ´ Γ`qe´t0pΓ``Γ´q{2
(4.1)

55



Figure 4.7: Two states of the hysteretic toy model. After jumping from the left well
to the middle well, the system resembles the top figure, where it is much more likely
to return to the previous state than to the opposite time. After some characteristic
time t0, external capacitors discharge, and the system returns to a symmetric figure
as shown in the bottom diagram.

where τA is the mean escape time from n “ ´1 to n “ 0 and all rates correspond

to the constant values before discharge. While this toy model does have a substantial

number of free parameters, it can easily be numerically solved. Such curves are shown

in Figure 4.8, but it is perhaps more helpful to consider Figure 4.7 and attempt to

develop some intuition.

At very low temperatures both Γ´1,Γ`1 are much smaller than 1{t0, so our model

is just equivalent to the standard activational model. However, as temperature in-
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Figure 4.9: Fully extended RCSJ model which is simulated. Simulations were per-
formed with physically reasonable values. In particular, we used R1 “ 1500Ω,R1 “

50Ω, Rj “ 300Ω, C1 “ 1nF,C0 “ 1pF,Cj “ 0nF

Figure 4.10: A segment of the voltage as a function of time for the full simulation,
showing strong similarity to the non-Markovian behavior of 4.5b.

creases, we reach a regime where Γ´1 ě 1{t0. Even though the switching rate from

n “ ´1 to n “ 0 is still activational and thus increasing with temperature, the prob-

ability to make the jump from n “ 0 to n “ 1 is starting to decrease in temperature,

giving rise to nonmonotonic first passage times.

Additionally, we perform full numerical simulations for an RCSJ model connected

to two external filters, as shown in Figure 4.9. The equations corresponding to this
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power.

model are

I “ Ibias ` IRF sinωt` INptq

“ C1
dV2

dt
` C0

dV1

dt
` IC sinφ`

~
2eRj

dφ

dt
`

~Cj
2e

d2φ

dt2

V1 “
~
2e

dφ

dt
`RL

ˆ

IC sinφ`
~

2eRj

dφ

dt
`

~Cj
2e

d2φ

dt2

˙

V2 “
~
2e

dφ

dt
` pRL `R1q

ˆ

IC sinφ`
~

2eRj

dφ

dt
`

~Cj
2e

d2φ

dt2

˙

`R1C0
dV1

dt

(4.2)

Well the separation of time scales make it challenging to observe the nonmono-

tonic dependence of the first passage time, it is possible to observe highly correlated

non-Markovian switching, which we believe is the central ingredient in the non-

monotonic dependence of the first passage time. Such highly correlated switching

can be observed in Figure 4.9
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Figure 4.12: Data measured for a wide temperature range at 3.1 dBm applied
power. a) shows a small downturn in the lifetime past 0.5K. b) depicts the histogram
of measured voltages for the highest tempature datapoint, showing still fairly cleanly
bimodal data, noting the log scale.

4.6 Further Effects and Considerations

For our system, the quasipotential wells are a function of the drive frequency[37].

One interesting consequence of this which we observe is that by applying a 6.42 GHz

drive frequency to our first device, we measure Markovian tristable behavior at base

temperature. As was mentioned in an earlier section, we observe no direct jumps

between n “ `1 and n “ ´1, but only jumps through n “ 0. However, for a series

of jumps nk´1 Ñ nk “ 0 Ñ nk`1 we observe no correlation between nk´1 and nk`1.

A portion of this data is plotted in Figure 4.11.

A natural question which has not been addressed yet is what happens in the high
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temperature limit. As can be seen in Figure 4.4b, eventually the observed data is no

longer bimodal. In general, long before this point it becomes challenging to analyze,

due to the fact that a significant part of the data lies between the bimodal peaks.

However, for one specific range of parameters, it was possible to observe that the data

was bistablity for a wide enough temperature range to observe a high temperature

downturn in the lifetime, which is shown in Figure 4.12.

One important question which remains open is the conceptual importance of the

n “ 0 state in explaining the non-monotonic τ0pT q. Numerical simulations of the

full differential equation typically show no direct transitions between the `1 and ´1

states; instead the system transitions by passing through n “ 0. Experimentally,

whenever the 0 state is visible within our time resolution, the system tends to switch

between ´1 and `1 via that state, as is discussed in the next section. Therefore, the

triple well potential is both expected in our system and makes it easier to account

for the nonmonotonicity of τ0pT q. However, the possibility remains that the mem-

ory effects could cause non-monotonic temperature behavior in a double well even

without the metastable n “ 0 state.

4.7 Conclusions and Future Work

To summarize, we have studied switching in an AC driven Josephson junction, which

demonstrates surprisingly complex dynamical behavior. We focus on the “zero-

crossing steps”, in which at zero bias the zero voltage state is not stable, and the

system spontaneously develops a quantized voltage of ˘V “ `~ω{2e. The switch-

ing time between these states vary from msec to ksec. We found unexpected non-

monotonic temperature dependence of the switching time, which reaches a minimum

value at an intermediate temperature which is a function of the RF drive. We at-

tribute this behavior effects of the measurement system, which allows for the circuit

to have signifcant memory. These effect are combined with the complex structure of
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the phase space, in particular with the presence of a metastable zero-voltage state.

The type of samples as studied here provide a flexible and highly tunable platform

to probe the unexplored aspects of a quantum driven-dissipative dynamics. The

nature of the most probable escape path, both in the Markovian and non-Markovian

limits, is still an open question for this system. While we believe that the electron

temperature in our system is too high for the phase particle to behave quantum

mechanically [52], it may be possible to engineer a device with higher heat capacity

and thermal conductivity to the bath which undergoes such a dynamical bistability

in the macroscopic quantum tunneling regime [82], opening doors to many interesting

experiments on driven-dissipative quantum dynamics.
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5

Theory 2: Quantum Hall and Noise

5.1 Quantum Hall

5.1.1 Basics of the Quantum Hall Effect

The classical Hall effect is a well established and canonical piece of physics. We begin

with a conducting sheet of material, with a voltage applied such that current flows

through the sheet. When a perpendicular magnetic field is applied, the Lorentz force

~F “ q~V ˆ ~B acts on the charge carriers, causing charge to build up on one side of

the sheet and a voltage to develop perpendicular to the direction of the current.

Even within this classical framework, it is easy to see that the Hall effect can

show strange behavior in the high field, clean sample limit. The cyclotron radius of

a particle in in a perpindicular magnetic field is r “ mv
qB

. For electrons of mass me,

Fermi velocity 1e6 m/s and subject to a magnetic field of 10 T, the cyclotron radius

is only « 50 nm. In a realistic sized device, the electrons in the bulk of the material

are now localized, and current is carried only by chiral skipping orbits along the edge

of the device. This classical picture (Figure 5.1) does capture the basic idea of the

quantum Hall effect, but more details require the quantum version. I have adapted
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Rxx

Rxy

Figure 5.1: The classical hall effect, taken to an extreme limit. Only skipping
orbits at the edge can transport charge between contacts, while the bulk is insulating.
This is surprisingly consistent with a more rigorous formulation of the quantum Hall
effect, although the quantized conductance and dissipationless transport at the edge
are spectacular results which are not obvious from this picture.

the following from Tong[83].

We begin with the classic problem of Landau levels. If we want to consider our

2D conductor subject to a perpindicular magnetic field, the vector potential must be

incorporated into the momentum of our Hamiltonian. For a magnetic field ~B “ Bẑ it

is easiest to proceed with the Landau gauge ~A “ xBŷ. We now have the Hamiltonian

H “
1

2m
|~p´ e ~A| “

1

2m
|ppy ´ exBq

2
` p2

x| (5.1)

which can be reparameterized in terms of the cyclotron frequency ωc as

H “
p2
x

2m
`

1

2
mω2

c px´
~ky
mωc

q
2 (5.2)

where ~ky is the eigenvalue of py (we are able to parameterize this way as rH, p̂ys “ 0).

This is just the Hamiltonian for a harmonic oscillator with a shift in x. Thus

electrons are forced into states with energy En “ ~ωcpn`1{2q. These states naturally
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have significant degeneracy because the energy is the same for different values of ky.

The sample dimensions cause ky to be quantized in units of 2π
Ly

. Because the center

of the oscillator must also lie within the sample we require 0 ă ~ky
mωc

ă Lx. As a

result, the degeneracy of each Landau level is

N “ pLx{l
2
b q{p2π{Lyq “

LxLy
2πl2b

“
eBA

2π~
(5.3)

where A is the area of the sample, and we have made use of a convenient length scale

lb “
b

~
eB

.

