
Microeconomic Models for Managing Shared
Datacenters

by

Qiuyun Llull

Department of Electrical and Computer Engineering
Duke University

Date:
Approved:

Benjamin C. Lee, Supervisor

Jeffrey S. Chase

Alvin R. Lebeck

Gabriel H. Loh

Daniel J. Sorin

Dissertation submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy in the Department of Electrical and Computer Engineering

in the Graduate School of Duke University
2017



Abstract

Microeconomic Models for Managing Shared Datacenters

by

Qiuyun Llull

Department of Electrical and Computer Engineering
Duke University

Date:
Approved:

Benjamin C. Lee, Supervisor

Jeffrey S. Chase

Alvin R. Lebeck

Gabriel H. Loh

Daniel J. Sorin

An abstract of a dissertation submitted in partial fulfillment of the requirements for
the degree of Doctor of Philosophy in the Department of Electrical and Computer

Engineering
in the Graduate School of Duke University

2017



Copyright c© 2017 by Qiuyun Llull
All rights reserved except the rights granted by the

Creative Commons Attribution-Noncommercial Licence

http://creativecommons.org/licenses/by-nc/3.0/us/


Abstract

As demands for users’ applications’ data increase, the world’s computing platforms

are moving towards more capable machines – servers and warehouse-scale datacen-

ters. Diverse users share datacenters for complex computation and compete for

shared resources. In some systems, such as public clouds where users pay for reserved

hardware, management policies pursue performance goals. In contrast, private sys-

tems consist of users who voluntarily combine their resources and subscribe to a

common management policy. These users reserve the right to opt-out from shared

systems if resources are managed poorly. The system management framework needs

to ensure fairness among strategic users, encouraging users to participate while guar-

anteeing individual performance and preserving the system’s performance. Microe-

conomic models are well suited for studying individual behavior and the allocation

of scarce resources. In this thesis, we present three pieces of work on task colocation,

resource allocation and task scheduling problems to demonstrate the effectiveness of

a microeconomic approach.

Colocating applications on shared hardware (i.e., chip-multiprocessors) improves

server utilization but introduces resource contention into the memory subsystem.

In the first work, we design a colocation framework based on cooperative game

theory to manage shared resource contention. Our framework uses a recommendation

system to predict individual applications preferences for colocated tasks. It then uses

these predictions to drive novel colocation mechanisms to guarantee user fairness and
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preserve system performance. Attractive system outcomes encourage strategic users

to participate in the datacenter.

Processor allocations are inefficient when they are based on static reservations

because reservations are often conservative; users rarely know their application’s

needs across time, especially when applications have complex phase behavior. In

the second work, we propose a fast, lightweight performance prediction framework

to help users capture their phase behaviors in parallel applications. We design a

dynamic and distributed core allocation framework so that users can trade resources

for better efficiency based on predicted performance. Our management framework

provides efficient allocations and game-theoretic fairness guarantees.

In the last work, we characterize applications’ sensitivity to non-uniform memory

access (NUMA) in big memory servers. We develop performance and energy mod-

els for communication costs in a blade server. We use this model to perform case

studies on NUMA-aware scheduling policies and task queue management. Our pa-

rameterized models lay the foundation for coordinated design of scheduling policies

and hardware configurations. This method can be further used to design locality-

aware schedulers with microeconomic models, e.g., dynamic pricing strategies for

city parking.
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1

Introduction

As demands for users’ applications’ data increase, the world’s computing platforms

are moving towards more capable machines – servers and warehouse-scale datacen-

ters. Datacenters are large-scale systems equipped with racks of servers. Internet

service companies build datacenters to provide web services including search engines,

social media, video streaming, email, office tools, and remote storage. Public cloud

providers such as Amazon Web Service, Microsoft Azure and Google Cloud rent

bare-metal servers or virtual machines along with management platforms to compa-

nies and individuals. Private datacenters, such as university department clusters or

a company’s internal development clusters, provide powerful computing platforms

for researchers and developers. Many efforts are dedicated to improve datacenter

performance. In hardware, companies like Intel and AMD continuously improve

individual servers’ capabilities with technology advances, for example, by increas-

ing number of CPU cores, putting accelerators on-chip, adding more memory and

building faster storage. In software, system management frameworks deploy resource

management policies to improve server utilization and service quality with a much

shorter production cycle.

1



Resource management policies include resource allocation, task scheduling and

task colocation. Different techniques are used in different system settings. In some

circumstances, users provide resource requirements, such as number of cores, amount

of memory or number of virtual machines. This usually happens in public cloud

services where users pay for a certain time frame for a fixed amount of resource.

In this case, the system manager uses bin packing [38], load balancing [62, 67],

live migration, or sophisticated optimization techniques to improve server utilization

while monitoring VM service quality. In other circumstances, where applications are

submitted to a shared cluster to perform computation, system management software

should leverage performance profiling and prediction techniques [27, 70, 113] to infer

applications’ resource requirements and make resource management decisions based

on these performance implications [28, 64].

Predicting datacenter application resource requirements for efficient system man-

agement is challenging. First, the prediction has to be fast. Applications are nu-

merous and diverse. Simple heuristics can be effective if applications are similar.

Unfortunately, even applications within the same type can behave significantly dif-

ferently. Batch jobs may be compute intensive, memory intensive or I/O intensive;

graph applications may have skewed data sets that change communication patterns.

Second, performance prediction has to consider the effects on hardware. For exam-

ple, colocated applications on the same processor might cause resource contention in

the memory subsystem, which impacts performance; servers with large memory have

non-uniform memory access that may cause slow response time on critical tasks and

may affect the overall application performance. Finally, performance models have

to be simple. Finding the optimal solution for resource allocation and scheduling

problems is generally combinatorial. Greedy and heuristic strategies can help reduce

the problem dimension but require performance models as input. Therefore, keeping

a simple, light-weighted model is critical to keep the solution space small and to

2



make fast management decisions.

System performance is not the only concern for system managers. Conventional

wisdom assumes that users must share and policies need only optimize for perfor-

mance. Such performance goals are suitable for public systems that deliver hardware

for which users have paid. In contrast, private systems consist of users who voluntar-

ily combine their resources and subscribe to a common management policy. These

users also reserve the right to withdraw from the system if resources are managed

poorly. Therefore, privately shared systems must manage resources fairly to en-

courage participation and guard against strategic behavior [120]. Real-world users

are selfish and rational [9, 24], an observation that has motivated numerous game-

theoretic perspectives on systems management [16, 32, 36, 85, 119]. Neglecting users’

preferences or fairness induces strategic behavior. Users may circumvent policies or

break away from shared clusters, redeploying hardware to form smaller, separate sys-

tems [36, 82]. Guaranteeing fairness for shared users in system management policies

can address these challenges, ensuring system integrity and cluster efficiency.

Microeconomics models are the best practice for studying individual behavior in

making decisions regarding the allocation of scarce resources [101]. Market theory

is a common microeconomic theory that allocates scarce resources to shared users

by establishing a competitive market price. Game theory is another major method

in modeling competing behaviors of strategic users; it is widely used in auctions,

fair division, social network formation, voting systems, etc. These well-established

microeconomic theories provide the foundation for designing system management

policies that target shared datacenters with strategic users. In this dissertation,

we will use three pieces of work to demonstrate the work flow and effectiveness of

this approach. The focus of this thesis is not about exploring various perspectives of

microeconomic theories or inventing new theories. Rather, it will focus on formalizing

realistic system settings for resource management problems in shared datacenters,

3



designing concise and accurate performance models to drive management policies,

and adapting microeconomic theories to design efficient and fair system management

frameworks.

1.1 Organization and Overview of the Dissertation

This thesis aims to improve datacenter applications’ performance under the con-

straint of guaranteeing user fairness. We present three pieces of work that investigate

different system management policies, from task colocation to resource allocation to

task scheduling, and coordinate the policy design with different performance mod-

eling techniques, from fitting mathematical utility functions to training machine

learning models to deploying cross-level simulators.

This thesis is an interdisciplinary study of computer architecture and microeco-

nomics. Compared to prior works in system management and policy design, the key

innovation here is exploring theories in the field of microeconomics for management

mechanisms that can guarantee fairness while preserving good system performance

and adapting these theories to current datacenter resource management problems.

At the same time, we show designs for performance models that consider both the

underlying hardware and application behavior to drive management mechanisms.

This combined approach can better utilize hardware, improve system efficiency and

provide attractive outcomes for users in shared systems.

1.1.1 Cooperative Games to Manage Colocation Contention

Datacenter system managers colocate tasks to improve server utilization and energy-

proportionality, but often introduce resource contention for shared hardware. In the

first work, we discover that traditional performance-centric colocation mechanisms

can reduce resource contention but often lead to strategic behavior for shared users

in private datacenters. Such strategic behavior harms system stability and cluster
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integrity.

Chapter 2 presents the first study on fair task colocation — Cooper, a coloca-

tion framework that uses cooperative game theory [76, 80] to formalize interactions

between strategic users and to enable fair task colocation. Cooper builds user prefer-

ence prediction models with collaborative filtering techniques [94] and designs three

matching mechanisms to finds stable matches with predicted preferences. Its colo-

cations satisfy preferences and encourage strategic users to participate in shared

systems. We find that given Cooper’s colocations, users’ performance penalties are

strongly correlated to their contributions to contention, which is fair according to

cooperative game theory. Finally, its colocations preserve system performance; we

observe performance within 5% of prior heuristics. (Chapter 2)

1.1.2 Market Mechanism to Allocate Cores for Parallel Applications

In the second work, we consider another datacenter resource management component

— resource allocation. Instead of guaranteeing a single application’s performance

and fairness, we consider scenarios in which each user holds multiple applications

and the total performance of all of her applications is the goal. Users share machines

in a federated datacenter; each user has an endowment of resources. Users can trade

CPU resources from one application to supply another application that will benefit

more at the current time.

In Chapter 3, we present a performance prediction framework for users’ par-

allel applications with large data sets. We use Amdahl’s Law [8] and Karp-Flatt

[43] to estimate each application’s utility from any core allocation. We validate

our performance model with real system measurements of benchmarks from Apache

Spark and predict execution time for varied core counts and dataset sizes with an

average of 15% error. We propose a Fisher Market that leverages our lightweight

performance predictor along with a distributed bidding mechanism to find a market
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equilibrium [121]. We discover that resulting core allocations outperform state-of-art

performance-centric mechanisms with collaborative filtering predictions [94]. More

importantly, they provide strong game-theoretical guarantees on envy-freeness, shar-

ing incentives and Pareto-efficiency. (Chapter 3)

1.1.3 Performance and Energy Models for Blade Servers

The previous two works demonstrate the coordinated approach for designing perfor-

mance models and system management policies In some scenarios, like task schedul-

ing with multiple queues, closed form utility functions can only model simple queue

structures (i.e., M/M/1 or M/M/K queues). Complex hardware poses challenges in

building fast and accurate performance models for task scheduling. In this work,

we investigate datacenter big memory servers — blade servers — which disaggregate

memory across multiple blades to provide dense memory capacity for big data appli-

cations [60, 61]. Larger memory capacities cause deeper non-uniform memory access

(NUMA), which complicates NUMA-aware scheduling policy design [18, 26].

In Chapter 4, we derive technology and architectural models to estimate commu-

nication delay and energy for blade servers. Additionally, we propose a multi-stage

simulation method with detailed architecture and discrete-event simulators to es-

timate application performance and communication channel energy costs. These

models permit new case studies in delay scheduling to mitigate NUMA and improve

the energy-efficiency of data movement. Preliminary results from our case study

show that these models can help researchers coordinate NUMA mitigation and task

queueing dynamics. We find that judiciously permitting NUMA reduces queueing

time, which benefits throughput, latency and energy-efficiency for datacenter work-

loads like Apache Spark[118]. These findings highlight blade servers’ strengths and

opportunities when building distributed shared memory machines for data analyt-

ics. Finally, our models lay the foundation for estimating communication costs within
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memory systems with flexible interconnection technology and topology. Future stud-

ies in task scheduling policy design can benefit from these models to optimize for

system goals, like performance, fairness, energy-efficiency. (Chapter 4)

1.1.4 Key Contributions of the Thesis

In summary, we make the following contributions in this thesis.

• We define fair task colocation as fair attribution of costs, satisfied user pref-

erences, and stable colocations. We propose the first study on fair colocation

with cooperative games and demonstrate that our task colocation framework

can provide these system desiderata while preserving system performance. We

prototype the task colocation framework in a local cluster with the following

system components: system profiler, preference predictor, colocation policies,

action recommender and job dispatcher.

• We propose a performance model and a lightweight prediction framework based

on Amdahl’s Law and Karp-Flatt metric to model parallel applications’ per-

formance. We validate the performance model by real system measurements

of big data applications. We propose a Fisher Market solution to the multi-

user resource allocation problem and a distributed bidding mechanism that

leverages the performance models to find a market equilibrium. We show that

the resource allocation mechanism can provide game-theoretic desiderata while

preserving system performance.

• We provide a detailed model of communication costs for a modern big memory

server in latency, power, and energy. We characterize applications’ sensitivity

to non-uniform memory access with architectural models, and perform a co-

ordinated study of NUMA-aware scheduling policy design and task queueing

dynamics with system simulation.
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2

Task Colocation with Cooperative Games

Modern datacenters, with their increasingly parallel computation and increasingly

capable machines, colocate small tasks on big servers. Colocating multiple tasks on

each server increases efficiency and energy proportionality [15] but introduces con-

tention for shared resources such as last-level cache capacity and memory bandwidth

[96, 99, 122].

In a privately shared system, where strategic users have options to bypass the

management policy or opt out from sharing, colocation contention can cause strate-

gic behavior and harm shared system integrity. For example, in a computer science

department, three professors (A, B, C) are sharing a cluster equally and working to-

wards a conference deadline. Professor A’s applications are mostly memory-intensive.

Professor B and C’s applications are similar light-weighted applications. If the clus-

ter manager colocates professor A and B’s applications together, professor B’s appli-

cations will suffer great performance losses. Therefore, strategic user (professor) B

would migrate his applications to colocate with professor C’s application to gain per-

formance. Professor B and C have no incentive to colocate with professor A. If many

strategic users are dissatisfied with their colocation assignment and migrate their
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applications, the system suffers from non-deterministic performance. If many users

opt out and form small shared systems to improve their performance, the system

loses its integrity.

One of the many challenges to manage shared systems is ensuring fairness among

strategic users and incentivize them to participate in such shared environment. Prior

work focuses on colocation policies that improves system performance. It manages

colocation performance by controlling contention, which depends on the tasks colo-

cated. Because finding the best colocations requires combinatorial optimization,

practical heuristics often colocate tasks if performance penalties are tolerable [27, 70]

or use architectural insights to pair applications with complementary resource de-

mands [96, 99].

Conventional wisdom assumes that users must colocate and policies need only

mitigate contention. Such performance goals are suitable for public systems that

deliver hardware for which users have paid. In contrast, private systems consist

of users who voluntarily combine their resources and subscribe to a common man-

agement policy. These users also reserve the right to withdraw from the system if

resources are managed poorly.

Therefore, privately shared systems must manage resources fairly to encourage

participation and guard against strategic behavior. Real-world users are selfish and

rational, an observation that has motivated numerous game-theoretic perspectives

on systems management [16, 32, 36, 85, 119].

We pursue our system desiderata with cooperative games. Game theory is a

framework for analyzing outcomes from strategic behavior. Cooperative games de-

scribe how agents’ interactions dictate shared outcomes. Such games are well suited

for colocation as interference between tasks dictates performance penalties. Cooper-

ative games build a foundation for fair colocation, which encourages strategic users

to share. The following summarizes our contributions:
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• Fair Colocation. We present the case for three desiderata from colocation:

(i) fair attribution such that more contentious users incur larger penalties, (ii)

satisfied preferences such that more users colocate with preferred co-runners,

(iii) stable colocations such that fewer users break away from the shared system.

• Cooperative Games. We formalize the colocation game in which users share

hardware and contention causes performance losses. When assigning coloca-

tions, the game accommodates users’ preferences for co-runners. The game’s

equilibrium produces fair and stable systems.

• Colocation Framework. We present Cooper, a cooperative game that pre-

dicts preferences and colocates tasks. It adapts stable matching algorithms to

the colocation problem. It then assesses colocations and recommends strategic

actions for users.

• Multiprocessor Evaluation. We evaluate Spark and PARSEC jobs that

share chip multiprocessors. We show that Cooper’s colocations are fair as jobs’

performance losses increase with their demands for memory. Colocations also

satisfy users’ preferences, which encourages sharing. Cooper performs within

5% of prior heuristics.

2.1 Case for Fair Colocation

For the first time, we present the case for fair colocation. In economics, fairness

is the equal treatment of equals and the unequal treatment of unequals in propor-

tion to their relevant differences [11, 76]. We say colocations are fair when similar

tasks suffer similar performance losses. We argue that, when tasks are dissimilar,

the relevant differentiator is contentiousness. Thus, users’ performance losses from

colocation should increase with their contributions to contention.
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We approach fair colocation from a game-theoretic perspective, which formally

describes strategic situations, because systems are often shared by strategic users.

Cooperative game theory prescribes the fair division of costs that arise from inter-

actions between strategic agents [80]. Solutions to these games reconcile agents’

divergent preferences to produce stable outcomes [35, 51]. We use such theories

to design colocation policies and build frameworks to manage datacater colocation

contention.

2.1.1 Desirable System Desiderata

We manage datacenters that colocate strategic users and their tasks on chip mul-

tiprocessors. We define strategic users as those who selfishly pursue performance

and opt out (or manipulate) management policies when outcomes fail to satisfy their

preferences; define contentiousness as user demand for shared resources such as mem-

ory bandwidth; and define penalty as user disutility, such as throughput loss from

contention. Cooperative game theory guides us to colocation algorithms that satisfy

three system desiderata.

• Fair Cost Attribution. More contentious users incur larger penalties from

colocation.

• Satisfied Preferences. More users colocate with their preferred co-runners.

• Stable Colocations. No subset of users benefits by breaking away to share

separate subsystem.

2.1.2 Fair Attribution

We argue that a colocation’s performance penalties are attributed fairly when more

contentious users incur larger penalties. In practice, such fair attribution encourages

colocation. Suppose Alice’s job is contentious and Bob’s is not. If Bob contributes
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Figure 2.1: Unfair colocations show no link between contentiousness and penalties.
We colocate 1000 jobs drawn randomly from an application pool. Pairs of jobs share
multiprocessor cache and memory bandwidth. Colocation penalties are averaged
over those that include a particular job type (e.g., bodytrack).

little interference but suffers large performance losses when colocated with Alice, he

has little incentive to share. Bob would rather form his own private cluster than

contribute resources to the shared system. As Bob-like users leave the system, Alice-

like users dominate and exacerbate contention.

Figure 2.1 highlights unfairness in existing policies. A greedy policy assigns jobs

to servers that perform well given prior assignments. A complementary policy pairs

jobs with harmonious demands such as compute and memory intensive jobs. Neither

policy links contentiousness to penalty (memory intensity and performance loss, re-

spectively). Correlation is the most contentious but penalized no less than Canneal

and Dedup under greedy pairing. Dedup is one of the least contentious applications

but penalized more than most applications under complementary pairing. These

outcomes violate fairness in cost attribution.

Our practical notion of fairness is justified by the notion of Shapley value in

cooperative game theory [92]. Shapley determines each agent’s fair share of a common

outcome based on her contributions. Equation 2.1 shows the Shapley calculation.

When applied to colocation, φi is agent i’s fair share of penalty p, which depends on
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Coalition (S) Penalty (p)

{A} 0

{B} 0

{C} 0

{A, B} 3

{A, C} 4

{B, C} 5

{A, B, C} 6

Permutation MA MB MC

{A, B, C} 0 3 3

{A, C, B} 0 2 4

{B, A, C} 3 0 3

{B, C, A} 1 0 5

{C, A, B} 4 2 0

{C, B, A} 1 5 0

φi “ ErMis 1.5 2.0 2.5

Figure 2.2: Shapley permutes users, calculates their contributions to penalties M
and expected values φ over permutations.

the agents in colocation S.

φippq “
ÿ

SĂN

ps´ 1q!pn´ sq!

n!
rppSq ´ ppS ´ iqs (2.1)

Agent i’s marginal contribution to colocation penalties is ppSq ´ ppS ´ iq. Shap-

ley states that her fair share φi of penalty p is her marginal contribution to those

penalties, averaged over the combinations that colocations could form.

Shapley assigns penalties φ that correlate with interference I when system penalty

is p “
ř

iPS Ii. System penalty depends on coalition of three users (A,B,C). Shapley

permutes users, calculates each user’s marginal contribution to penalties M, and

calculates expected values φ over permutations.

We apply Shapley to motivate larger colocation penalties for more contentious

users. Consider a simple model of colocation and its contention penalties. Users A,

B, and C perform normally when alone but suffer penalties when colocated. Each

user contributes interference tIA “ 1, IB “ 2, IC “ 3u. Suppose system-wide penalty

is the sum of each user’s contribution to interference such that p “
ř

Ii. Shapley

determines users’ marginal contributions to penalties, averaged over permutations of

users in the coalition – see Equation 2.1.

To understand Shapley, suppose n agents arrive sequentially and n! orderings are

equally likely. Agent i arrives after agents in coalition S ´ i and is the s-th agent in

S with probability ps ´ 1q!pn ´ sq!{n!. Agent i’s arrival increases coalition penalty
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by ppSq ´ ppS ´ iq.

Figure 2.2 enumerates penalties and orderings for our example. Consider ordering

{A, C, B}.

• A’s marginal penalty is MA “ vpAq ´ vpHq “ 0;

• C’s marginal penalty is MC “ vpACq ´ vpAq “ 4;

• B’s marginal penalty is MB “ vpABCq ´ vpACq “ 2.

Each user’s Shapley value is her average marginal contribution to penalties across

permutations. From Shapley, a fair assignment of penalties is φ “ t1.5, 2.0, 2.5u,

which correlates with users’ contributions to interference I “ t1, 2, 3u.

Shapley is an analytical framework, which is not meant for direct application

because it unrealistically assumes performance losses can be transferred arbitrarily

between colocated agents. Nonetheless, Shapley provides the theoretical foundation

for a realistic fairness goal—larger losses for more contentious jobs. In practice,

colocation policies pursue this goal by assigning co-runners that dictate performance

losses.

2.1.3 Satisfied Preferences and Stability

Stability leads to an equilibrium state which satisfy user preferences and strengthen

system integrity. Figure 2.3 illustrates instability from existing policies. Suppose four

users share two processors and suffer from contention in the memory subsystem.

A colocation policy minimizes system-wide penalties with colocations {AD, BC}.

However, these colocations do not satisfy preferences – pairing A with D even though

A prefers D least. In addition, they are unstable as A and B prefer each other

over their co-runners. If A and B break away to form a separate subsystem to

improve their utility, the datacenter fragments and efficiency suffers. In contrast,
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Figure 2.3: Users’ penalties determine preferences for co-runners. Pursuing perfor-
mance minimizes system penalties. Pursuing stability satisfies user preferences. The
four users in this dataset are: (A) x264, (B) fluidanimate, (C) decision-tree,
(D) regression.

stable colocations {AB, CD} satisfy three of four users’ preferences – A, B and D’s.

Moreover, no pair wants to break away to form their own subsystem.

Figure 2.4 indicates that stability enhances fairness whereas the pursuit of per-

formance does not. When optimizing system-wide performance, user C sees the

smallest performance penalty although it is most memory-intensive (1%, 21 GB/s).

Users A and B see the largest penalties although they are least contentious (4-9%,

4-5 GB/s). In comparison, stability-centric policies more closely align penalties with

memory intensity. The penalty for the most contentious user rises while those for

less contentious users fall. Stability, although imperfect, furthers the fair attribution

of costs in shared systems.

2.2 The Colocation Game

We present a game-theoretic framework that colocates software on shared hardware

in a multi-user setting. Our framework is an alternative to heuristics that myopically

maximize performance. The colocation game balances the pursuit of performance

with the provision of fairness, which encourages strategic users to share hardware.
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Figure 2.4: Stability enhances fairness. Bars show user penalty based on through-
put loss under performance- and stability-centric colocation policies. Dots show user
contentiousness, based on bandwidth demand when alone. Data for four users: (A)
x264, (B) fluidanimate, (C) decision-tree, (D) regression.

2.2.1 System Setting

We consider a shared cluster with homogeneous processors, each with multiple cores,

that serve batch and offline computation. The colocation game batches and assigns

arriving jobs to available processors periodically. The length of the scheduling pe-

riod is comparable to job completion times (i.e., minutes rather than seconds or

milliseconds). If the system is heavily loaded, jobs queue for scheduling.

Figure 2.5 illustrates an architecture for the colocation game, which defines ab-

straction layers – agents and coordinator – between users and machines. Agents act

on users’ behalf within the game, shielding users from complex management mecha-

nisms. The coordinator communicates system information to agents and implements

management mechanisms.

Agents play three roles when interfacing with the coordinator. First, agents query

the coordinator’s profiler to obtain job performance under varied colocations. Second,
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Figure 2.5: Agents act on users’ behalf, playing the colocation game and interfac-
ing with the system coordinator. The agents and the coordinator shield hardware
complexity from human users.

they use profiles to predict preferences for co-runners and influence the coordinator’s

colocation assignments. Third, agents assess assigned colocations and recommend

strategic actions to users. An agent recommends participation when assignments

satisfy preferences. Otherwise, an agent recommends better colocations with others.

2.2.2 Game Formulation

We formulate colocation as a cooperative game in which users form coalitions to

share hardware and divide penalties from resource contetion. We define the game’s

components, introduce actions, and present solution concepts.

Agents, Disutility, and Preferences. An agent represents a user and her

job. In a given epoch, the colocation game assigns 2N agents to N chip multipro-

cessors. Colocated agents comprise a coalition who contribute to shared contention

and performance penalties. Each agent defines disutility d P r0, 1s.

d “ 1´
Throughput colocation

Throughput stand-alone

Disutility quantifies a colocation’s performance penalty. For example, d “ 0.3
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when a job’s colocated performance is 0.7ˆ that of its stand-alone performance, all

else being equal (e.g., allocation of processor cores). Disutility dictates an agent’s

preferences for co-runners. Let ąi denote agent i’s preferences. If i’s disutility with

x is lower than its disutility with y, then x ąi y. In other words, i performs better

with x than with y.

Strategic Action. The datacenter operator would like all agents to share one

monolithically managed cluster to enhance efficiency. However, subsets of agents

could determine that a colocation policy provides better individual outcomes when

applied to separately managed clusters. Agents would then create subsystems shared

by mutually preferred co-runners. Breaking away is the act of finding a subset of

agents who form new coalitions on separately shared subsystems to improve their

performance.