Having found the Landau levels and their degeneracy, we now turn to what

happens on the edges of a real sample. If our 2DEG is rectangular, we can very

naively describe the device as having a potential V pxq “ 0 away from the edges

and raising steeply at the boundaries. Assuming that this steep raise is smooth on

the atomic scale, we can Taylor expand, keep just the first term and approximate

V pxq “ BV
Bx

(or V pxq “ ´BV
Bx

on the opposite edge).

For a single filled Landau level we can find that the current carried by the states

is

Iy “ ´e

ż

dk

2π
vypkq “

e

2πl2b

ż

dx
1

eB

BV

Bx
“
e2

h
VH (5.4)

where VH is the Hall voltage. We have thus derived the quantized conductance of

a single filled Landau level, and found that indeed this quantized conductance only

arises from the edge current. It is easy to see that as more Landau levels are filled

each contributes a quantum of conductance.

We have glossed over an interesting point. We have only derived quantized con-

ductance for filled Landau levels, that is N is an integer. This enforces B “ h
N eA

,

otherwise there are partially filled Landau levels and no quantized conductance. But

this clearly disagrees with experimental results which do observe quantized conduc-
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Figure 5.2: Top: Landau levels in the simplest form, perfectly degenerate with a
large density of states. Bottom Left: the effect of disorder on the quantum Hall effect,
where charged impurities create local equipotential lines, localizing charge. Bottom
right: Landau levels are broadened by the disorder. Fortunately, the localized states
are the most spread out, which leads to a range of doping for which conductance is
quantized. Adapted from[83].

tance plateaus, so there must be a subtle point which can give rise to observable

conductance plateaus.

Incredibly, disorder is to the rescue. While it is important that the strength

of disorder is small relative to the Landau gap in order to observe the quantum

Hall effect, disorder plays an important role in broadening the Landau levels and

localizing a large number of states, particularly those at the edge of the broadened

Landau level. Filling these states has no effect on the conductance, giving rise to

the observed conductance quantization. Both the disorderless and finite disorder
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Landau levels as well as a schematic figure of the effect of disorder on the edge

states, is depicted in Figure 5.2.

5.1.2 The Quantum Hall Effect in Graphene

While we have discussed the generic features of the quantum Hall effect, graphene

enjoys a number of unique quantum Hall features[84]. These particularly arise out

of the valley degeneracy of graphene and the Dirac equation which governs electron

behavior in graphene.

This time, we will derive Landau levels while paying attention to the microscopics

of our device. For simplicity, we consider just the K valley. Further, this time we

will use the Landau gauge ~A “ ´Byx̂. Since our system has translational symmetry

along the x̂ direction, our solution will correspondingly form plane waves along the x̂

direction, simplifying our derivation. For electrons in the K valley, the Hamiltonian

is

Hk “ ~vf
„

0 ´Bx ´ iBy
´Bx ` iBy 0



(5.5)

where the spinor is for the two separate sublattices of graphene. Once again

incorporating the vector potential into the momentum, and splitting the wavefunc-

tion in each sublattice into a planewave x̂ component and an as of yet unsolved ŷ

component we find

HkΨ “ ~vf
„

0 ´Bx ´ iBy ´
e
h
yB

´Bx ` iBy ´
e
h
yB 0



eiqxx
„

Apyq
Bpyq



“ Eeiqxx
„

Apyq
Bpyq



(5.6)

Evaluating yields two coupled equations which can be straightforwardly decoupled
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´

qx ´
y
l2c
´ By

¯

Bpyq “ E
~vF

Apyq
´

qx ´
y
l2c
` By

¯

Apyq “ E
~vF

Bpyq
ÝÑ

”

B2
y `

1
l4c
py ´ qxl

2
cq

ı

Apyq “
´

E2

~vF
´ 1

l2c

¯

Apyq,
”

B2
y `

1
l4c
py ´ qxl

2
cq

ı

Bpyq “
´

E2

~vF
` 1

l2c

¯

Bpyq

(5.7)

These new equations are once again harmonic oscillator equations, which we can

solve to find

EA “ ˘
a

2e~c2B pnA ` 1q for nA “ 0, 1, 2, . . .

EB “ ˘
?

2e~c2BnB for nB “ 0, 1, 2, . . .

Solving for the K’ valley gives the same results, although the sublattices have

the forms of their solution swapped. There are several interesting features to note.

Most obviously, instead of finding E9n we find E9
?
n. This is sometimes referred

to as the relativistic quantum Hall effect, as it follows out of the linear dispersion of

electrons in graphene[85].

Generically, the Landau levels in graphene are 4 fold degenerate, due to the spin

and valley degeneracies. However, unlike in GaAs, graphene has Landau levels for

n “ 0. This valley is still 4 fold degnerate, but it pinned at E=0 and contains 2

electron levels and 2 hole levels, giving rise to the observed filling factors in graphene

ν “ 2, 6, 10, ... More profoundly, we can attribute this half filled Landau level to a

Berry phase of π[86].

Higher quality devices can also exhibit symmetry breaking of the Landau level

degeneracies, as long as the disorder broadening is small compared to the Zeeman

gap and valley degeneracy energy breaking scale arising from electron-electron and

electron-phonon interaction[87]. The quantum Hall effect is extremely rich, and

there are many very interesting facets, such as the fractional quantum Hall effect

and quantum Hall ferromagnets[88], which lie outside the scope of this dissertation.

68



5.2 Chiral Andreev Edge States

We have considered two ingredients that would be very interesting to combine: su-

perconductivity, in particular Andreev reflection, and the quantum Hall effect. It is

fairly easy to imagine that a chiral state could be Andreev reflected by a supercon-

ducting contact.

Combining these ingredients has only recently become experimentally possible.

While GaAs quantum Hall samples have been available for decades, the difficulty of

forming transparent contact to the 2DEG presents a serious obstacle. Further, the

large magnetic fields required for the quantum Hall effect require a very high critical

field superconductor. The combination of the developments of relatively high TC

sputtered alloys such as Molybdenum Rhenium and Niobium Titanium Nitride, as

well as high quality hexagonal Boron Nitride encapsulated graphene[89] and Indium

Arsenide 2DEGs[90] which make high quality contacts have opened great possibilities

in this direction[91].

While the works cited above present different coupling mechanisms, here we are

interested in a system where a quantum Hall edge bounces along a grounded su-

perconducting contact. To elucidate what happens here, we consider a simple toy

model. Suppose a zero energy electron is incident on the superconducting contact.

When it enters the proximitized region, we can represent it as a linear combination

of the two zero energy electron-hole modes

|ψ1y “ α|ey ` β|hy

|ψ2y “ β˚|ey ´ α˚|hy
(5.8)

As these two modes propagate along the interface, they will each acquire a dif-

ferent phase. Thus, at the end of the interface, we will have the state
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|φy “ α˚eik1L |ψ1y ` βe
ik2L |ψ2y

“
`

|α|2eik1L ` |β|2eik2L
˘

|ey `
`

eik1L ´ eik2L
˘

α˚β|hy
(5.9)

where k1, k2 are the wavevectors of the two modes and L is the propagation length.

Some inspection shows that the charge of |φy is

q “ e pPe ´ Phq “ e p1´ 2Phq “ e
`

1´ 8|α|2|β|2 sin2
pδkL{2q

˘

(5.10)

which thus oscillates with δk even for |α|2 “ |β|2 “ 1
2

This effect was recently was

recently observed by Zhao et al[10] (Figure 5.3) and will be more fully detailed in

Lingfei Zhao’s dissertation. By working with an Landauer-Büttiker formalism, it can

be seen that this conversion can be measured in the downstream voltage downstream

of the grounded superconducting contact.

5.3 Noise in Mesoscopic Devices

While noise is generally undesirable when performing scientific measurements, the

electrical fluctuations of a circuit can provide a great deal of information about the

fundamental physics of the electron and energy transport of mesoscale devices.