Blocking Coalitions and Equilibria. Agents who break away to pursue bet-

ter outcomes together comprise a blocking coalition. Let C denote a datacenter’s

colocations and Cpiq denote i’s co-runner, assuming two users share a chip multipro-

cessor. Agents i and j are blocking if they prefer each other over their co-runners:

j ąi Cpiq and i ąj Cpjq. Colocations with fewer blocking pairs are more stable.

Stability is a system outcome that minimizes the number of blocking pairs, pro-

ducing equilibria in which all agents participate in the shared system. In equilibrium,

no subset of agents can better satisfy preferences and improve performance by deviat-

ing from assigned colocations. In contrast, neglecting preferences produces blocking

pairs and harms stability.

2.2.3 Game Solutions

Stable matching is a natural fit for colocation. A matching process builds pairwise

coalitions based on mutual consent from independent, strategic agents. Matches are

stable when no pair of agents prefers each other over their existing partners. We draw
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Algorithm 1 Stable Marriage for Colocation Game
1: sets M, W Ð 2N tasks such that |M| “ |W| “ N
2: lists P[i] Ð ordered preferences @i P M, W
3: single(i) Ð True @i P M, W
4: while Dsingle(m) P M, P[m]‰ H do
5: w Ð P[m]
6: if single(w) then
7: pair(m, w)
8: if (m’, w) paired, but m ąw m’ then
9: pair(m, w)

10: single(m’) Ð True
11: P[m] Ð P[m].next

inspiration from stable algorithms for marriage [40] and roommate assignment [51],

adapting them to the colocation game.

Stable Marriages. The stable marriage algorithm solves the colocation problem

with two sets of agents. Agents in one set propose colocations while those in the other

accept or reject them. Agents act strategically to pursue their preferred co-runners.

Algorithm 1 sketches the procedure for finding stable marriages between two sets

of jobs, which are labeled M and W . Job m proposes to w according to its ordered

preferences. Job w accepts when it prefers m over its current co-runner m’. If w

rejects, m proposes to its next preferred co-runner. The procedure iterates until

all jobs are matched. In each round, all jobs in M propose to their top-ranked co-

runners simultaneously. Each job in W accepts its best proposal and rejects the

rest in parallel. Those in M that are not accepted proceed to the next round. The

procedure continues until all jobs are matched.

The procedure provides stable colocations in which no two agents from opposite

sets can break away and improve their utility [35]. Every job in M has one successful

proposal because a job in M that had all prior proposals rejected is accepted by the

least desirable job in W . Stability arises from accepted proposals. Suppose m prefers

w1 over its co-runner w. Because m and w1 are not colocated, m must have proposed

to w1 only to have been rejected because w1 preferred m1. Matches are stable because

m1 ąw1 m even though w1 ąm w.
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Preferences

m1 : c1 ą c2 ą c3
m2 : c3 ą c1 ą c2
m3 : c1 ą c2 ą c3
c1 : m2 ą m3 ą m1

c2 : m3 ą m1 ą m2

c3 : m2 ą m1 ą m3

Round Propose Accept Reject

1 m1 Ñ c1 c1 ´m3 m1

m2 Ñ c3 c3 ´m2

m3 Ñ c1 c2´

2 m1 Ñ c2 c2 ´m1

Figure 2.6: Stable marriage with compute- and memory-intensive jobs.

Adapting Partitions and Proposals. Stable marriage matches jobs from two

disjoint sets, requiring a job partitioning strategy. Some strategies arise from the

system. High- and low-priority jobs should be partitioned, as should compute- and

memory-intensive jobs. When domain expertise indicates jobs within a set should

not colocate with each other, marriage is a solution that precludes intra-set matches.

The algorithm can also partition jobs randomly. In large systems with diverse

jobs, random partitions uniformly distribute jobs of all types across two sets. Stable

marriages are more likely when each set holds diverse jobs, not just memory-intensive

ones. Diverse preferences produce diverse proposals and reduce the likelihood of

common, desirable co-runners. Random partitions are as effective as sophisticated

ones for satisfying preferences.

We implement two partitioning mechanisms — partition based on applications’

memory intensity and partition randomly. Partitioning by memory intensity reflects

the source of hardware contention and tends to favor performance. Partitioning

randomly neglects inherent job characteristics and tends to favor fairness.

Agents that propose perform nearly optimally and better than those that receive

proposals [52]. Proposers choose co-runners in order of their preferences where as

those that receive proposals have no influence on their suitors. Agents accept or

reject without knowing which job might propose next. In practice, we find that

proposers’ advantages are small, especially for randomly partitioned jobs.

Stable Marriage Example. Figure 2.6 presents an example of stable marriage.
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First, the system partitions memory- and compute-intensive jobs (m and c), based on

memory bandwidth demands. Second, agents profile and predict preferences, ranking

candidate co-runners in the opposite set. Finally, jobs in set m propose to those in

set c. Specifically, m1 and m3 both propose to c1. Based on its preferences, c1 accepts

m3 and rejects m1. Simultaneously, m2 proposes to c3, which accepts as it lacks a

better proposal. Rejected, m1 proposes to c2 in the next round. Lacking a proposal,

c2 accepts and the algorithm terminates with colocation {m1c2, m2c3, m3c1}.

Stable Roommates. Roommate assignment provides a natural alternative to

marriage when an agent may match with any other. Irving provides a general-

ized matching algorithm [51]. First, each agent proposes sequentially to preferred

roommates while simultaneously receiving proposals from others. An agent rejects a

proposal if she already holds a better one and accepts otherwise. If any agents are

rejected by everyone, the algorithm terminates and states that no perfectly stable

solution exists. If all agents hold successful proposals, each agent reduces her pref-

erence list by deleting roommates that are less desirable than proposals they hold.

The algorithm further reduces preference lists by eliminating preference cycles (e.g.,

B ąA C, C ąB A, A ąC B). The algorithm terminates when no cycle exists and

produces stable roommate assignments.

Adapting Stable Roommate. Stable roommate assignment does not always

produce a solution. We extend the algorithm with heuristics when no stable solu-

tion exists. When Irving’s algorithm terminates with no solution, we greedily pair

unmatched agents to minimize their pair disutilities. In practice, stable roommate

assignments rarely exist for large agent populations. For such settings, our adapted

algorithm significantly reduces the number of blocking pairs.

Limitations. In theory, stable-matching problems with arbitrary group size

can not be solved in polynomial time. Only in the instance of a pair-wise stable

roommate problem, does a polynomial algorithm exist [51]. However, if no stable
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matching exists, minimizing the number of blocking pairs is NP-hard and hard to

approximate [6]. One approximation relaxes stability, defining an α-stable system

in which agents form blocking pairs only when gains exceed a factor of α [12]. α-

stability is particularly relevant when agents set thresholds that reflect the costs of

breaking away. For example, colocated jobs deploy separately managed subsystems

only to avoid large performance penalties.

In practice, finding a stable matching or α´stable matching for an arbitrary group

size is hard and may not be necessary. When colocating more than two data intensive

applications on the same processor, the resource competition caused in the memory

subsystem (share last level cache and memory bandwidth) is large and causes high

performance penalties. This system scenario happens rarely.

In sum, stable matching solves the colocation game efficiently. The solution satis-

fies preferences and preempts strategic behavior. In theory, marriage and roommate

algorithms find pairwise matches in polynomial time. In practice, overheads are

modest in our implementation.

2.3 Cooper Colocation Framework Design

We design and implement Cooper, a cooperative game that provides the manage-

ment desiderata, fair colocations for strategic users, satisfies users’ preferences and

stability. It enhances shared user fairness, safeguard the integrity and efficiency of

the shared system.

Figure 2.7 illustrates Cooper’s architecture and components. Decentralized agents

act on behalf of users to pursue preferred colocations. Each agent instantiates three

modules. The query interface requests profiles for sparsely observed colocations. The

preference predictor estimates performance for unobserved colocations. The action

recommender assesses assigned co-runners and suggests user action.

To support agents, Cooper implements a centralized coordinator with three mod-
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 Agents

Launch

Query Interface

Figure 2.7: Cooper Colocation Framework

ules. The system profiler responds to queries with a database of performance mea-

surements. Colocation policies assign co-runners based on agents’ preferences. The

job dispatcher assigns computation to machines when agents choose to participate.

Cooper’s design emphasizes intelligent agents that separate strategic users from

the shared system. From the user’s perspective, the system delivers fairness and

stability to encourage participation. Users rely on agents to assess colocations and

recommend strategic action. From the system’s perspective, agents pursue preferred

colocations independently.

2.3.1 Preference Predictor

The predictor receives performance profiles and estimates preferences for co-runners.

It uses sparsely profiled colocations to infer a preference list that ranks co-runners by
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the agent’s expected performance. The game’s matching algorithms use preferences

to find stable colocations.

In principle, users could report preferences directly to the system coordinator;

however, they are poorly equipped to assess preferences for each co-runner. Because

self-reported preferences can be burdensome, inaccurate, and non-truthful, Cooper

relies on agents’ predictors.

Collaborative Filtering. Agents employ light-weight predictors to estimate

preferences. Determining preferences for each co-runner via direct measurement

is intractable. Fortunately, predicting agents’ preferences from sparse performance

profiles is analogous to predicting consumers’ preferences from sparse product ratings.

Predictors treat jobs as consumers, co-runners as products, and profiles as ratings.

Collaborative filtering trains predictors, observing that consumers who rate many

items similarly share preferences for other items. Cooper implements item-based

collaborative filtering, predicting that a co-runner affects similar agents similarly.

When a co-runner degrades one task’s performance, it will similarly degrade an-

other’s. Cooper implements IBCF because it emphasizes similarity in contention’s

sources and effects. If x1 ąy1 x2 and x3 is similar to x2, IBCF infers that x1 ąy1 x3.

Implementation. We preferences using an R library – recommenderlab [74].

For n agents, a sparse nˆn matrix M [x, y] reports x’s performance with co-runner y.

In each iteration, the recommender predicts the unknown ratings in the matrix while

minimizing error for known values. Iterations terminate when all matrix elements

are filled. In practice, this process requires one to three iterations and completes

within 100ms for 1000 agents.

Sparsity affects accuracy. Cooper trains the recommender with 25% sparsity.

With 20 unique jobs, Cooper uses 100 (20ˆ20ˆ0.25) sampled colocations to predict

the dense matrix. Our experiments indicate that error is unacceptably high with 20%

of profiles sampled, falls quickly with 25%, and falls slowly beyond 30%.
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Predictor Design Discussion. This part discusses alternative approaches to

implement the preference predictor. Preferences measure relative performance, per-

mitting more accurate inference from profiles. Relative measures can be transitive.

When B ąA C and C ąA D, then B ąA D. Moreover, relative measures can be

predicted even when platforms change. If B ąA C on one machine, this preference

likely holds on another.

Classifying n jobs into t ă n types shrinks matrix dimensions and reduces training

overheads [27] at the expense of less-precise preference predictions because individual

jobs cluster into generic types. We apply collaborative filtering directly, using profiles

for only a fraction of possible colocations to control overheads.

Content-based filtering, an alternative approach, identifies attributes that af-

fect consumer ratings and recommends items that rank highly for those attributes.

Agents may prefer co-runners with small cache footprints or bandwidth demands.

Unfortunately architects must identify the most relevant attributes, which can be

difficult and complicated by software phases.

Other heuristics might predict colocation preferences. Conventional wisdom

states that memory-intensive jobs prefer compute-intensive co-runners, or jobs pre-

fer co-runners with smaller working sets. In practice, we find that rules of thumb

based on high-level attributes and complementary resource demands do not deliver

game-theoretic desiderata.

2.3.2 Action Recommender

The coordinator receives predicted preferences from agents and assigns co-runners.

Agents assess assignments and recommend strategic action – participate or break

away – for their users. If breaking away is recommended, the agent identifies sep-

arately managed colocations (i.e., blocking pairs) and their expected performance

advantages.
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Dissatisfied agents seek opportunities to break away. The agent assesses its as-

signed co-runner by exchanging messages with others. It sends messages to agents

ahead of its assigned co-runner in its preference list. Conversely, it receives such

messages from other agents. Suppose agent X has preferences A ąX B ąX D ąX E

and is assigned co-runner D. X sends messages to A and B. If X receives messages

from A or B, it knows X ąA CpAq or X ąB CpBq, meaning that A and B both

prefer X than their assigned co-runners. Agents A and B would recommend breaking

away and forming a separate system.

Implementation. We implement the action recommender as a Java application

within each agent. Agents communicate via network and files. Agents return, to

human users, lists of blocking pairs with suggestions to participate or break away. In

our implementation, agents participate and invoke the job dispatcher by default. We

then assess fairness by counting blocking pairs created by a colocation policy. Users

in a blocking pair would break away given agents’ suggestions and her performance

goals.

2.3.3 Colocation Policies

The coordinator receives preferences and returns colocations. We implement match-

ing algorithms to solve the colocation game. We compare game-theoretic solutions

to two baselines that reflect conventional wisdom.

• Stable Marriage Partition (SMP) partitions tasks by resource demands

and pairs tasks with stable marriage. Resource-intensive set proposes.

• Stable Marriage Random (SMR) partitions tasks randomly and pairs tasks

with stable marriage. Randomly selected set proposes.

• Stable Roommate (SR) pairs tasks with stable roommates. When no stable

solution exists, SR employs GR to pair tasks rejected by all others.
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• Greedy (GR) assigns each task, sequentially, to the processor that minimizes

contention given prior assignments.

• Complementary (CO) partitions tasks by resource demands and pairs tasks

with complementary demands.

Threshold schemes colocate jobs when penalties are less than 10%, for example, and

add a new machine otherwise [70]. When no machine is held in reserve and ready to

supply capacity, GR performs at least as well as a threshold. GR minimizes penalties

whereas a threshold permits penalties up to specified tolerance.