5.3.1 Intuitive Approaches to Noise

Thermal Noise

The thermal noise, or Johnson-Nyquist noise, of a resistor is an equilibrium noise

often associated with the Brownian motion of electrons in a resistive element. It is

also a canonical example of the more general fluctuation dissipation theorem. This

result can also be derived from the diffusive motion of electrons[92] (although the

result is more generic) or by solving a Langevin equation for an RC circuit[93], but

these derivations are omitted because they provide minimal insight without fully

developing the formalism.
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Figure 5.3: Chiral Andreev edge states. Top left shows a hall bar, with mostly
normal contacts and two superconducting contacts, one of which is grounded. Top
right shows schematically the electron being converted into e˘hmodes, which acquire
different phases, as well as a tight binding simulation indicating the electron and hole
densities along a contact. The bottom pannels show that Rxy remains well quantized
while the downstream voltage oscilates irregularly, giving both positive and negative
values. Adapted from[10]

The central result is that a resistance R generates voltage fluctuations xV 2y “

4kBTR∆f where ∆f is the bandwidth. This holds for both macroscopic and meso-

scopic devices. This is particular valuable in cryogenic systems as a primary ther-

mometer, because at temperatures below 1 K the electron and lattice tempera-

tures can become substantially decoupled, decreasing the accuracy of conventional

thermometry[94].
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Classical Shot Noise

Classical shot noise was first considered in the context of vacuum tubes. We consider

a vacuum tube which flows an average current xIy. As electrons are discrete, we

consider the simplest model where there is a uniform probability per unit time that

an electron is emitted[95]. The distribution of average current measured at a time t

should be Poisson distributed. This can be seen from the intuitive fact that

PNpt` dtq “ PN´1ptq
dt

τ
` PNptq

ˆ

1´
dt

τ

˙

(5.11)

where τ is the mean time between tunneling events. We can now see

d

dpt{τq
ΠN “ ΠN´1 (5.12)

where ΠN ” PN exppt{τq. The solution by induction is clearly

ΠN “ pt{τq
NΠ0{N ! Ñ PNptq “

xNyN

N !
e´xNy (5.13)

which is a Poisson distribution. We can now find that the mean square fluctuation

of the current is

2e2
pxN2

y ´ xNy2q{t “ 2ep
exNy

t
q “ 2exIy (5.14)

owing to the statistical property that the variance of a Poisson distribution is equal to

its expectation. This form, with noise proportional to 2eI is quite generic, and it can

apply equally well to a vacuum tube and a mesoscopic system (assuming Coulomb

interaction is not critical). The closest analogy to the vacuum tube shot noise in

mesoscopics is a tunnel junction, which gives incident electrons a low probability

of tunneling across a barrier. One thing which we can immediately note is that

the factor of e in the vacuum tube formula arises because this is the charge of
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the charge carrier in that system. But condensed matter systems can have charge

carriers with different charges q, such as Cooper pairs[96] and the quasiparticles in

the fractional quantum Hall regime[6, 7]. By making devices that exhibit shot noise

in these systems, we can directly measure the quasiparticle charge, which is already

an incredible result.

But this is not the only thing that shot noise probes. Lets consider a quantum

point contact, which is a tunable beam splitter. At very low transmission probability,

we expect very similar behavior to the tunnel junction. However, the adjustable

transmission of a QPC allows us to hit interesting regimes, such as 50% transmission.

Generically, systems which exhibit shot noise proportional to current, so we can

characterize them by a Fano factor F “ S
2qI

.

Another major consideration is the use of cross-correlation techniques. Up until

this point, we have only been considering voltage or current fluctuations as measured

in a single contact. However, some times we may be interested in measuring the cross

correlation xI1I2y where the subscripts refer to different contacts. For example, if

QPC is positioned such that particles are either transmitted to contact 1 or reflected

to contact 2, than xI1I2y can directly probe the Fermi or Bose statistics of the quasi-

particles. For Fermions we will find xI1I2y ă 0 which is a consequence of the Pauli

exclusion principle, while bosons will show xI1I2y ą 0. These effects are sometimes

referred to as anti-bunching and bunching, respectively[95].

Other types of Fundamental Noise

The other commonly mentioned type of fundamental noise is 1{f noise or flicker

noise[97]. This is a low frequency noise often associated with ensembles of various

bistabilities like charge defects, which are stochastically jumping between occupied

and unoccupied[98], although other more sophisticated models of 1{f noise exist and

it remains an active area of study. These measurements can provide information
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Figure 5.4: The scattering perspective of mesoscopic devices. Contacts numbered
1-3 send input modes a towards a central scattering region, which then emits output
modes to the same contact. More complicated devices can generally be described by
combining multiple scattering regions

about these flickering defects, but generally require a very different measurement

setup to observe.

More recently, there has been interest in Delta-T noise [99] or thermal shot

noise[100]. We can understand this as follows: shot noise is ultimately proportional

to pf1 ´ f2q
2 where fi refers to the distribution function in lead i. While shot noise

arises from tunneling driven by a voltage bias giving pf1´f2q
2 ą 0, it is also possible

to thermally bias one side of the scatterer. The higher temperature side has more

electrons at high energies due to the Fermi distribution, which can now tunnel across

the scatterer.

5.3.2 Formal Approaches to Noise in Mesoscopics

While our intuitive picture of noise is very helpful, in a complicated device geometry

it can be challenging to answer the question of how source of noise in our sample

couple to different contacts. Fortunately, there are a few powerful formalisms for

answering this question, and they all generally become quite simple in quantum Hall
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devices. This section primarily follows Buttiker[101] although other formalisms can

yield the same results[102].

Generically, a mesoscale device can be thought of as a scattering region which

couples input and output modes of different contacts. Let us define the input modes

as âαm for the mode m in contact α and similarly b̂βn for output mode n in contact

β. This allows us to describe the device (or perhaps a region of the device) with the

matrix equation

pbα “
ÿ

β

sαβâβ (5.15)

where we have suppressed that individual mode indices.

We can now write a fairly intuitive equation for the total current in a contact

pIaptq “
e
h

ř

m

ş

dEdE 1
“

â:αmpEqâαm pE
1q ´b̂:αmpEqb̂αm pE

1q

ı

ˆ exp ri pE ´ E 1q t{~s

(5.16)

We first note that by setting E 1 “ E we find the DC component of the current,

which is simply proportional to the difference between the occupation of the input

and output channels, summed over the modes. AC components of this noise arise

from creation and annihilation operators at different energies. This portion of the

expression is not quite exact but it is somewhat intuitive that generating photons

of the desired frequency require the corresponding energy differential. The integral

over dE can then be viewed as an inverse Fourier transform.

This equation can be condensed somewhat by noting that the input and output

modes are related so that we can write

Îαptq “
e

h

ż

dEdE 1
ÿ

βγ

pa:βpEqAβγ pα,E,E
1
qpaγ pE

1
q ˆ exp ri pE ´ E 1q t{~s (5.17)
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where

Aβγpα,E,E ` ~ωq “ 1αδαβδαγ ´ s:αβpEqsαγpE ` ~ωq (5.18)

The first term of Aβγpα,E,E`~ωq still describes the occupancy of the input modes,

and the second describes the occupancy of the output modes, but now in terms of

the input modes of the other contacts. One quick verification of our results can be

arrived at by making sure that this gives the correct DC current. By averaging over

time (setting E 1 “ E) and noting that terms with pa:βpEqpaγpEq will average to zero

for β ‰ γ, we arrive at we arrive at

A

Îα

E

“
e

h

ÿ

βm

ż

dEAββmmpαqfβpEq

“
e

h

ÿ

β

ż

dE Tr rAββpαqs fβpEq

(5.19)

where we have made use of the fact that the number operator is the Fermi function

for a given contact. This is consistent with the Büttiker formula given that

Tr rAααpαqs “ Tr
`

1α ´ s:ααsαα
˘

”Mα ´Rαα, (5.20)

and

Tr rAββpαqs “ Tr
´

´s:αβsαβ

¯

” ´Tβα, (5.21)

for β ‰ α.

If we are interested in the noise, we should solve for
A

ÎαÎβ

E

This is generically a

cross correlation type noise, but we can find auto correlated noise by letting α “ β.

The generic starting equation we will have is
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A

∆Îαpωq∆Îβ pω
1q

E

“ e2

~2
ş

dEdE 1
ř

γδεξ
@

pa:γpEqAγδpα,E,E ` ~ωqâδpE ` ~ωqpa:ε pE 1qAεξ pβ,E
1, E 1 ` ~ω1qpaζ pE 1 ` ~ω1q

D

(5.22)

While finite frequency noise is extremely rich and interesting, we are once again

interested in the low frequency limit. There is a complication to the above equation,

which is that we also want to consider the effect of exchanging our current operators.