Implementation. We implement colocation algorithms in Java and output co-

runner assignments to files, which are sent to agents. For n agents, stable match-

ing employs Opn2q algorithms and the complementary mechanism employs an Opnq

heuristic. When necessary, jobs are sorted and partitioned by resource demands with

Opnlognq algorithms. Measured overheads are modest. To colocate 1000 agents, sta-

ble matching requires 1 to 5 seconds. In comparison, job completion times range

from 10 to 15 minutes for Spark and from 2 to 5 minutes for PARSEC.

2.3.4 Other Components

System Profiler. Modern systems can profile any job on any machine. Google

samples servers, profiles continuously, and builds databases that support SQL-like

queries [90]. Queries with job IDs, machine IDs, and timestamps retrieve performance

for varied colocations. We construct a database for 20 open-source jobs.

Offline, the profiler measures performance for standalone jobs and sampled colo-

cations. We measure Spark task throughput, modifying the engine (v1.6.0) to log

task, stage, and job completion. We measure PARSEC runtimes with perf stat.

For microarchitectural profiles (e.g., memory bandwidth), we read MSR registers

once per second with Intel’s Performance Counter Monitor 2.8.
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Online, the profiler responds to queries with a sparse matrix of performance

penalties for sampled co-runners. Sampling is required for tractability, especially at

datacenter scale. Preference predictors accommodate sparsity, requiring profiles for

only a small fraction of possible colocations.

Job Dispatcher. The job dispatcher sends computation to machines. After

the coordinator assign co-runners and agents choose to participate, the dispatcher

sends jobs’ binaries and data to available machines. Each machine runs a daemon

that checks periodically for work. This simple implementation extends naturally to

managers such as Spark, Yarn, or Mesos [44, 102, 118].

2.4 Experimental Methodology

Workloads. Table 3.2 summarizes evaluation benchmarks from Spark [117] and

PARSEC 2.0 [17], which are representative of batch computation and data analyt-

ics. Methods for multiprogrammed benchmarking vary [54]. We repeat the shorter

workload until the longer one completes. We do not consider latency-sensitive appli-

cations, such as search, as their stringent targets for service quality often preclude

colocation [27, 64].

Figure 2.8 presents performance losses. Entry [x, y] shows x’s penalty when colo-

cated with y. For example, penalty is 0.3 when colocated performance is 0.7ˆ stan-

dalone performance.

Agent Populations. We evaluate the colocation game with large, diverse agent

populations. We evaluate 1000 agents, sampling jobs uniformly at random with re-

placement from Table 3.2. After agents receive and assess co-runners, the coordinator

dispatches jobs. Jobs dispatch in batches when the system has fewer multiprocessors

than colocated pairs.

Servers. We use a cluster with five nodes, each with two Intel Xeon E5-2697

v2 chip-multiprocessors (CMPs). Each CMP has 12 cores and 24 threads, running
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ID. Name Application Dataset GBps

Apache Spark
1. Correlation Statistics kdda’10 [97] 25.05
2. DecisionTree Classifier kdda’10 21.03
3. Fpgrowth Mining wdc’12 [5] 10.06
4. Gradient Classifier kdda’10 21.06
5. Kmeans Clustering uscensus [4] 0.32
6. Regression Classifier kdda’10 14.66
7. Movie Recommender movielens [3] 5.69
8. Bayesian Classifier kdda’10 23.44
9. SVM Classifier kdda’10 14.59

PARSEC
10. Blackscholes Finance native 0.99
11. Bodytrack Vision native 0.15
12. Canneal Engineering native 3.34
13. Dedup Storage native 0.93
14. Facesim Animation native 1.80
15. Fluidanimate Animation native 5.52
16. Raytrace Visualization native 0.57
17. Stream Data Mining native 18.53
18. Swaptions Finance native 0.07
19. Vips Media native 0.05
20. X264 Media native 4.00

Table 2.1: Application configurations, datasets, and memory intensity.

Figure 2.8: Disutility from pairwise job colocations. See Table 3.2 for job IDs.
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at 2.7GHz and sharing 128GB of main memory. Colocated jobs divide the CMP’s

threads equally, sharing cache capacity and memory bandwidth. The server con-

figuration focuses on memory contention. Nodes have solid-state drives and 1Gbps

Ethernet, precluding I/O and network contention.

2.5 Evaluation

We evaluate system desiderata: (i) fair attribution such that more contentious users

incur larger penalties, (ii) satisfied preferences such that more users colocate with

preferred co-runners, and (iii) stable colocations such that fewer users break away.

Moreover, we show that Cooper performs nearly as well as heuristics that minimize

contention.

2.5.1 Fairness and Desiderata

Fair Attribution of Costs. Figure 2.10 and 2.9 evaluate fairness by showing

the relationship (or lack thereof) between jobs’ resource demands and colocation

penalties. The x-axis presents jobs ordered by increasing memory intensity. The

y-axis presents each job’s throughput loss, averaged over its varied colocations when

randomly sampled jobs share the system. When bars extend up and right, penalty

is proportional to contentiousness and costs are fair.

Conventional policies neglect fairness. GR is unfair as dedup demands among the

least from shared memory but is penalized most. Bodytrack contributes much less

to contention than svm but suffers the same penalty. Similarly, CO shows no link

between application contentiousness and colocation penalties.

Stable policies can enhance fairness, but mixing them with conventional wisdom

does not work. SMP builds atop CO, partitioning jobs into two sets based on memory

intensity before invoking stable marriage. However, SMP ignores the fact that jobs in

one set could prefer each other over jobs in the opposite set. Restricting permissible
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Figure 2.9: (a) and (b) show contention-induced performance losses from conven-
tional colocation policies. Jobs are ordered by increasing contentiousness on x-axis.
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Stable Marriage Random (SMR)
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Stable Roommate (SR)

sw
ap

t.
bo

dy
tr.

de
du

p
ca

ne
al

sv
m

lin
ea

r
st

re
am

c.
de

ci
si

on
gr

ad
ie

nt
na

iv
e

co
rre

la
t.0.

00
0.

05
0.

10
0.

15
0.

20
0.

25
0.

30
0.

35
T

hr
ou

gh
pu

t P
en

al
ty

Figure 2.10: (a) (b) and (c) show performance losses from stable colocation policies.
Jobs are ordered by increasing contentiousness on x-axis.
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matches overrides preferences and induces unfairness.1

Stable matching improves fairness in less structured game formulations. SMR

partitions jobs randomly such that, with some probability, a job might colocate

with any other to satisfy preferences. SR permits unrestricted matches. Both SMR

and SR produce colocations in which jobs’ performance penalties increase with their

contentiousness.

Figure 2.11 illustrates relative fairness, ranking each job’s penalty and bandwidth

demands. For example, Swaptions ranks first with the smallest performance penal-

ties and bandwidth demands while correlation ranks 10th in penalties and 11th

in demands. Bars present ranked penalties and the line presents ranked demands,

which is linear because jobs are ordered by contentiousness on the x-axis.

Bars that track the line illustrate equal treatment of equals and unequal treatment

of unequals in proportion to their differences. GR, CO, and SMP are unfair as ranked

penalties are unrelated to ranked demands. In contrast, SMR and SR are fair as more

demanding jobs experience larger penalties.

Satisfied Preferences. Figure 2.12 shows how stable colocations satisfy more

users’ preferences. Bars show the number of agents with improved, degraded, or

unchanged performance when switching from conventional colocations (GR, CO) to

stable ones (S*). For example, choosing stable roommate over greedy colocation

improves performance for more than half of the agents – see SR/GR.

A large majority of agents performs at least as well, if not better, with colocations

that reflect preferences. Among stable policies, SR performs best as each agent

proposes to all others according to its preferences. SMR and SMP perform slightly

worse as partitions restrict proposals and satisfy fewer preferences. The minority

who suffer larger penalties are those held responsible for their larger contributions

1 Tasks occasionally perform better colocated than alone due to variance across system measure-
ments.
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Fair Cost Atrribution

sw
ap

tio
ns

bo
dy

tra
ck

de
du

p

ca
nn

ea
l

sv
m

lin
ea

r

str
ea

m
c

de
cis

ion

gr
ad

ien
t

na
ive

co
rre

lat
ion

0
2

4
6

8
10 SMR

SR

P
er

fo
rm

an
ce

 P
en

al
ty

 R
an

ki
ng

●

●

●

●

●

●

●

●

●

●

●

0

2

4

6

8

10

M
em

or
y 

B
an

dw
id

th
 R

an
ki

ng

Figure 2.11: Correlation between ranked performance penalties (bars) and band-
width demands (line). When the bars track the line, colocations are fair. See Fig-
ures 2.10 for absolute measures of performance and bandwidth.

to contention, a fair outcome.

Stable Colocations. Figure 2.13 counts agents that recommend breaking away

from assigned colocations for new, mutually beneficial ones. Boxplots present the dis-

tribution of these counts for 50 populations of 1000 sampled jobs. Parameter α is the

minimum performance benefit for which an agent breaks away. Increasing α reduces

the number of blocking pairs and improves stability. Assuming an agent’s original
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Figure 2.12: Performance impact when adopting cooperative game (S*) instead of
performance-centric policies (GR, CO). Data is averaged over 10 populations, each
with 1000 randomly sampled jobs.
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Figure 2.13: Stability analysis, which measures the number of blocking pairs (y-
axis) for varied policies and α (x-axis), the minimum benefit for which an agent
breaks away. When α=2%, agents break away for new colocations that improve
both agents’ performance by 2%. Here, we show data distributions and boxplots for
50 populations, each with 1000 randomly sampled jobs.
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performance penalty is 0.2, if α% “ 0.5, it means that if this agent’s performance

penalty is reduced to 0.15 with the new colocation, she will prefer to deviate.

GR colocations are less stable, ignoring preferences in pursuit of performance

and producing dissatisfied agents. In contrast, CO produces fewer blocking pairs,

especially when agents break away only for large gains (e.g., α=5%). By pairing

complementary jobs, CO bounds performance penalties and avoids instability. But

it delivers neither fair attribution nor satisfied preferences.

SMR colocations are most stable. Its random partitions reduce the likelihood

that an agent prefers but cannot match with co-runners in its own set, which is a

major cause of blocking pairs. SMR distributes contentious tasks across two sets,

reducing agents’ risks of poor matches. Note that we count blocking pairs wherever

they arise. If the population is partitioned, agents in a blocking pair could belong to

the same or opposite set.

SMP and SR are less stable because they force some agents into undesirable

matches. SMP places contentious agents into the same set. Less contentious agents

cannot match with each other and must match with opposite agents, which creates

blocking pairs. Although SR finds stable solutions if they exist, they rarely do and

heuristics that match agents rejected by all others create blocking pairs.

Summary. Stable Marriage Random most effectively delivers system desiderata

– fair attribution, satisfied preferences, stable colocations. Fortunately, SMR is also

the easiest to implement. It always produces a solution and randomly partitioning

agents needs no extra profiling.

2.5.2 Performance and Sensitivity

Figure 2.14 and 2.15 present performance penalties and assesses sensitivity to work-

load mix. We vary the probability density used to sample jobs that comprise an

agent population. Thus far, we have used the Uniform density, in which every job is
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Figure 2.15: Performance penalties measured for varied colocation polices (GR,
CO, SMP, SMR, SR) for various workload mixes presented in Figure 2.14. Each box
shows the performance penalty distribution of 1000 colocated tasks.

represented equally. The Beta density represents populations skewed toward more or

less memory intensive jobs. The Gaussian density represents populations of moderate

jobs.

In theory, the performance gap between optimal and stable colocations is un-

bounded [52]. In practice, stable policies (S*) perform as well, if not better, than

conventional ones (GR, CO). Penalties are larger when the Beta density skews pop-

ulations toward memory-intensive jobs. SMP performs best, avoiding large penalties
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by partitioning jobs such that contentious jobs cannot match with each other. The

Beta-High density with many contentious jobs is a challenging scenario, requiring

effective policies and more resources for service quality.

Some systems specify penalty thresholds, accepting colocations if performance

degrades less than some tolerance (e.g., 10%). By this measure, stable policies (S*)

perform comparably with GR and better than CO. The upper whisker, which is 3ˆ

the inter-quartile range away from the third quartile, is within tolerances. Service

quality from fair policies, which may sacrifice performance for contentious jobs, is

comparable to that from conventional policies.

Summary. The colocation game delivers desiderata with little effect on per-

formance. Stable and conventional policies perform similarly for varied system sce-

narios. A pessimistic scenario with many contentious tasks reveals a particularly

advantageous policy – stable marriage with partitions.

2.5.3 Preference Prediction

Figure 2.16 evaluates collaborative filtering and the accuracy of its predicted prefer-

ences. The rank coefficient τ compares a predicted list against the true list, counting

inconsistencies.

τ “ 1´

«

ÿ

aPA

ÿ

i,jPCa

Kij

ff

ˆ

„

n

ˆ

n

2

˙´1

(2.2)

The double summation counts incorrect predictions across agents aPA and potential

matches i, jPCa for each agent. Kij “ 1 when an agent’s preference for i relative to j

differs across true and predicted preferences, and Kij “ 0 otherwise. The number of

incorrect predictions is divided by the number of pairwise preferences and subtracted

from one to calculate the fraction of correct predictions.

Figure 2.16 indicates the accuracy of collaborative filtering improves with more

data, starting at 83% with 25% of colocations profiled and rising to 95% with 75%
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Figure 2.16: Prediction accuracy, which evaluates the percentage of correctly pre-
dicted preferences (Equation 2.2). x-axis shows various sample ratios.

profiled. With such accuracy, our stable policies deliver the same desiderata whether

using oracular knowledge or collaborative filtering.