In general, x∆Iα∆Iβyω ‰ x∆Iβ∆Iαyω but instead x∆Iα∆Iβyω “ x∆Iβ∆Iαy´ω. While

this does mean that the exchanged term is equal in the zero frequency limit, at

finite frequency this is an important point because noise setups can be thought of as

simultaenously measuring both the positive and negative frequency. If we take these

two orderings and average them, the effect is to get a factor δpω ` ω1q In the zero

frequency limit, we ultimately obtain

x∆Iα∆Iβy “ ∆v e
2

h

ř

γδ

ş

dE Tr rAγδpα,E,EqAδγpβ,E,Eqs

ˆ tfγpEq r1¯ fδpEqs `fδpEq r1¯ fγpEqsu
(5.23)

for bandwidth ∆v. Here, the trace is taken over the space of pairs of modes in a

given contact γ in the device. Note that the top sign refers to a Fermi distribution,

while the bottom sign refers to a Bose distribution. While it is very formal, this is

a very nice result because we can solve for the temperature and bias response of the

noise in any device given only the scattering matrix which characterizes the device.

We can immediately apply this formula to a two terminal conductor in order to

derive thermal noise and the shot noise of a QPC. For thermal noise, we begin by

noting the identity
ř

γδ Tr
´

s:αγsαδs
:

βδsβγ

¯

“ δαβ Tr p1αq If we consider α “ β, then

ř

γδ Tr rAγδpα,E,EqAδγpα,E,Eqs “
`

1α ´ s:αγsαδ
˘

´

1α ´ s:αδsαγ

¯

“ 2p1α ´ s:ααsααq

Using this and fp1¯ fq “ ´kT p df
dE
q we find
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@

pIαq
2
D

“ 4∆vkT
`

e2
{h
˘

ż

dEp´df{dEq rMα ´Rααs “ 4∆vkTG (5.24)

which is indeed the standard Johnson-Nyquist noise formula.

To move beyond equilibrium noise, we note that a two terminal conductor has

the particular advantage that x∆I1∆I1y “ x∆I2∆I2y “ ´ x∆I1∆I2y owing to current

conservation. For the zero temperature, finite voltage case, we find

@

p∆Iq2
D

“ 2∆v
`

e2
{h
˘

ż

dE pf1 ´ f2q
2 Tr

´

s:11s11s
:

21s21

¯

(5.25)

First we note that
ş

dEpf1 ´ f2q
2 “ |eV |. Secondly, if we realize s11 is a reflection

amplitude and s21 is a transmission amplitude, in the basis of Eigenchannels we

arrive at we arrive at

@

p∆Iq2
D

“ 2
`

e2
{h
˘

∆v|eV |
ÿ

n

Tn p1´ Tnq (5.26)

where the sum is over all channels. This is our classic shot noise. We can find the

standard tunneling limit by approximating p1´ Tnq « 1 and noting that the current

flowing will be e2{hV
ř

n Tn, yielding F “ 1. But we now have a significantly more

general formula, where it is possible to determine F just by knowing the transmission

of all channels.

Combining thermal and shot noise we can straightforwardly arrive at a generic

two terminal conductor formula

@

p∆Iq2
D

“ 2∆v
`

e2
{h
˘

ż

dE
ÿ

n

rTnf1 p1¯ f1q ` Tnf2 p1¯ f2q ˘RnTn pf1 ´ f2q
2
‰

(5.27)
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If we consider the case of a Fermion system, it is possible to express this as

@

p∆Iq2
D

“2∆v
`

e2
{h
˘

ˆ
ÿ

n

“

2kBTT
2
n `RnTneV coth peV {2kBT q

‰

(5.28)

In order to physically understand this formulation, note that eV “ 0 Ñ eV cothpev{2kBT q “

2kBT so that the whole term in the sum simplifies to 2kBT , the expected thermal

noise. In the limit of high voltage bias, we arrive that something proportional to

V RnTn, which is our standard shot noise form.

From an experimental perspective, there is something extremely valuable about

this equation. As we increase the voltage bias, the change in the noise is proportional

only to cothpeV {2kBT q. This means that if we have a tunnel junction of known re-

sistance we can easily measure the electron temperature of our system. What is

particularly valuable here is that the system is “self-calibrating” in the sense that

background noise of the amplifiers and gain uncertainty do not contribute to un-

certainty of the temperature measurement. This also makes such a measurement

particularly convenient for calibrating the gain and input voltage noise of an ampli-

fier. This type of measurement is described at the end of chapter 6.
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6

MHz Cryogenic Noise Measurement Setup

6.1 A Brief History of Mesoscopic Noise Experiments

As previously mentioned, noise is a very powerful tool and technique for studying

nanoscale devices. While there were attempts to measure fundamental noise signa-

tures in mesoscopic devices in the 1980s and early 1990s[103, 104], it wasn’t until the

late 1990s that fundamental noise was first very successfully measured with break-

through experiments measuring fractionally charged particles in fractional quantum

Hall states. The setup used by the Weizmann group has largely become the template

for the modern cryogenic MHz noise setup, there have been several variations and

improvements over the years. In this section I will discuss various design decisions

and the performance of the system.

6.2 The Cryogenic Amplifier

In order to probe physics at very low energy scales, we require a measurement setup

with the lowest background signal possible. The Dicke radiometry formula tells us

that the uncertainty of a noise temperature measurement δT is
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Figure 6.1: Amplifier schematic (left) and prototype board (right)

δT “
T ` TN
?
τ∆f

where T is the amplitude of the noise being measured, TN is the noise temperature

of the system, τ is the measurement time and ∆f is the measurement bandwidth[105].

Note that while all noises here are expressed in terms of a temperature, we can replace

with something proportional to V 2 if desired. There is a positive note – we see that

we can hit arbitrary precision by measuring for a longer period of time. However,

consider a concrete example: suppose we have a room temperature amplifier with

2 nV?
hz

input noise and 5 kHz bandwidth, as well as a cryogenic amplifier with input

noise 0.3 nV?
hz

and 30 kHz bandwidth. If we are trying to measure a small signal

T ăă TN , then we have to measure for 266 times longer to achieve the same precision

with the room temperature setup as the cryogenic setup.

While RF electronics excel at both low background signal levels and large band-

widths, the large impedance of nanoscale devices with resistances on the order of

RQ makes it challenge to RF match them. To avoid such matching, we work with a
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MHz cryogenic amplifier. This allows us to improve both on the background signal,

because the low temperature reduces the fundamental noise of our amplifier, and to

achieve higher bandwidth, by putting the amplifier closer to the sample and reducing

the capacitance between the sample and amplifier. Unfortunately, many transistors

are prone to “freezing out” and becoming nonfunctional at low temperatures. Fortu-

nately, high electron mobility transistors (HEMTs) are still functional at «1 Kelvin

scale temperatures and can thus be used as the basis for the cryogenic amplifier.

Systems of this type are routinely able to hit input noise levels of « 0.3 nV?
Hz

It is

worth noting that while it is possible to hit comparable input noise levels at room

temperatures with bipolar junction transistors, such systems have very low input

impedance which is undesirable when measuring samples with resistances on the

scale of RQ.

Throughout my PhD we primarily used the no longer produced ATF-38143 tran-

sistor. This was more readily available than and is minimally different from the more

commonly used ATF-34143.

For the amplifier topology, we use two parallelized HEMTs in a common source

configuration. The advantage of this topology is simply to reduce the input noise

by
?

2 while keeping things simple. It is also possible to use other topologies, such

as a single HEMT common source, a cascode arrangement or a current amplifying

configuration. Ultimately there should be minimal difference between configurations

when using fairly small (kOhm or lower) resistors in the amplifier design, since these

components contribute minimal thermal noise at 3 K and all of the noise should

originate from the HEMT itself.

The schematic of the cryogenic amplifier, as well as the physical implementation

of a test circuit, is shown in Figure 6.1. In designing any amplifier, we begin by first

choosing a DC operating point (a combination of VGS and VDS has to be chosen.

As will be seen in the subsequent section, the gate is DC grounded. In order to
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avoid having to pass separate source and drain biasing lines to the transistor in

order to independently tune VDS, VGS, we rely on “self biasing” where, by attaching

a resistor to the source of the amplifier, we allow VS to be raised by IDSRS. Thus

any combination of VDS and VGS can be reached by appropriate choices of RS, RD

and applied voltage.

For a given VGS, the optimal VDS in our system is the minimal voltage that

saturates the transistors, as higher voltage will not increase the gain of the system

but will increase the heatload of the amplifier. The optimal VGS is a trade off: a

higher VGS may lead to higher gain and, hopefully, lower input noise, but will also

increase the heat load, and, to a certain degree, the nonlinearity of the amplifier.

Normally, the ATF-38143 operates at room temperature with IDS on the order of

100 mA, but this would generate far too much heat load, so VGS is a substantial

negative value to achieve saturation at for mA scale IDS

Once all of the DC components have been chosen, we can choose components

to optimize the AC performance. This can be done by placing any AC resistors in

series with a large capacitor to prevent it from altering the DC performance. Gain

is maximized by AC shunting the source resistor. The only downside of this process

is that it will lead to small variations in the gain of the amplifier as a function of

frequency, due to the fact that the impedance of the shunt is varying with frequency.

To minimize this effect, we placed 11 Ohm resistors in series with these capacitors,

although this does have the effect of slightly reducing gain.

While gain is maximized by having a larger RD, an issue that must be considered

is that the output resistance of the amplifier in combination with the capacitance of

the output line, may filter the measured signal. To avoid this issue, we reduce the

AC output impedance of the amplifier to approximately 200 Ohm.

Other components are chosen to reduce the odds of generation, or to filter the

DC biasing line.
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Figure 6.2: Cryogenic IV curves of the ATF 38143. Like most HEMTs, the low
temperature IV curves are significantly different from the room temperature curves,
showing reduced current for a given VDS. The top figure show the effect of self
biasing, with 0 V applied to the gate. While the amplifier is normally unsaturated,
by adding a source resistor we can cause the amplifier to saturate for a small enough
current to avoid overheating the fridge. Around 200 ohms is optimal, because too
much more leads to a significant reduction in gain. The bottom figure shows the gate
voltage dependence of the IV curves for 200 Ohms Rs. This gives further tunability,
but in practice we keep the gate DC grounded.
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6.3 Resonators

HEMTs unfortunately suffer from significant 1
f

noise, up to frequencies in our sys-

tem of « 300 kHz, which makes it desirable to operate at frequencies « 1MHz. This

presents another issue: for samples with resistance R « RQ, the capacitance be-

tween the amplifier and the sample must be less than 6 pF to minimize self filtering.

However, this is an essentially impossibly small amount of capacitance.

This obstacle can be overcome by adding an inductor to ground between the

sample and the amplifier. The effect of this is to shift the center frequency to 1
2π
?
LC

,

while preserving, for an ideal inductor, the bandwidth 1
2πRC

In practice, producing a nearly ideal inductor was surprisingly challenging. We

were initially working with commercial components from coilcraft, which were ce-

ramic core copper wire inductors. However, these had significant losses which can

be quantitatively characterized by saying that the inductor acted more like an in-

ductor in parallel with a 25 kOhm resistor at 4 K when it was shunted by enough

capacitance to form a resonator at 1 kOhm.

The effect of this resistance has two effects. The parallel combination of this

resistance and the sample resistance reduces the signal amplitude to but increases the

bandwidth. In the net this should be a moderate loss of total signal, but in practice

it is typically hard to increase the bandwidth too much due to spurious background

noise peaks. We also made the additional mistake of placing the inductor on the 3K

plate initially, which leads to an additional signal of the thermal noise of 25 kOHm

at 3 K, which is a significant 2 nV?
Hz

before accounting for the equivalent resistance.

When attempting to wind our own inductors, our first designs were based on

conventional Nb-Zr and Nb-Ti wire. However, we found that the losses did not

seem to be substantially better, which we attributed to the Cu or Cu-Ni coating on

the outside of the wires. This is a resistive metal coated on the wires because the
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Figure 6.3: Left: Resonators mounted on the mixing chamber plate. Each copper
egg has a coil wound around PVC inside, held in place with a 3D printed part. The
top of each egg has a single SMA, with one end of the coil connected to the signal
pin, and one to the ground. An SMA tee is then connected on top, so that the
amplifier and sample can be connected. Right: cryogenic amplifiers, mounted in die
cast aluminum boxes. The top of each die cast box has an additional copper pill box
to shield the power input lines. Amplifiers are aligned on an aluminum mounting
plate and a piece of copper foil is used to interface the aluminum plate to the 3 K
plate of the fridge, due to fears of degradation of the 3K plate interface.

superconducting material is usually difficult to solder. However, at MHz frequencies

it seems possible that the skin effect pushes all of the AC current to the surface of

the wire and thus induces substantial losses. We note that other groups can often

skirt this issue by working at frequencies around 700 kHz, which helps to reduce

these losses (details are discussed at the end of this section).

While a truly optimal inductor is likely to involve superconducting wire without

a resistive coating, in practice it was easier to work with high quality copper wire.

A few trends about making low loss inductors (which can be observed in certain

applied engineering texts) were observed
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• Layered windings tend to significantly increase the loss, as currents between

adjacent layers repel and reduce the effective current carrying area. If layering

is essential, spacers can be used, although we ultimately used a single layer

coil.

• Having a larger inductance is generically better, because of the formulaRparallel “

ω2L2{Rseries, so even thought Rseries increases with wire length, the effective

inductance will increase faster.

• Likewise, thicker coils have higher inductance per unit length of wire. It is

worth noting that the solenoid formula becomes inaccurate for coil length and

width of the same order and the so called “helical coil” formula must be used

instead. Very wide coils will also eventually suffer from larger radiative losses,

although there was no evidence to suggest we ever reached this limit.

• It is important to shield the inductor well, since it is very easy for ambient

noise to couple to the coil. However, as the coil gets close to the walls of the

shielding, losses can increase significantly.

6.4 Wiring

This system requires somewhat precise wiring, in order to minimize losses while

ensuring that all plates are thermally isolated.

The wire from the HEMT input to the inductor is superconducting Nb-Ti with

a Cu-Ni shield, which is carefully thermalized at each stage. This same type of wire

then extends down to the input SMP of the puck. Superconducting wire is used to

connect the puck to the blocking capacitors, to minimize any risk of the amplifier

wires heating the sample.

Wiring from the HEMT amplifier to the room temperature SMA uses a shielded
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twisted pair in order to minimize output capacitance of the amplifier.

6.5 Room Temperature Amplification and Readout

After being passed to a room temperature SMA, the signal is fed to an NF SA-

421F5 amplifier. This amplifier has 0.5 nV?
Hz

input noise and 46dB gain. This is then

capacitively coupled (in order to break the DC ground loop) to an Agilent N9000A

spectrum analyzer.

The spectrum analyzer can be operated in a few different ways in order to mea-

sure the noise. The simplest is to measure channel noise power centered on the

Lorentzian of the tank circuit with a minimal span and a video bandwidth of the

desired measurement width. This produces a single number corresponding to the

noise amplitude. Occasionally, there would be periodic bursts of noise, which we

typically attributed to digital electronics in the system. One way to avoid these is

to measure a large number of short time scale points (for instance, recording 50x100

ms measurements to measure for 5 s) so that outliers can be removed. It is often

possible to remove such bursts by adjusting the grounding of the fridge.

Alternatively, it is possible to use the spectrum analyzer to FFT the signal.

This can make it easier to remove noise spikes, and has the additional benefit that

measuring the resonance insures that there is no change in the device resistance (or

if there is one, that it can be corrected for). However, it is programatically more

challenging and requires spending some amount of time measuring a band with low

signal to noise ratio.

Lastly, it is possible to work exclusively with a fast digitizer. This is a natural

way to do cross correlation measurements, although it is also possible to use an

analog multiplier. When digitizing, it is essential to use a PXIe setup or PCIe card,

in order to have the necessary bandwidth to transfer signal as quickly as needed to
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the computer.

6.6 Grounding Issues and External Noise

Without careful grounding and control of local electromagnetics, typically one mea-

sures a very noisy background spectrum, characterized by both ugly peaks and a

very high level of white noise, even if the amplifier and measurement lines appear to

be well shielded.

For the Oxford dilution fridge wired with our cryoamps, one of the primary

sources of background noise is the various heaters of the Oxford thermometry system.

These noise can be significantly removed by disconnecting these heaters from the

fridge, and using an external voltage source to apply heat if necessary. This noise

was further improved by taking the thermemotry scanner and removing it from the

Oxford gas handling system and mounting it close to the frame of the fridge, similar

to how it is recommended to be done in the Lakeshore 372 Resistance Bridge manual.