2.5.4 Scalability

Figure 2.17 evaluates fairness as the number of agents increases. For SMR, the

correlation between a job’s performance penalty and bandwidth demand strengthens

with more agents. Smaller populations exhibit less diversity across jobs, hindering

the search for matches that satisfy preferences. Larger populations increase the

likelihood that an agent finds a satisfactory co-runner. Standard deviations shrink

with population size, reducing the risk of unfairness. Cooper is more effective for

larger systems with hundreds of multiprocessors.

2.6 Related Work

Fair Resource Management. Computer architects have explored hardware mech-

anisms for fair sharing in chip multiprocessors, especially when partitioning caches

or scheduling memory accesses [31, 77, 79, 86]. We develop a system-level colocation
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Figure 2.17: Scalability analysis and SMR fairness as the number of agents in-
creases. Link between contentiousness and penalty is weak in small systems. In
larger systems, more contentious jobs have larger penalties.

framework to management memory subsystem contention.

Many studies focus on game-theoretic desiderata when allocating resources to

strategic users whereas we focus on such desiderata for colocation, a novel objective.

Ghodsi et al. propose Dominant Resource Fairness to allocate cores and memory

[36]. Zahedi et al., proposes Resource Elasticity Fairness using Cobb-Douglas utility

function for cache and memory bandwidth allocation [119]. DRF and REF guarantee

sharing incentives, Pareto efficiency, envy-freeness, and strategy-proofness. Grandl

et al. propose Tetris [38], a multi-resource colocation mechanism that assigns tasks

to machines according to resource demands. These studies assume hardware isola-

tion and neglect interference. We pursue game-theoretic desiderata for contentious

colocations on bare metal.

Colocation and Scheduling. Prior studies focus on modeling contention and

anticipating performance penalties, but neglect preferences and fairness during colo-

cation. Mars et al. predict contention in shared memory systems [70, 113]. De-

limitrou et al. models interference and machine heterogeneity with recommenders
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[27]. Multiple studies schedule complementary workloads on chip multiprocessors

[33, 55, 62, 112, 122].

The discussion of related work should separate colocation profiling and policy.

Prior studies provide sophisticated profilers to predict contention and drive simple,

greedy policies. In contrast, Cooper is a sophisticated policy balances performance

and fairness.

On profiling, Bubble-Up/Flux predict contention between colocated jobs, Bubble-

Up for two co-runners and Bubble-Flux for more. In contrast, Cooper uses recom-

mendation system to predict colocation preferences. On policy, Bubble-up/flux as-

sign jobs to machines when penalties ă10%. When a job cannot colocate given this

tolerance, it adds a machine. In contrast, Cooper colocates applications with limited

machines. When extra machines are unavailable, our greedy baseline performs at

least as well as the threshold policy.

Cooperative Games and Systems. In mobile systems, Dong et al. apply the

Shapley value to attribute energy costs to apps on shared devices [30]. In networks,

Feigenbaum et al. use cooperative games to attribute shared bandwidth costs during

multicast transmission [34]. Han et al. use a repeated game that optimizes packet

forwarding for strategic and distributed users [42]. Finally, in wireless networks, Saad

et al. formalize time division multiple access (TDMA) as a cooperative game and

develop distributed algorithms that direct users to better coalitions [93]. In contrast,

we bring cooperative games to datacenter colocation and seek solutions that balance

fairness, stability, and performance for strategic users.

2.7 Conclusions and Future Work

Cooper is a colocation framework that fairly attributes performance penalties, satis-

fies user preferences, and finds stable matches that are robust to strategic behavior.

The framework employs sparse colocation profiles to predict preferences. It then
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employs preferences to find stable colocations in which no pair of strategic users

would perform better by breaking away from the shared system. In addition to its

game-theoretic properties, Cooper performs comparably with greedy and contention-

minimizing mechanisms.

Extending Cooper to more than two co-runners and assessing stability guaran-

tees is one of the future directions. In theory, stable matching for arbitrary group

size cannot be solved in Polynomial time. Approximation algorithms exist for three

co-runners under certain constraints[12]. In practice, a hierarchical approach could

match applications and then match pairs. A clustering approach could classify ap-

plications into types and then match types. Stability guarantees in these heuristics

may vary.

Stable matching is used in real, large-scale problems (e.g., assigning residents

to hospitals, or students to schools). Microsoft has deployed stable matching in

production systems for locality-aware scheduling [19]. In a similar spirit, Cooper

operationalizes stable matching for future datacenters shared by strategic users.
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3

Core Allocation with Market Mechanism

A datacenter allocates computational resources to applications based on static reser-

vation or dynamic resource requirements. Processor allocations are inefficient when

they are based on static reservations. For example, in public datacenters, users

pay to reserve processors. These reservations are often conservative because users

rarely know their needs at any given time, especially when applications have complex

phases. In private systems, users pool resources together to construct a datacenter;

these users are entitled to some fair portion of the combined resource. Such fair-

ness incentivizes participation of strategic users, but harms system efficiency when

users need less than their fair share yet retain exclusive access to those resources.

This chapter addresses these inefficiencies in current fair resource allocation policies

by providing accurate performance models to capture application’s phase behavior

and by designing core allocation mechanisms that can improve datacenter efficiency

under the constraint of guaranteeing game-theoretic fairness.

We design a market for processors so that users can trade unused cores from their

fair share on one server for additional cores on another. Users bid for cores based

on parallelism in their applications. The market sets prices based on supply and
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demand for servers’ cores. Responding to prices, users update bids. In market

equilibrium, the market balances fairness and performance. Allocations are fair

and guarantee sharing incentives, envy-freeness and Pareto efficiency. These game-

theoretic desiderata are particularly important when strategic users compete for

shared resources [23, 36, 119]. Furthermore, we show that the efficiency of these

allocations is competitive with those from performance-centric policies.

The market’s centerpiece is Amdahl utility, which we define to model the value

of servers’ cores. We develop a lightweight predictor that uses the inverse of Am-

dahl’s Law to quickly estimates each application’s parallel fraction. These fractions

determine bids for servers’ cores in each application phase and shape equilibrium al-

locations over time. Unsurprisingly, Amdahl utilities are well suited to modeling par-

allel performance for conventional, multi-threaded applications as well as emerging,

task-parallel jobs. More surprisingly, our designed market mechanism with Amdahl’s

utility only requires closed-form, analytic equations for price and bid updating pro-

cesses and can provide quick convergence for finding the market equilibrium during

empirical experiments. Resulting allocations show satisfactory system performance

and guarantee allocation fairness.

In this chapter, we make the following contributions:

• Karp-Flatt Characterization. We deploy and characterize Spark and PAR-

SEC workloads. Amdahl’s Law accurately models parallel performance and the

Karp-Flatt metric, its inverse, accurately estimates an application’s paralleliz-

able fraction. (§3.2).

• Prediction Framework. We present a performance prediction framework

for parallel applications with big datasets. We profile applications with small,

sampled inputs and a few core allocations. We fit Karp-Flatt and Amdahl’s

Law for the effect of core count and linear models to estimate the effect of
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dataset size. Together, these models predict execution time for any core count

and dataset size with on average 15% error (§3.2).

• Market Mechanism. We present a Fisher Market with Amdahl utilities.

Users bid for cores based on applications’ parallelizable fractions. The market

collects bids and sets new prices based on supply and demand. We present

a distributed mechanism to find a market equilibrium that performs well and

guarantees game-theoretic desiderata (§3.3).

• Performance and Fairness. The market’s allocations perform compara-

bly to those from performance-centric mechanisms. In addition, the market

guarantees sharing incentives, envy-freeness, and Pareto efficiency. Previously

proposed markets perform worse or do not guarantee fairness. (§3.4).

3.1 Management Architecture

3.1.1 System Setting

We study the problem of allocating cores to strategic users in a private datacenter

cluster. We consider a cluster with m heterogeneous servers shared by n users (Figure

3.1). Each user holds multiple applications. Applications have constraints or strong

preferences over the servers. Application-to-server mappings are fixed before resource

allocation. This system setting is different from the setting presented in Chapter 2.

In Chapter 2, applications arrive the system with fixed amount of resource and the

system manager colocates applications to mitigate colocation contention. Figure 3.1

presents a scenario where scheduling decisions happen before resource allocation and

system manager dynamically adjusts allocated resource to improve system efficiency.

Such scenario could happen in a few cases. First, applications have hardware

preferences. For example, in a heterogeneous datacenter with high-performance

servers and low-power servers, high priority applications are usually matched to
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Figure 3.1: Cluster of m heterogeneous servers is shared by n users. Users are
assigned to servers based on preferences or constraints.

high-performance servers to guarantee application performance during load spikes.

Second, servers have configurations. Certain applications require special kernel ver-

sions or software libraries that are not installed on all servers in the datacenter.

Third, data locality also plays the role of application-to-server mapping. Some ap-

plications are sensitive to data locality and always prefer to run on servers where the

data is local. All above constraints can determine the application-to-server mapping.

Once the system manager assigns users’ applications to specific servers, jobs as-

signed to the same server compete with each other for available cores on that server.

We allocate cores to user’s applications on each server dynamically. We answer

the questions of ”how many cores should be allocated to each application based on

current load of the server and user’s fair share of the datacenter”.

3.1.2 Motivation

Fair policies may allocate processor cores inefficiently. In the case where each job is

entitled to its fair share of a server’s processor cores, the utilization of those cores

may vary over time. Some computational phases have ample parallelism that can

better utilize the cores whereas others do not. When the job needs less than its fair

share, such allocations leave servers underutilized.
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Work-conserving policies improve efficiency but compromise fairness. For exam-

ple, dominant resource fairness (DRF) assigns cores and memory, but often leaves

some fraction of a server’s resources unallocated to guarantee game-theoretic prop-

erties [36]. Distributing idle resources to any user would sacrifice fairness for other

users [23].

Suppose Alice and Bob each require computation for two jobs, which are assigned

to two servers (i.e., four jobs on two servers). Alice’s jobs require 2 and 8 cores

whereas Bob’s require 8 cores each. When each server has 10 cores, Alice and Bob

are entitled to 5 cores on each server. Work-conserving allocations are efficient: Alice

receives 2 cores on the first server and 5 cores on the second while Bob receives the

remaining cores on each. Alice and Bob’s total allocations are 7 and 13, respectively.

Although efficient, these allocations do not incentivize Alice to share with Bob. In

general, unfairness arises when a user donates some of its fair share of cores on one

server, but is not guaranteed additional cores on another server. These users would

have little incentive to share in the system with such management policies and would

prefer receiving their static, equal shares of the cluster.

3.1.3 Allocation Architecture

We address the problem of allocating cores, fairly and efficiently, for multiple jobs

on multiple servers. We design a management architecture based on two key ideas.

First, Amdahl’s Law describes a parallel job’s utility from processor cores. Second,

a market allows users to trade un-used cores from their fair allocation on one server

for extra cores on other servers.

Within the market for processor cores, users are assigned fixed budgets that are

proportional to their fair share of the system.1 Each user is assigned servers for her

1 Users could have different fair shares based, for example, on their hardware contributions to a
shared system.
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Figure 3.2: Main components of the shared cluster: client, master, and worker.

jobs. She bids for these servers’ cores based on her jobs’ demands and cores’ prices.

Bids reflect the importance of a server’s cores for each user’s workload on that server.

Given bids, the system manager sets and announces new prices for cores. Then, users

recalculate and submit new bids. The process repeats until no user changes her bid.

Figure 3.2 presents three main components in the market mechanism: clients,

master, and workers. The master auctions processor cores on multiple servers. Mas-

ter then apportions cores between jobs on servers by communicating with workers.

Workers run users’ jobs, monitor their execution, and supply logs to clients. The

market works as follows: (1) Clients, on behalf of users, submit bids for processor

cores on their assigned servers. If a client does not have a job on a server, her bid for

that server is zero. (2) Master receives all bids before (3) setting and broadcasting

new prices. (4) Clients recalculate bids based on new prices and submit updated

bids. Prices and bids are updated until no client changes her bid. (5) Master sends

processor core allocations to workers, and (6) each worker deploys cores for users’

jobs.

Amdahl’s Law. Clients analyze users’ workloads and bid on their behalf. Specif-

ically, each client uses Amdahl’s Law to model utility (i.e., speedup) as a function

of core allocation [8]. Amdahl’s Law models execution time on one core, T1, relative

to the execution time on m cores, Tm. If fraction F of the computation is parallel,
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then speedup is:

sm “
T1
Tm

“
T1

p1´ F qT1 `
T1F
m

“
m

mp1´ F q ` F
. (3.1)

Amdahl’s Law assumes that the serial fraction cannot be accelerated with additional

cores. It also assumes that the parallel fraction can be accelerated linearly with

additional cores. Although these assumptions hold to varying degrees in real appli-

cations, Amdahl’s Law is widely accepted and used for first-order approximations of

speedup for parallel applications.

Each client in the market calculates her bid for cores using Amdahl’s Law and

parallel fraction F . Unfortunately, programmers rarely know exactly what fraction of

their code or algorithm is parallel. For this reason, clients must empirically measure

F with the inverse of Amdahl’s Law, known as the Karp-Flatt metric.2

F “

ˆ

1´
1

sm

˙ˆ

1´
1

m

˙´1

.

According to Karp-Flatt Metric, we only need to measure speedup sm to estimate

F . But for which core count m should we measure speedup? If Amdahl’s Law

were perfectly accurate, then the answer would be ”it does not matter.” We answer

this question, devising new methods for profiling performance and estimating an

application’s parallel fraction in §3.2.

3.2 Amdahl Utility

When using Amdahl’s Law to model utility, we need to know an application’s paral-

lel fraction, F . Unfortunately, programmers may not know their code or algorithm’s

parallel fraction. In this section, we present an efficient method for profiling appli-

cations and estimating F using the Karp-Flatt metric, the inverse of Amdahl’s Law.

2 Karp-Flatt originally models serial fraction, 1´ F .
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Table 3.1: Cluster Specification

Item Specification
Processor Intel Xeon CPU E5-2697 v2
Sockets 2 sockets, NUMA node
Cores 12 cores per socket, 2 threads per core
Cache 32 KB L1 icache, 32 KB L1 dcache

256 KB L2 cache, 32 MB L3 cache
DRAM 256 GB DRAM

First, we introduce the experimental methodology used for this part of the project

(3.2.1). Second, we demonstrate the effectiveness Amdahl utility with a variety of

parallel applications (3.2.2). Then, we detail a framework for predicting the metric

(3.2.4). Finally, we evaluate prediction accuracy (3.2.5).

3.2.1 Experimental Methodology

Server. Table 3.1 describes the Intel Xeon E5-2697 v2 nodes used in our experi-

ments. Each node has 24 cores (48 threads) on two chip-multiprocessors. The local

disk holds application data. We deploy Docker containers [2] to run our applications

with allocated core and memory amount, which ensures resource isolation. We use

cgroup to allocate processor cores and memory to each container.

Workloads. Table 3.2 summarizes our PARSEC and Spark benchmarks [17, 118],

which perform parallel computation on representative datasets. PARSEC bench-

marks represent conventional, multi-threading whereas Spark applications represent

emerging big data analytics workloads with data parallel engine. We run Spark

applications in standalone mode (i.e., within single node). Each Spark application

is comprised of multiple jobs. Each job is divided into stages and each stage has

multiple tasks. The number of tasks in each stage usually depends on the size of

the input data. For example, the first stage typically reads and processes the input

dataset. Given Spark’s default 32MB block size, a 25GB dataset (e.g., webspam) will

49



Table 3.2: Workloads and datasets

ID Spark Name Application Dataset (Size)
1 Correlation Statistics webspam2011 [106] (24GB)
2 Decision Tree Classifier webspam2011 (24GB)
3 Fpgrowth Mining wdc’12 [5] (1.4GB)
4 Gradient Descent Classifier webspam2011 (6GB)
5 Kmeans Clustering uscensus [4] (327MB)
6 Linear Regression Classifier webspam2011 (24GB)
7 Movie Recommender movielens [3] (325MB)
8 Naive Bayesian Classifier webspam2011 (6GB)
9 SVM Classifier webspam2011 (24GB)
10 Page Rank Graph Processing wdc’12 [5] (5.3GB)
11 Connected Graph Processing wdc’12 (6GB)
12 Triangle Counting Graph Processing wdc’12 (5.3GB)
13 Blackscholes Finance Analysis native
14 Bodytrack Computer Vision native
15 Canneal Engineering native
16 Dedup Enterprise Storage native
17 Ferret Similarity Search native
18 Raytrace Visualization native
19 Streamcluster Data Mining native
20 Swaptions Finance Analysis native
21 Vips Media Processing native
22 X264 Media Processing native

be partitioned into approximately 800 blocks. The Spark run-time engine creates

one task to read and process each block. It then schedules tasks on available cores

for parallel processing.

Profiling. For PARSEC applications, we use Linux perf stat to profile execution

under varied cores allocations. For Apache Spark applications, we use Spark’s event

log file profile execution for jobs’ stages under varied core allocations. We profile

Spark with sampled datasets to accurately estimate an application’s parallel fraction

while reducing measurement overhead.
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Figure 3.3: Calculated parallel fraction (F ) for representative Spark applications
as core count varies.

51



3.2.2 Demonstration of Karp-Flatt

Karp-Flatt Scaling for Core Count. According to Equation (3.2), we can cal-

culate F from measured speedup sc given c processor cores. However, Karp-Flatt

does not specify for which c the speedup should be measured. If Amdahl’s Law were

perfectly accurate, the choice of c would not matter because the calculated F would

be consistent for varied values of c’s. But Amdahl’s law is an approximation and

calculated F differs for varied c’s.

Fc “

ˆ

1´
1

sc

˙ˆ

1´
1

c

˙´1

(3.2)

Figure 3.3 presents values of F that are calculated from varied measured speedups

sc and core counts c. For many applications, F is consistent across different core

counts, which indicates that Amdahl’s Law accurately models speedups. Amdahl’s

Law is less accurate for some applications because the parallel fraction F tends to

shrink as core count increases. This trend indicates increased overheads such as

communication, shared locks, and task/thread scheduling.

Figure 3.4 presents F̄ “ |c|´1
ř

c Fc, which is our expectation of an application’s

parallel fraction. This calculation averages F ’s over varied core counts. For our

Apache Spark and PARSEC benchmarks, F̄ ’s ranges from 0.55 to 0.99. Amdahl’s

Law is more useful when variance in Fc is smaller. Figure 3.5 presents VarpFcq “

|c|´1
ř

cpFc´ F̄ q
2, showing that Amdahl’s Law and the Karp-Flatt metric accurately

model parallel performance for most applications.

Limitations. Karp-Flatt is an accurate performance model for most applications, it

falls short when overheads increase with core count. It is less accurate for graph pro-

cessing (e.g., pagerank, connected components, triangle) since tasks processing

different parts of the graph communicate more often as task parallelism increases.

Karp-Flatt is also less accurate for Spark computation on small datasets that require
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Figure 3.5: Variance in parallel fraction VarpFcq “ |c|
´1
ř

cpFc ´ F̄ q2. Lower vari-
ance indicates a better fit with Amdahl’s Law.

few tasks (e.g., 11 tasks for kmeans) since adding cores rarely shortens execution time

and often increases scheduling overhead. Karp-Flatt does not always work for tra-

ditional PARSEC applications (e.g., dedup for enterprise storage), because they are

actively used for inter-thread communication and application’s parallelism is largely

affected by inter-thread communication.

3.2.3 Linear Scaling for Data Size

We estimate Amdahl utility and the Karp-Flatt metric with profilers. As computer

architects, we typically reduce profiling costs by shortening the profile window (e.g.,

fast-forwarding to regions of interest) and reducing the dataset size (e.g., sim-small

versus sim-large inputs). Similar strategies are required when profiling server appli-
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Figure 3.6: We sample the dataset size and measure performance for varied core
allocations. We fit linear models to estimate execution time from dataset size. Data
shown for representative applications svm (T) and correlation (B).

cations with large datasets. Unfortunately, we cannot efficiently profile performance

on the whole dataset and a shortened profile window misses applications’ long-term

phase behavior.

Addressing these challenges, we quickly and accurately profile by reducing dataset

size. We sample, uniformly and randomly, from the original dataset to create various

smaller ones. Sampled datasets are small enough to complete computation, capture

all program phases and explore all number of cores provided by servers. We measure
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application performance with sampled datasets and varied core counts, to obtain

training data for the prediction framework.

Figure 3.6 indicates that execution time scales linearly with dataset size for pre-

sented applications. Therefore, a linear model can be fitted to sparse profiles and

predict time required for any dataset size. We make the case for linear models with

two representative applications, svm and correlation, computing on dataset sizes

that include 1-6GB, 12GB, and 24GB.3 Note that we require a different model for

each core count. Models are more accurate when profiling with more cores (e.g., 48

cores).

Limitations. Note that Venkataraman et al. also use linear performance models

to capture the effect of dataset size [103]. Although linear models work well for

many applications, some require polynomial models because their execution time

scales quadratically with dataset size (e.g., QR decomposition). We notice this effect

during our model validation (§3.2.5); some applications show large prediction errors

because of this assumption.

3.2.4 Prediction Framework

In this section, we present the proposed performance prediction framework illustrated

in Figure 3.7. The framework consumes sampled datasets and core allocations to pre-

dict an application’s parallel fraction and execution time. In the figure, prediction for

parallel fraction and execution time progress horizontally and vertically, respectively.

• Parallel Fraction F. For a given dataset size, Karp-Flatt calculations pre-

dict the parallel fraction. The framework generates multiple predictions from

varied, sampled dataset sizes and averages them.

3 Note that sampled datasets could be smaller than these as long as the number of partitions, which
dictate the number of tasks, is greater than the number of cores. Otherwise, there is insufficient
parallelism.
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• Execution Time T. For a given core allocation, linear models predict the

application’s execution time on any dataset size. The framework generates the

prediction from a large core allocation (e.g., cmax “ 48) because profiling is

faster and modeling is more accurate when given more parallelism.

Outputs from the prediction framework are broadly useful. Given Tcmax for some

core allocation and Fest, we can use Amdahl’s Law to estimate execution time for

any core count and dataset size. Given Fest alone, we can implement various core

allocation mechanisms including markets that use Amdahl utilities.

Tc
Tcmax

“
cmax

Fest ` p1´ Festqcmax

ˆ

c

Fest ` p1´ Festqc

˙´1

(3.3)
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Figure 3.8: Accuracy of predicted parallel fractions F when using sampled datasets.

3.2.5 Prediction Validation

Figure 3.8 evaluates the accuracy of estimated parallel fractions F . Estimated values

are calculated from small, sampled datasets. Measured values are calculated from

the large, original dataset.4 For most applications, errors are small and estimated

values track measured ones. Relative accuracy is particularly important when using

Amdahl utilities and allocating more cores to applications that benefit more. This

means that if all estimated F s are smaller than measured F by a similar factor, the

F -based resouce allocation mechanisms will not be affected by the inaccuracy.

The canneal benchmark reports high prediction error because it is memory-

intensive. Memory bandwidth utilization on small datasets may not be representative

of that on larger datasets. If smaller datasets under-estimate memory bandwidth

constraints, they also over-estimate speedups from additional cores. As a result, the

estimated parallel fraction will be significantly larger than the one measured on the

full dataset.

4 For PARSEC, simlarge and native datasets produce estimated and measured values, respec-
tively.
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Figure 3.9: Accuracy of predicted execution time given varied core allocations.
Data shown for Decision Tree.

Figure 3.9 evaluates accuracy when predicting execution time. Good predictions

rely on accuracy for two estimates, one for execution time on the target dataset

size and another for speedups on the target core allocation – see Equation 3.3. For

the representative Decision Tree benchmark, we show accurate predictions for the

target dataset and varied core allocations.

Figure 3.10 broadens the accuracy evaluation for varied applications. For each

application, we present a boxplot to illustrate the range of errors when predicting

execution time on varied core allocations. Our framework predicts execution with

5-15% error, on average, and 30% error in the worst case. As noted earlier, cache- or

memory-intensive applications (e.g., canneal) are poorly modeled as small, sampled

datasets cause the predictor to over-estimate the benefits of parallelism.

3.3 Market Allocation

Consider a datacenter with n users and m servers that hold varying numbers of

processor cores; server j has Cj cores. A user runs multiple jobs and each job has

been assigned to a server. The problem is allocating cores to users’ jobs that have
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Figure 3.10: Accuracy of predicted execution time for varied applications. Boxplots
show distribution of errors given varied core allocations.

been distributed across multiple servers so that the system performance is maximized

under the constraint of game-theoretic fairness – sharing incentives, envy-freeness,

Pareto efficiency.

3.3.1 Amdahl Utility Function

According to Amdahl’s Law, allocating xij ď Cj cores to user i on server j will

produce speedup sij.

sijpxijq “
xij

fij ` p1´ fijqxij
.

We define the Amdahl utility function as user i’s utility from core allocations across

m servers.

uipxiq “
m
ÿ

j“1

wijsijpxijq.

Although Amdahl utility resembles a sum of speedups, it is actually a sum of work

completed across multiple servers. Cores are allocated periodically and complete

59



some quantity of work in each period (e.g., instructions or tasks). A job completes

wij with one core and wijsijpxijq units of work with xij cores. User utility is total

work across m servers.

Analytically, parameter w weights speedups obtained across multiple jobs. Al-

though the parameter measures the baseline quantity of completed work, it could

be further scaled to reflect system priorities. Higher priority could go to users who

contribute more funds for the shared system or go to jobs that complete work more

slowly.

Thus, Amdahl utility is consistent with system architects’ views of performance.

Its parameters model important determinants of performance – exploitable paral-

lelism (f) and work completed (w). Moreover, the utility can weight work from

specific users or jobs to reflect system priorities.

3.3.2 Market Mechanism

Problem Formalization. For the core allocation problem, we design a Fisher

market5 with participants described by Amdahl utility functions. The market has

n participants and j “ 1, . . . ,m resources, each with capacity Cj. Resources are

servers and capacity is the number of cores within a server. User i runs different

jobs on different servers. Amdahl utility uipxiq describes jobs’ benefits from cores

and determines the user’s preferences for allocations. Note that xi “ pxi1, . . . , ximq

specifies user i’s allocation on each of m servers. User i bids for cores using her

budget bi. The market collects users’ bids for each server and sets prices for cores.

Given prices p “ pp1, . . . , pmq for cores on m servers, users spend their budgets to

buy their optimal allocations. For user i, this allocation will be a solution to the

following optimization problem.

5 In this section, we briefly describe the key mechanisms for the core allocation problem and
omit detailed proofs. This part of the theory is developed by a collaborator and will appear with
theoretical details in Seyed Majid Zahedi’s Ph.D. thesis.