As initially setup, the Oxford Triton was grounded through the magnet power

supply, with the metallic frame which supports the refrigerator floating. However,

the optimal setup for our MHz noise setup involved grounding the fridge to the

shielded room, and the frame separately to a metallic pipe on the other side of the

room.

It is also worth noting that the amplifier showed approximately 20% increased

background noise when the magnetic power supply is connected to the magnet. This

noise can be removed by setting the magnet in persistant current mode.

6.7 Calibrations

Calibrations were primarily performed with an aluminum shadow evaporation tunnel

junction fabricated by Zubair Iftikhar. The junction is around 98 kOhm at base

temperature. Because the junction is not chiral like a quantum Hall sample, it is
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Figure 6.4: Optical image of the aluminum tunnel junctions studied. The small
overlapping region is the junction formed by shadow evaporation

To DC To DC
47 kΩ 47 kΩ

Cryoamp

Figure 6.5: Measurement circuit for the tunnel junction noise. Isolating resistors
are used to disconnect the sample from the capacitance of the measurement lines, so
as to avoid changing the resonant frequency of the measurement circuit
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important to use resistors to isolate the junction from the capacitance of the DC

biasing lines. 200 mT was applied to insure that the aluminum in the junction was

not superconducting.

The value of the tunnel junction is that we can safely assume it has a Fano factor

of F “ 1, and then fit the equation derived at the end of the last chapter. We found

a fridge base temperature of around 27 mK and an amplifier performance of around

0.3 nV?
hz

input noise and a voltage gain of around 4.5.

The primary obstacle for the accuracy of our calibration is a certain non-linearity

of the IV curve of the tunnel junction, which we attribute to the dissipative envi-

ronment formed by the long thin leads. More accurate calibrations can naturally be

accomplished by using thicker leads, to avoid this effect[106].
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Figure 6.6: Data from the tunnel junction calibration. Top: shot noise vs sample
voltage for several different temperatures. Blue points are data, red lines are fun-
damental fits. Bottom: fitted temperature vs applied temperature on the sample
heater, showing a clean power law dependence (this particular power law seemed to
stem from poor thermalization on this particular cooldown).
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7

Noise of Chiral Andreev Edge States

7.1 Introduction

Coupling superconductivity and the quantum Hall effect has been a long standing

goal in the field of quamtum transport. Such coupling is a natural route to non-

Abelian anyons which could form the basis for topological quantum computation.

While inducing superconductivity in a semiconductor device at the magnetic fields

required for the quantum Hall effect is challenging, recent research has shown con-

siderable experimental progress in this regard.

One such experiment of particular relevance for this work is the recent observation

of the interference of chiral Andreev edge state[10]. Here, when a current flows along

a quantum Hall edge towards a grounded superconducting contact, it is possible to

observe both a postive and negative nonlocal voltage downstream of the grounded

contact. Such a signal indicates that at least some of the incoming signal is Andreev

reflected.

One outstanding question with this experiment is about the signal amplitude. In

an ideal device, the nonlocal resistance should reach ˘νGQ, where ν is the filling
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Figure 7.1: A schematic of the way in which dephasing could lead to reduced
signal. Here, we are using red and blue cyclotron orbits to refer to electron and
hole particles, respectively. However, as particles propogate along the interface,
fluctuations of the electron hole character along this trajectory may lead to a nearly
equal mix of electrons and holes being emitted by the contact

factor and GQ is the conductance quantum. However, in experiment, it is typically

only possible to reach 1´ 10% of this value. Two viable explanations are as follows:

1) the output signal is made of a roughly equally mixed electron-hole hybridized

state, and that it is quite challenging to realize a significant imbalance of carriers. In

this interpretation, a 10% signal could be completely holes with all other particles

being lost into the contact, while the prior interpretation would argue that this signal

should arise from 45% electrons and 55% holes (this is plotted schematically in Figure

7.1). Or 2) the vorticies in the superconductor lead to particle loss, significantly

reducing the signal. There is substantial evidence that rearrangements of vortices

significantly impact the observed signal, both theoretically and in experiment, where

repeatable stochastic jumps in the signal are attributed to vortices. This is shown

schematically in Figure 7.2.

One possible way to probe this question is through the use of noise measurements.

Measurements of the noise should give a signal proportional to varpqq where q is the

charge of the Andreev edge state carriers. As a result, case (1) should give substantial

noise, while case (2) should result in significantly reduced noise.
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SC

2DEG

Figure 7.2: A schematic of the effect of vorticies on chiral Andreev edge states.
A quantum Hall edge incident on a local superconducting contact may go through
Andreev reflection, but if the contact has vorticies, these local normal regions may
absorb the particle.

7.2 Prior Work

Recently, Sahu et al[107] measured the noise of a graphene Josephson junction in

the quantum Hall regime. The authors observed enhanced noise, particularly at low

magnetic field, which they attribute to CAESs. At the lowest biases and magnetic

fields, they find F « 0.5 (Figure 7.3). This is consistent with a toy model that

assumes the edge states are neutral, thus the probability of Andreev reflection is

given by PAR “ sin2pφ{2q where φ “ pk1 ´ k2qL is the difference of phase between

the two e ˘ h edge states acquired over the length of the device. Assuming that

phase is well randomized by the edge disorder, averaging over φ ultimately leads to

the F “ 0.5 result.

These results are interesting, and consistent with the simple model, but they

elicit some questions. The authors assume a given superconducting contact emits

an equal mixture of electrons and holes in the quantum Hall regime. This would

naturally explain the lack of CAES signals shown in many devices, but it is unclear

if this is generally true, as mentioned in the prior section. If this is the case, what

makes the devices of Ref r10s special is not that they have signal at all, but the fact

95



Figure 7.3: The primary results of [107], adapted from the paper. a) depicts the
noise measured as a function of bias current for several different magnetic fields.
While the Fano factor is quite large for low bias (c) it becomes reduced at higher
bias, consistent with biasing outside of the induced superconducting gap. The high
low bias Fano factor also gradually decreases with magnetic field and temperature,
consistent with [10]

that they can imbalance the electron and hole ratio.

Another aspect to consider is that ideally superconductors are ideal thermal insu-

lators. Recent work has measured the quantized thermal conductance of the quantum

Hall effect by biasing current towards a floating island[5]. Our measurements below

show that the noise vs bias curves of these two experiments are nearly identical.

At low temperature, the thermal noise should be linearly proportional to the ap-

plied bias current, but at higher bias currents the edge state may overheat, causing

increased thermal conductivity through phonons and thus a reduced Fano factor.
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At higher magnetic fields, the vortex density should increase, leading to increased

thermal conductivity of the SC contact and thus a reduced noise signal.

The primary obstacle with this explanation is that generally superconducting

thin films appear to be less thermally isolating than they are expected to be[108],

and that the vorticies should probably lead to a high enough thermal conductivity

of the contact[109, 110] that the thermal noise measured should be small. Still, it

appears challenging to detangle these two effects experimentally.

7.3 Comparing Superconducting and Normal Contacts

Ultimately, we present data on two devices in this chapter, the first of which is

discussed in this section. This device is shown schematically in Figure 7.4. One

contact is connected to a cryoamp so that we can measure the noise at this terminal.

On either side of this contact there is a cold grounded contact, one of which is

superconducting and one of which is a standard Cr/Au normal contact. On the

other side of the grounded contacts is a contact for biasing DC current. This allows

us to bias DC current and measure the downstream noise of either a superconducting

contact or a normal contact depending on the direction of the magnetic field.

In Figure 7.5, we present a map of the measured noise downstream of the super-

conducting contact as a function of the applied DC bias current and the magnetic

field perpendicular to the sample. The gate voltage is such that the filling factor

is ν “ 2 throughout the entire map. Our results are fairly consistent with those

observed by Sahu et al. At the lowest magnetic fields and bias currents, it is possible

to observe a relatively large noise signal, consistant with a Fano factor F ą 0.1. As

we increase bias, the Fano factor continuously declines until the noise levels off at

nearly a plateau. As the magnetic field is increased, both the low bias Fano factor

and the level of the noise plateau at high bias begin to decrease. Around 5 T, we

observe that the curve more or less saturates, and shows minimal change going up
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SC

SC

Figure 7.4: The sample schematic used for Section 7.3. The top figure shows the
primary configuration, with current flowing towards the grounded superconducting
contact, so that any emitted noise can be measured by the downstream cryoamp.
Here, blue edges are essentially noiseless edges (containing only the thermal noise
of the base temperature contacts), while the red edge contains the additional down-
stream noise. The bottom shows the alternate configuration which can be achieved
by reversing the magnetic field direction. By doing so, we are able to measure the
noise downstream of a normal contact as a control.

to 10T.