60



max uipxiq, (3.4)

s.t.
m
ÿ

j“1

xijpj ď bi.

Market Equilibrium. Users update their bids based on announced core price

and market collects the new bids and reset the price of cores on each server. At

equilibrium prices, the market clears and total demand meets total supply. In other

words, all users receive their optimal allocations and there is no surplus or deficit

of cores. Formally, price p “ ppjq and allocation x “ pxijq comprise a market

equilibrium if the following conditions hold:

1. Market Clears. For each resource j,
řn
i“1 xij “ Cj

2. Allocations are Optimal. For each user i, allocation xi maximizes ui subject

to budget
řm
j“1 xijpj ď bi.

We choose to use a market as the allocation mechanism because the market equilib-

rium is efficient and fair. As presented in above equations, in market equilibrium, all

cores on every server is utilized, which maximizes system utilization. Moreover, from

the perspective of individual user performance, allocations in market equilibrium are

optimal for the presented utility function. Finally, market equilibrium provides shar-

ing incentives, envy-freeness and Pareto efficiency. [22, 36, 119].

Finding the Market Equilibrium. A market equilibrium always exists be-

cause Amdahl utility is continuous and concave [13]. Proportional response dynam-

ics (PRD) is a method that finds an equilibrium [111, 121]. Users examine prices

and bid in proportion to utilities from resources. Next, the market sets new prices

in proportion to bids for each resource. In response to new prices, users update bids.
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PRD ends when bids and prices converge to stationary values. PRD is decentral-

ized and does not require optimization as user and market responses require simple,

proportional updates.

Market updates the core prices and users bids for cores based on the following

updating rules. In iteration t, the price of cores on server j is the sum of users’ bids

divided by server capacity.

pjptq “
ÿ

i

bijptq{Cj.

Given these prices, user i’s allocation of cores on server j is determined by xijptq “

bijptq{pjptq. And her updated bid for the next round is

bijpt` 1q “ biUijptq{Uiptq

Uijptq “
b

fijpjptq wij sijpxijptqq

Uiptq “
ÿ

j

Uijptq

We can prove, using KKT conditions, that any market equilibrium is a fixed point of

this procedure and any fixed point of this procedure is a market equilibrium6. Finding

an equilibrium for participants with Amdahl utilities is computationally efficient.

Updates for market prices and user bids are expressed in closed-form equations.

Updates are applied iteratively until the stationary. During empirical experiments,

the procedure converges quickly (less than 200 iterations for 1000 users and 1000

servers).

6 We omit detailed proofs because this part of the theory is developed by a collaborator and will
appear with theoretical details in Seyed Majid Zahedi’s Ph.D. thesis.
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3.4 Evaluation

We evaluate proposed Fisher Market (FM), which finds a market equilibrium as

described in §3.3. Users use Karp-Flatt metrics to define Amdahl utilities. Users

iteratively bid for processor cores on different servers based on utilities and prices,

trading cores assigned to jobs with lower F ’s in exchange for cores assigned to jobs

with higher F ’s. The bidding process terminates when the market clears (all cores

are allocated) and allocations are optimal. Compared to performance-centric core

allocation mechanisms, our primary goal is to guarantee game-theoretic fairness while

preserving the system performance.

3.4.1 Baseline Policies

We compare FM against alternative allocation mechanisms, which are categorized

into three classes — performance-centric, fairness-centric, market mechanisms. First,

performance-centric mechanisms greedily allocate cores to the application that bene-

fits most from an extra core, i.e., the application that has the largest marginal utility

gain for the current core. Greedy-I (G-I) uses collaborative filtering to predict ap-

plications’ execution time for different core allocations.7 Greedy-II (G-II) replaces

collaborative filtering with oracle performance. These mechanisms neglect fairness

and provide upper bounds on performance.

Second, fairness-centric mechanisms define and enforce fair shares. Equal Share

(ES) apportions a servers’ cores to applications equally. ES guarantees game-

theoretic fairness but neglects performance as it rigidly allocates a fixed share of

cores to all applications without considering their utilities. Proportional Fairness

7 We implement collaborative filtering in R using recommenderlab library. We profile performance
for sampled core counts and treat utility as ratings. We use 20% sparse sampled rate as the input
to. collaborative filtering. The recommender infers the complete performance matrix for all core
counts and applications. Sometimes samples are insufficient to capture diminishing returns from
Amdahl’s Law. More samples are impractical but would improve accuracy.
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(PF) apportions servers’ cores in proportion to applications’ estimated Karp-Flatt

metrics, Fest.

Although PF may seem fair from single application perspective, it fails to guar-

antee users to get their endowed resource. If a users’ applications all report relatively

low F ’s, then she will not receive her fair share of cores.

Third, we compare against XChange (XC), another market mechanism that

balances fairness and performance. In XChange, a similar architecture is used for

bidding and pricing; users iteratively bid for resources, the market announces new

prices, and users optimize bids with hill climbing. Although XC finds a Nash equilib-

rium in theory, we find that hill climbing produces sub-optimal bids and the market

fails to converge for Amdahl utilities in practice. Without the Nash equilibrium, XC

loses its fairness guarantees.

We also evaluate XChange-Modified (XC-M), which replaces hill climbing

with the interior point method when optimizing bids [20]. Since Amdahl utilities are

concave, the interior point method finds globally optimal bids in polynomial time.

XC-M converges to Nash equilibrium, which puts a lower bound on efficiency and

game-theoretic fairness.

FM differs from XC-M in several regards. First, FM’s bidding process evalu-

ates closed-form equations to update bids for new prices whereas XC-M’s requires

optimization (i.e., hill climbing or interior point). Second, FM produces a Market

Equilibrium where users optimize their utilities under constraints, which guanran-

tees fairness from the perspective of envy-freeness, sharing incentives and Pareto

efficiency. XC-M produces Nash Equilibrium, and in this case, it does not guarantee

envy-freeness. Thus, FM provides stronger system properties, faster solution and

lower implementation costs.
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3.4.2 Experimental Methodologies

System Simulation. We use R-based simulations to evaluate performance, envy,

and sharing incentives within large systems. For each allocation mechanism, we

consider a population of users each of whom has a set of applications, sampled

randomly from the pool in Table 3.2. When an allocation mechanism assigns cores to

applications, we measure each application’s performance on a real server to determine

utility, envy-freeness, and sharing incentives.

Distributed Implementation. Although the experimental results presented in

this chapter are collected from trace-based system simulation (§3.4), we do have an

implementation of the market mechanism in real system to prove the feasibility. We

implement the market mechanism, detailed in §3.3, with Scala. Our implementation

uses the AKKA toolkit [1], which supports Actor-based concurrency. It includes

clients, master, and workers with actors, each of which requires about 120 lines of

Scala code. For a system with 1500 users, the distributed implementation finds the

equilibrium core allocation in less than 5 seconds when clients are deployed with the

master. When clients are deployed on a server other than the master, the network

on the master becomes a bottleneck and convergence time increases to 60 seconds.

3.4.3 Performance

Figure 3.11 presents total system performance, which is defined as total utility of all

users in system. Performance is normalized to that of G-I.

FM performs comparably to G-II and outperforms all other allocation mecha-

nisms for every user population. G-II sets up an upper bound for the total system

performance because it is a performance-centric mechanism and ignores fairness. G-

II greedily assigns each core to the application with higher marginal utility given

oracular knowledge of utilities. G-I predictions users’ utilities with collaborative fil-

tering, which has little intuition on the shape and structure of performance trends.
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Predictions are inaccurate compared to those that use Karp-Flatt and, consequently,

allocation performance suffers.

ES has low system performance as it fails to adapt core allocation to applications’

diverse parallelism and assigns a fixed share to all. PF considers these differences

and allocates cores in proportion to applications’ parallelizable fractions. Yet, PF

performance suffers because it must allocate proportionally to F even though per-

formance increases non-linearly with respect to F , according to Amdahl’s Law. PF

tends to over-allocate for applications with low F and under-allocate for those with

high F , leaving performance unexploited.

XC users optimize their bids with a hill climbing heuristic [108, 109]. But for Am-

dahl utilities, the heuristic almost always terminates without finding the optimum.

Suboptimal bids degrade system performance. XC-M solves this problem, using the

integer point method to optimize each user’s bid in response to other users’ bids.

However, the resulting Nash Equilibrium is not necessarily a Market Equilibrium

when users are price-anticipating.8 Price-anticipating users can manipulate their

8 With price-taking users, the Nash Equilibrium is the same as the Market Equilibrium.
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bids to affect the price and degrade system performance.

Note that XC and XC-M both require users to run a polynomial time optimiza-

tion algorithm to find their bids in each allocation round. In contrast, FM uses a

closed-form formula to update users bids in each round, which has significantly lower

implementation and computation overheads and can be scale well to large systems.

3.4.4 Envy-Freeness

A mechanism is envy-free when no user prefers any other user’s allocation more

than her own. Envy-freeness is a key outcome for fair resource allocation. We use a

pairwise envy index to quantify user i’s envy towards user j. Equation (3.5) describes

envy-free index. For every pair of users i and j, the envy-free index compares user

i’s utility for her own allocation, uipxiq, to its utility for user j’s allocation, uipxjq.

If uipxiq ă uipxjq, then the index is less than one and user i envies user j. The index
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is always less than one and a smaller index means greater envy.

Envy-free Index “ eij “
uipxiq

max tuipxiq, uipxjqu
(3.5)

Users typically do not envy each other when the number of users’ applications is

small relative to the number of servers in the system. For example, consider a system

with 100 servers and two users, each with 5 applications to run. The probability that

any server is assigned to both users is very low. Without colocated computation, the

users have no utility for each others allocations.

However, when the number of users’ applications approaches the number of

servers, users could envy each other and the choice of allocation mechanism mat-

ters. To study envy, we group users and assign the same set of servers to each user

in a group. Users within a group could envy each other as each has non-zero utility

for cores on all servers.

We evaluate a system with 100 servers, 100 users and 10 applications per user.

We group users into 10 groups and assign the same set of servers to the users within

the same group. Figure 3.12 presents the pairwise envy index for the group with

greatest envy (ie., lowest index). Square pi, jq indicates user i’s envy towards user

j’s allocation. ES is envy-free because equally dividing resources ensures that no user

prefers another’s allocation. FM is the only other mechanism that theoretically guar-

antees envy-freeness. In practice, however, FM occasionally reports one or two users

in a group with slight envy. We deviate from theory for two reasons. First, FM guar-

antees envy-freeness assuming Amdahl utilities perfectly predict system performance

– envy may arise when utility deviates from physical system measurements. Second,

envy may arise from the rounding process, which converts fractional allocations into

integer allocations.

G-I and G-II report the greatest envy, which is not surprising because they pursue

performance and neglect fairness. XC also reports significant envy as the hill climbing
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algorithm fails to approximate the market’s Nash equilibrium. XC-M reports less

envy than XC and achieves the Nash equilibrium’s theoretical guarantee on envy

(0.828-approximate envy-free [109]). Finally, PF defines a different notion of fairness

that neglects envy.

3.4.5 Sharing Incentives

Allocations incentivize sharing when users prefer their allocation over static, equal

shares. Without sharing incentives, system may fragment and strategic users have

no incentive to participate in large shared systems, which hards system integrity and

efficiency. Equation (3.6) introduces the sharing index as the metric for quatifying

sharing incentives. Sharing index is the ratio between a user’s utility under the cur-

rent mechanism to her utility under equal shares (ES). A larger index means greater

sharing incentives. Then, the sharing index of a resource allocation mechanism is the

minimum of these ratios across all users. A mechanism satisfies sharing incentives if

the index is greater than one.

Sharing Index “ min
i

„

uipmechanismq

uipstaticq



(3.6)

Figure 3.13 presents sharing index for varied user populations and allocation

mechanisms. FM always reports a sharing index greater than one. Moreover, its

sharing index is greater than that of all other mechanisms under various system

sizes, indicating that FM does most to incentivize users.

Performance-centric mechanisms, G-I and G-II, do not satisfy sharing incentives.

G-II achieves high overall system performance, but does so at the expense of low-

utility users. These users are not incentivized to share with others. Strategic users

would opt out from such unfair management policies and may build a smaller, private

system to improve their performance.
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XC, XC-M, PF and ES all incentivize users to share in big systems. Sharing

index increases as the number of servers increases. In large systems, especially when

users do not have applications on most of the machines, their utility for these servers

becomes zero under static, equal shares. Therefore, it is much easier to satisfy

sharing index greater than 1 when normalized to ES because ES perform badly for

such sparse case. Nevertheless, for the case where users have applications on every

server (i.e., number of users equals 10 case), FM still has the highest sharing index.

3.5 Related Work

Algorithmic Economics for Datacenter Management. Recent studies in the

architecture and systems communities have explored economic game theory for man-

aging datacenter resources [32, 36, 63, 82, 85, 119]. Ghodsi et. al propose Dominant

Resource Fairness (DRF) to allocate cores and memory for applications sharing a

chip-multiprocessor [36]. Zahedi et al., proposes Resource Elasticity Fairness (REF)

using the Cobb-Douglas utility function for allocating cache capacity and memory

bandwidth [119].

DRF and REF argue that the resource allocation policies in datacenters should
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guarantee game-theoretic desiderata (Sharing Incentives, Pareto Efficiency, Envy-

Freeness, and Strategy-Proofness) to guard against strategic users and encourage

user participation. Our market allocations processor cores to produce a market

equilibrium and guarantee the same desiderata.