Figure 7.5 also shows the same measurement with the direction of the applied

magnetic field reversed, such that we are measuring downstream of the normal con-

tact. Surprisingly, we find a pattern that is qualitatively fairly similar, with large

Fano factors for low bias, saturation at high bias, and a steady decrease in both

signals as the magnetic field is increased. At the lowest field we find Fano factors of

this normal contact as large as F « 0.25 on a quantum Hall plateau. While previous
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results have found that contacts can sometimes show some residual shot noise in the

quantum Hall regime, such a large Fano factor is quite surprising to measure while

observing a quantized resistance, and presumably inconsistent with a purely shot

noise source.

While these contacts do not exhibit completely identical behavior, we believe

that these signals are similar enough to consider that they have a common origin.

An interesting variation on the thermal noise scenario proposed in section 7.2 is that

neither superconducting nor normal contacts manage to properly thermalize the edge

state. The conditions of the chiral Andreev edge state force us to work at relatively

low fields and with fairly short contacts. It is possible that this combination of short

contacts and low magnetic field, and thus large magnetic length, result in an the

edge state is not completely thermalized by the contact, but instead is emitted from

the contact at an elevated temperature.

Downstream from the superconductor, this process is more complicated, owing

to the thermal effects of vorticies described previously. Thus we expect that the

thermal conductivity of the superconducting contact should be lower, thus leading

to higher temperature and therefore higher noise.

In either case, the specifics of the thermal noise dependence may be complicated.

For either the normal or superconducting contact, as bias increases, the contact

interface could heat up, leading to increased thermal conductivity and thus sublinear

noise as a function of bias. We believe this explains the bending shape, although

quantitatively this will depend on the size of the contacts and the distance from the

measuring contact.

7.4 Measurements in a Device with Large CAES Signal

The second device we studied is schematically very similar, although with four super-

conducting contacts. This device is studied due to the large amplitude of its nonlocal
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Figure 7.5: Output current noise SI2 as a function of DC bias current and magnetic
field downstream of a normal contact (top) and a superconducting contact (bottom).
While there is a quantitative difference between curves, qualitatively they remain
fairly similar
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Figure 7.6: A single magnetic field cut comparison of the two contacts at 2T. While
the noise is significantly higher at low bias for the superconducting contact, the scale
of the two signals remains reasonably comparable. Bottom: Differntiated curves for
the two contacts. The supeconducting contacts result of F « 0.2 at 2 T is quite
comparable to the result of Sahu et al. at 2 T.

101



signal for one contact, on the order of 10% of the quantized resistance on the ν “ 2

plateau.

One way in which we can attempt to measure the shot noise of the chiral Andreev

edge state decoupled from this thermal noise is to measure the observed noise at finite

bias as a function of the gate voltage at a constant filling factor. When measuring

the DC signal, we can sweep VG, modifying the electron density and causing the

nonlocal resistance to oscillate. If this change in signal arises due to a change in the

electron to hole ratio, rather than because of a change in particle loss, we believe

the measured noise should also oscillate, although out of phase with the nonlocal

signal, because an equal mixture of electrons and holes should result in zero nonlocal

resistance but larger noise than streams of only electrons or only holes.

We emphasize having a large tunability here as the noise should be proportional

to the varp q
e
q. Thus, even our sample with DC signal on the order of 10% of 2GQ may

only exhibit Fano factor variations of 0.1. Since the AC coupled cryogenic amplifier

is not compatible with DC nonlocal measurements, the sample is rebonded and

recooled between the two measurements. The observed results are plotted in Figure

7.7. The entire figure is measured with 9 nA of applied bias, which should be enough

to cleanly measure variations in F, while potentially avoiding saturation of the noise

at higher bias. Qualitatively, the results are fairly consistent with our expectations.

At 3 T, we see minimal variation in the Fano factor across the entire range of the

plateau. For the lowest three magnetic fields however, we do see some oscillations

that seem to be statistically significant. However, the observed oscillations are still

very small. They correspond only to variations of the Fano factor on the order of

0.005, more than an order of magnitude smaller than one would naively expect.

Furthermore, it is possible that even these small oscillations we observe arise

due to alternative mechanisms. Possibly, by tuning the electron density and thus

the trajectory of the quantum Hall edge along the contact, we slightly change the
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extent to which this edge can thermalize to the contact, and this variation in signal

is actually variation of the thermal noise rather than the shot noise. Alternatively,

slight imperfections in contract transparency even in the quantum Hall regime have

been connected to small Fano factors.

Regardless of the exact origin of this small signal, we believe there is some mech-

anism by which the shot noise of the chiral Andreev edge state is suppressed.

7.5 Conclusion

In summary, we have measured the noise downstream of superconducting and normal

contacts in the quantum Hall regime. While we require measurements on additional

devices in order to confirm these results, we believe that in graphene devices at low

magnetic field (typically below 4 T, in reasonable device geometries) the quantum

Hall edges may fail to completely thermalize with a grounded contact, which may be

an important consideration for a range of quantum Hall devices. Beyond that, we

believe that the shot noise of chiral Andreev edge states are significantly suppressed.

This may be due to “equilibration”, or inelastic scattering processes, which have

been shown to give a suppression of noise which scales exponentially with interface

length[111].
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Figure 7.7: Measurements of the second device. Top: resistance fluctuations of the
large signal contact as a function of magnetic field. Curves are manually offset, but at
1.6 T we observe approximately 1 kΩ fluctuations correspond to roughly 8% electron
to hole conversion. Bottom: Noise measured on the same device in a separate cool-
down with a bias of 9 nA. Here we observe small fluctuations in the noise, which
ultimately correspond to fluctuations in the Fano factor of « 0.01, which are thus
more consistent with case (1) discussed at the beginning.
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8

Conclusion

AC measurements of quantum materials are a varied and promising approach which

is certain to produce significant results in the coming years. While the end of each

experimental chapter presented some simple ideas for next steps, this section focuses

on other projects that can be readily realized using these and similar techniques.

One of the most immediately promising next steps for graphene noise measure-

ments is attempting to measure the thermal conductivity of the quantum Hall fer-

romagnetic states, in particular ν “ 0. While the ν “ 0 quantum Hall state can

take a number of different forms depending on the particular energy scales[112], the

canted antiferromagnetic state should host magnons (spin based goldstone modes).

Such magnons have recently been shown to be gapless[113], and should mediate heat

even in the absence of standard electronic thermal conduction, leading to significant

violation of the Wiedeman-Franz law[114].

We currently have a design for this sample with a few viable variations. The

essential design is a hall bar with the middle section having a local topgate and

floating metallic islands on either side of the device. When the floating metallic island

has two grounded contacts downstream of it, a Landauer-Buttikker calculation shows
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that it acquires a voltage IνGq{2. Combined with the quantized thermal conductance

of the quantum Hall edge states, this gives it an easily determinable temperature[5].

By setting the topgated region to ν “ 0 and the other regions to an integer state,

we can use heat one floating island to thermally bias one side of the ν “ 0 region. It

should then be possible to measure the temperature of the edge state flowing out of

the other metallic contact.

The two variations depend on whether the floating islands are coupled to the ν “ 0

region directly (by having the gated region overlap with the islands) or indirectly,

with integer Hall loops mediating the interaction. Presumably the former leads to

stronger thermal coupling, but is more challenging to fabricate, as care must be taken

to avoid shorting the floating islands and the gate.

Observing a violation of the Wiedemann-Franz law would be an exciting result

for this system, and the possibility of tuning into a different ν “ 0 state which lacks

enhanced thermal conductivity, such as the ferromagnetic state, which has previously

only been observed by nonlocal transport. Similar work can also be initiated with

a quantum spin liquid candidate material, such as RuCL3. These materials are

electrically insulating but has been shown to exhibit quantized thermal conductance

as well as thermal conductivity oscillations in bulk materials[115, 116] but it may be

possible to obtain higher quality results in a clean flake.

Another direction is the development of a higher frequency (GHz) noise mea-

surement setup. This work is currently being pursued in our lab by Zubair Iftikhar.

As was alluded to in Chapter 5, the results here are fundamentally different. One

particularly simple result is that if eV, kT ă ~ω than the noise at frequency ω is sig-

nificantly suppressed. This has been observed in a low transparency quantum point

contact[117]. But finite frequency noise can be significantly more complicated, such

as exhibiting photon antibunching when a QPC is tuned such that ~ω « eV [118].

Such finite frequency noise typically relies on RF matched electronics and commer-
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ν = 0

Figure 8.1: A sample design for measuring the thermal conductivity of ν “ 0 By
applying a bias voltage V from the left side of the sample, a voltage V

2
is dropped

on the floating island. Hot edges then flow out of this island, along the ν “ 0 edge
induced by a local topgate. Any heat propagation through the ν “ 0 is then absorbed
by the right side floating contact, which can “partition” the noise and convert the
thermal signal into electrical fluctuations.

cially available cryogenic amplifiers.

There are several additional exciting directions, such as the integration of mate-

rials and circuit QED techniques, which show great promise[9].
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Appendix A

Electronics

A.1 High Frequency Probe Wiring for Shapiro steps

RF irradiation measurements were performed in a Leiden Cryogenics probe with

2 semi-rigid brass coaxes reaching down to the mixing chamber anchor and which

provide minimal attenuation below 26GHz. A Rhode and Schwarz SMP-02 Generator

was used which showed no easily observable harmonics or distortation when tested

with a spectrum analyzer. Attenuation was provided by stainless steel cryogenic

attenuators from XMA (part number: 4880-5523-xx-CRYO, where xx represents

attenuation in dB). Our default setup involved a 20 dB attenuator at the 3K plate

anchor and a 20 dB attenuator at the mixing chamber anchor, which was chosen to

roughly match the change in temperature and therefore blackbody radiation.

The copper can containing the sample holder is separated from the anchor by

approximately 40cm. To cover this distance, we initially used a homemade SMA

microcoax which was cut on one side and threaded through a hole in the can, up into

the fork where it connected to a pin nested in a block of teflon held next to the chip

carrier. The microcoax was chosen for low loss, although it still provided significant
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frequency dependent attenuation and typically limited our frequency range to below

10 GHz.

Setups of this type generally do not provide any knowledge of the power at the

sample, due to unknown attenuation of the lines and antenna coupling to the sample.
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Appendix B

Sample Processing

For 2D heterostructure assembly, it is worth noting that over the course of the

year it may be required to recalibrate the fabrication procedure, presumably due

to fluctuations in the ambient humidity and temperature, but also possibly due to

things such as variations in the silicon wafers or polymers used for assembly. What

is presented below is a reasonable starting point and generally pretty close to the

common procedure, but typically small tweaks to temperatures and lengths of time

may be required.

B.1 Stamping

B.1.1 Exfoliation

The goal of exfoliation is to produce large, clean, uniform flakes of a material for

assembly in a 2D heterostructure. A small piece of a crystal of the desired material

is taken and placed on tape, before being repeatedly ripped apart and transferred

onto a substrate to later be assembled into a heterostructure by stamping. This

procedure generally involves a few trade offs – exfoliating onto a more adhesive
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substrate will tend to produce larger usable flakes, but will make picking up such

flakes for later stamping harder. The recipe must also be tailored to the materials

that are being worked with, as some materials, like graphene and hBN, are easier to

exfoliate than others (TMDs, such as NbSe2, generally seem to be harder).

Exfoliation of Graphene and hBN

The recipe used for exfoliation of Graphene and hBN largely follows from ref[119]

1. Clean several (typically 4-6) 5mm by 5mm 280nm SiO2/ Si chips, by lightly

sonnicating in DCM for 10 minutes and then plasma ashing for 10 minutes, to

improve surface adhesion.

2. While placing substrates on hotplate around 100˝C, pull out an «6 inch piece

of single sided scotch tape and fold the ends a half inch inwards, to form

handles. Working over clean chemwipes, place a small amount of material on

the tape, and repeatedly sandwich inward and slowly pull apart. When working

with graphene, we believe that it is important to avoid overlapping regions of

graphene when performing this motion, although evidence for the importance

of this is only empirical. When working with hBN, the goal is simply to create

a uniform layer of material.

3. Place hot chips SiO2 side down on the tape and then flip tape and chips onto

a glass slide. Press tape down on to substrate and push out any bubbles on

the chips.

4. Place the glass slide on a 100˝C hot plate for 2 minutes, pushing down on the

chip every 15 to 30 seconds. After 2 minutes, remove from hot plate and allow

to cool down for several minutes, occasionally pushing down on the backside

of the chips
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5. Once the chip has cooled, very slowly pull the tape off the chips. Chips with

hBN can be baked in the tube furnace at 500˝C for 3+ hours to remove tape

residues. Chips can now be searched to optically find clean flakes

Exfoliation of NbSe2

The above recipe was found to not provide much success with NbSe2. Instead, a

recipe was adapted from a post by Jakub Jadwiszczak on research gate

1. Clean chips by sonicating in DCM for 10 minutes. Do not heat chip or plasma

ash

2. Exfoliate NbSe2 like before. NbSe2 tends to form thicker layers and must be

pulled apart many times in order to create thin flakes

3. Place SiO2 chips on tape and glass slide as before. Rather than heating, use

a harder rubber object (typically a Pasteur pipet bulb on the back of a dental

tool) and tap and rub on the back of the SiO2 chips for 10 minutes.

4. Extremely slowly pull the tape off the chips (aim for 5-10 minutes per 5 by 5

mm SiO2 chip) Wash chips in DCM to remove residues before quickly searching

or transferring flakes to the desecater.

B.1.2 PET Stamping

Conventional PC/ PPC stamping is based on a thin film of a sticky polymer draped

over a thicker polymer (typically PDMS) to create a stamp with with which to pickup

individual exfoliated flakes. Such stamps are typically not particularly sticky and

are time consuming to make. In contrast, one can make use a single layer of the

polymer PET to have the same effect. Such stamps are significantly stickier, capable

of picking up things with a very high success rate. The stamp is notably much
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stiffer, which has a few drawbacks associated. The standard procedure is as follows

and is particularly indebted to Viviane Costa, upon whose recipe it is based and who

provided an incredible amount of assistance

1. Create the stamp. The stamp will be a simple sandwich of glass slide, double

sided tape and a square of PET 2-5 cm in side length. The most important

details are that the edges are sharp (perpendicular to the square faces rather

than sloping) and that the PET is pressed firmly into the double sided tape.

If one has precut squares of PET from the machine shop these can be used

directly. Otherwise, a razor blade must be used to create sharp edges – in this

case, use scissors to cut a PET square that is 5 cm by 5 cm from the PET

sheet so that it can be further cut down with a razor. Remove the protective

plastic from one side of the PET square by holding the square with one pair of

tweezers and delicately attacking the edge near the corner with another pair of

sharp metal tweezers. Flip the square over and place the uncovered side down

on a piece of double sided tape on a glass slide. The top side should still have

protective plastic. Use another glass slide to press down hard on the PET,

securing it to the double sided tape. Use the sharp metal tweezers to remove

the top protective plastic. If the edges are not already sharp, use a razor blade

to sharpen them. The stamp can be inspected under a microscope to see how

the edges look.

2. Once the stamp has been made, it must be laminated by taking a clean SiO2

chip and placing it on the stamping station at 60˝C. Make the stamp as level

as possible with chip. Bring the stamp into contact with the chip. Thermal

expansion should allow for a significant fraction of the stamp to make contact

with the chip. If this is not the case, slightly increase the heat to aid in thermal

expansion and then reduce the temp back down. Some small deformities in the
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tape may arise which obscure vision of regions under the stamp – this is normal

and all that is required is that one avoids using such regions of the stamp.

3. Flakes are picked up at 60˝C, making contact for less the one minute, typically

in some part of the corner a fair distance from the edges. The adhesion is

very high and typically the stamp will pick up everything it makes contact

with. This can be used to ones advantage to make stacks even when the Van

der Waals forces don’t allow for direct pick up. For instance, while picking up

NbSe2 with only contact with hBN proved impossible, direct contact of half of

the flake with PET allows for easy pickup.

4. After all flakes of interest have been picked up, bring the stamp and stack into

contact with a silicon chip with a grid (plasma ashed for 10 minutes). Don’t

press too hard, or the stamp will make a mess when it melts. Increase the heat

to 130˝ C and wait for 10 minutes. Very slowly pull the stamp away from the

chip, melting the PET. To clean, boil the chip in DCM for several minutes,

then an hour at 70˝ C on the hot plate, then possibly overnight in DCM.
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