Markets for Resource Allocation. Economic theory, in particular, casts re-

source allocation as a market allocation problem and asks users to bid for resources

[16, 39, 108]. Guevara. et al proposes an auction-based mechanism to allocate het-

erogeneous cores to web search queries[39]. Wang et al. proposes XChange [108],

a trading market with a price setting mechanism for core and memory in a chip

multiprocessor. XChange, the most related piece of work, provides a Nash Equilib-

rium that does not guarantee Pareto Efficiency and Envy-freeness. Our mechanism

produces a Market Equilibrium and guarantees game-theoretic desiderata.

Datacenter Resource Management. Cloud infrastructure (e.g. Amazon

EC2) uses a reservation system and expects users to provide the required resources

(e.g., number of cores, amount of memory, number of VMs). Hindman et al. propose

Mesos [44], which implements a request-grant abstraction among different parallel

frameworks (MPI, Hadoop, Spark). These reservation-based systems rely on users

to report resource usage, burdening users and introducing opportunities for strategic

action.

We propose fast and accurate performance models to calculate the Karp-Flatt

metric and fit the Amdahl utility function. Moreover, we design a mechanism

that produces a market equilibrium given Amdahl utilities. Compared with pre-

vious frameworks that include sophisticated performance models (e.g., Paragon[27],

Quasar[28] and Bubble-up[70]), our performance model is simpler yet accurate. And

we propose a sophisticated allocation market that guarantees fairness yet performs

well.
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3.6 Conclusions and Future Work

We propose a Fisher market to allocate cores among shared users in a private dat-

acenter. In the market, we model users’ utilities of their parallel applications with

Amdahl’s Law and we deploy a lightweight performance prediction framework to

estimate the parallel fraction (Karp-Flatt Metric) of applications with big datasets.

We validate our performance model with real system measurements and achieve on

average 15% prediction errors for runtime predictions. More importantly, we develop

an allocation framework with distributed bidding mechanism and centralized price

updating mechanism to drive the market to an equilibrium. We use system simula-

tions to quantify the performance and fairness tradeoffs for resulting allocations and

compare with state-of-art resource allocation mechanisms. Our coordinated design

of performance models and allocation mechanism provide comparable system perfor-

mance to traditional performance-centric policies; we outperform state-of-art market

mechanism and fairness-centric policies in terms of performance, sharing incentives

and envy-freeness.

Future works can extend the market mechanism to utilities that are different

from Amdahl’s Law. During the performance model validation, we discover that

Amdahl’s Law does not work well for certain types of applications, e.g., graph pro-

cessing, I/O intensive and memory intensive applications. This is mostly because of

two reasons. First, application parallelism changes when increasing dataset size. A

linear scaling model will not capture such trends, instead quadratic and exponential

models should be used. Second, such applications’ performances do not scale linearly

on core count, which means Amdahl’s Law is not an accurate performance model.

For memory intensive and I/O intensive applications, cores wait for I/O or memory

requests instead of doing useful work. Therefore, adding more cores does not improve

the performance linearly. In these cases, we need to develop more complex perfor-
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mance models to better capture application’s diverse phase behavior. However, such

complexity poses great challenges in market mechanism design, i.e., convergence to

the market equilibrium is hard to guarantee. We believe that certain utility functions

will be able to accurately model applications’ performance and quickly reach market

equilibrium convergence.
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4

Modeling Communication Costs in Blade Servers

Datacenters demand big memory servers for big data applications. Blade servers pro-

vision abundant memory in a dense form factor and their distributed shared memory

are well suited to big data applications. Researchers have prototyped or emulated

blade architectures [46, 61] to understand their potential and to demonstrate key

capabilities, such as fine-grained access and address translation. Beyond specific

designs, however, researchers must assess sensitivity to technology parameters and

explore server organizations. Unfortunately, existing experimental methods lack the

required flexibility.

In this chapter, we present technology models that enumerate communication

paths through a blade server and identify contributors to delay and energy. In addi-

tion to DRAM costs, we account for inter-processor and inter-blade data transfers.

With these models, researchers can explore scenarios in system organization and data

movement, identifying opportunities and addressing challenges.

One particular challenge is non-uniform memory access (NUMA). In a blade

server, a processor can retrieve data from memory via several communication paths

that introduce multiple levels of NUMA. Conventional wisdom argues that NUMA
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harms performance and should be avoided [98]; prior work has proposed task and data

managers that restrict remote memory access [37, 59, 65, 88]. However, NUMA might

improve performance; a system that selectively permits NUMA might dequeue tasks

sooner and increase throughput. Technology models help researchers understand the

benefits of permitting NUMA and develop new schedulers that balance latency and

throughput.

Our interdisciplinary study integrates insights from interconnect technologies,

queueing theory, and big data applications. Herein we provide new methodologies

for coodinating the design of software management policies (e.g., schedulers) and

system organizations (e.g., inter-connection technology and topology). The proposed

method based on system simulation and parameterizable models can reduce the

design costs of datacenter hardware organization and configurations and can provide

short optimization cycles for performance and energy goals.

This chapter is organized as follows. In §4.1, we motivate the study of blade

servers and present related works on scheduler design to mitigate non-uniform mem-

ory access. In §4.2, we present technology models that enumerate communication

paths through a blade server. In §4.4, we introduce the methodology and platform

to performance coordinated study on scheduler design and technology models. In

§4.5, we demonstrate the ability of our models with the case study of managing

non-uniform memory access.

4.1 Background and Motivation

4.1.1 Modeling Blade Servers

Blade servers provide compute and memory capacity in a dense form factor. Multiple

processors reside on a blade, communicating via high-speed serial links and sharing

a physical address space. Multiple blades reside on a backplane, which also per-

mits communication. Together, advances in blade architectures and I/O interfaces
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increase capacity, enable sharing, and improve flexibility for big memory systems.

Capacity. Disaggregated memory architectures increase capacity by decoupling

the provision of compute and memory resources [61]. Whereas traditional servers

increase memory capacity by adding processors and their attached memory channels,

disaggregated servers add memory blades that are designed to supply shared capacity.

Architects can easily adjust memory-to-capacity ratios by tailoring the memory blade

to workloads.

Sharing. Hardware advances in I/O bridges and switches enable sharing for

memory. Memory controllers identify accesses to remote memory on other blades

[81], PCIe bridges expose I/O interfaces on each blade, and PCIe switches route

packets between blades within the server [46, 50, 89]. These communication paths

connect disparate physical address spaces and permit a processor to access another

blade’s memory. Sharing is particularly useful for task parallel computing with het-

erogeneous tasks.

Whereas prior studies prototype or emulate a specific implementation to prove

a concept, we present generalizable models for blade servers. Models enable design

space exploration for hardware organizations, software execution models, and sys-

tem management strategies. We model multi-level NUMA, looking beyond coarse

“local” and “remote” labels to account for memory, inter-processor links, and inter-

blade links. Moreover, we model communication energy for the first time for blade

servers and compare the efficiency of remote access versus data migration for big

data applications.

4.1.2 NUMA Systems Setting

Many concepts contribute to build large shared memory systems, e.g., partitioned

global address space, software distributed shared memory, cache-coherent memory,

user-level message passing and remote direct memory access. In this section, we
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make the case for two big memory system settings, cache-coherent NUMA system

and scale-out NUMA system, and discuss the benefits of using them for emerging

big data applications (i.e., Spark [118], and GraphLab[66]).

Cache-coherent NUMA system (ccNUMA). ccNUMA provides cache-coherent

global physical memory space. AMD and Intel hardware provide cache-coherent

physical memory sharing across nodes through inter-processor technology

(HyperTransport[47] or Intel QPI[49]). Direct memory access can be performed over

the global address space with secure cache-coherence protocols, and can be imple-

mented by hardware. In [46], Hou et al. propose a blade system with coherent

memory sharing through software, guaranteeing a single writer multiple reader in-

variant. Such blade system provides coherent address sharing across processors and

blades, becoming a potential hardware for in-memory computational frameworks,

e.g., Apache Spark.

Spark provides fast iterative MapReduce computation by caching intermediate

results between computational stages in memory with resilient distributed datasets

(RDD). Spark can benefit from big memory systems because tasks more often find

data in memory. However, Spark workers can potentially find RDDs being cached

into a remote memory region on a NUMA machine, causing delays in individual

tasks. Since individual tasks are extremely small and only touch kilobytes-size pages,

task and data migration happen rarely. The operating system migration policies

(e.g., first-touch [104], next touch [65]) benefit little from such short-lived tasks and

frequent task migration could potentially cause congestion traffic in memory systems.

Therefore, the Spark task scheduler should be aware of NUMA effects to improve

task memory locality.

Scale-out NUMA system (soNUMA) Novakovic et al. proposes Scale-out

NUMA in [81], a distributed shared memory system with hardware support. It

provides fast, fine-grained direct memory access (load and store) to remote shared
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Figure 4.1: Scale-out NUMA architecture [81].

memory with a remote memory controller (RMC). Figure 4.1 illustrates one soNUMA

node. In soNUMA, each node runs an instance of an operating system. The cores on

the same node share the last-level cache and memory system. The RMC bypasses

cores and the OS kernel; it directly uses network interface to access remote memory

regions. soNUMA differs from software distributed shared memory (DSM) because it

provides support for fine-grained remote direct memory access with hardware (RMC),

which makes it order of magnitude faster than DSM. Software DSM relies on OS

page-fault and relaxed memory model to propagate the results.

We believe future hardware for big data applications will move towards the soN-

UMA style, supporting fast, fine-grained direct memory access within large dis-

tributed memory system. In soNUMA, NUMA effects still exist and memory locality-

aware schedulers will play a role to improve the system efficiency.

4.2 Modeling Communication Cost

In this section, we identify key architectural parameters for blade servers and derive

cost estimates for three types of communication channels in a blade architecture:

(1) memory bus, (2) inter-processor links, and (3) inter-blade links. By simulating

a server with these estimates, we can assess a task’s NUMA tolerance and commu-
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nication efficiency. We analyze communication scenarios for a representative system

(Figure 4.2), which includes sixteen-core processors, four-processor blades, and four-

blade servers. The system is representative of high-performance servers and is just

one of many possible organizations. Our models can also be used to performance

design space exploration for blade organizations (future work).

4.2.1 Memory Communication

The memory controller is integrated into the processor die and responds to last-level

cache misses. The controller translates a memory request into activate, read, write,

and precharge commands that traverse the memory bus to access the DRAMs. If the

DRAM buffer holds the requested row, the controller issues reads and writes imme-

diately. Otherwise, it first precharges the buffered row and activates the requested

row [53].

Delay. Memory latency is affected by array latency, queueing delays, and re-

quest scheduling. The controller can schedule memory requests for a mix of latency,
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throughput, and fairness targets [78, 79]. For example, the controller may re-order

requests, allowing a later request to access buffered data even if doing so delays an

earlier one. Sophisticated scheduling mitigates row buffer misses and bank conflicts,

which add to memory latency. Simulators precisely capture scheduling and timing

effects [91]. Typical DRAM latency is 50 to 100ns.

Energy. Energy is consumed by the DRAM core and the chip interfaces. The

core consumes dynamic energy due to precharges, activates, reads, and writes [105].

DDRx interfaces, which include delay-locked loops and on-die termination for sig-

nal integrity, draw static current regardless of channel utilization. For this reason,

high-performance memory systems are energy-disproportional for tasks with mod-

est demands for memory bandwidth [68]; alternative chip interfaces can improve

efficiency [41, 69].

DRAM is available in several pin and capacity configurations. If a memory system

uses low-capacity DRAMs with narrow interfaces, it will use many chips and power

increases. However, using high-capacity DRAMs with wide interfaces complicates

mechanisms for reliability [68, 100, 114]. Figure 4.3 presents representative power

numbers. 2Gb DDR3 with 8DQs strikes a balance and dissipates approximately 2W

per GB. A typical server has 8GB per channel, two channels per processor, and four

processors per blade; 64GB of DRAM dissipates 128W.
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4.2.2 Inter-Processor Communication

Multiple processors are integrated into a blade. They share a physical address space

and support coherent access to shared memory. Both the local memory controller

and the interconnect controller observe a last-level cache miss. The latter uses the

memory address to identify and route a memory request destined for another pro-

cessor’s controller. A remote memory request may require one or two hops, which

introduces latency and energy costs in addition to those imposed by DRAM.

Delay. Interconnect and protocol dictate the costs of inter-processor memory

access. The interconnect uses serial, point-to-point links for high data rate and low

latency. The interconnect implements a protocol, appending headers and encoding

the memory request to create a packet for transmission. Packet construction and

transmission increases memory access time.

We use HyperTransport [45] for the inter-processor connection. HyperTransport

transmitter logic requires 18ns to encode contents and add headers. Packet trans-

mission and link interface circuitry adds 14ns. Receiver logic requires another 18ns.

In total, the packetized request requires 50ns to reach a remote memory controller.

With round-trip overheads and DRAM access delay, remote data access requires at

least 150ns.

Energy. To assess energy costs, we examine serial links and their interfaces.

A serial link requires serializer/deserializer (SerDes) circuitry at its endpoints to

convert data between parallel and serial interfaces. This circuitry determines the

energy cost per bit transferred. How this cost translates into system power depends

on the number of processors, the number of links between them, and the data rates

of those links [41].

HyperTransport links connect two processors. The connection is 16 lanes wide

and each lane is implemented with serial links. Differential signaling requires paired
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links. And bi-directional communication requires two paired links since a serial link

is unidirectional. Thus, 16 lanes requires 64 links and 128 SerDes. Each SerDes

consumes 10pJ per bit transferred and can transfer up to 6.4Gb per second [56, 110].

We estimate power by multiplying the number of interfaces, the transfer rate, and the

cost per transfer – power is 8.2W per path and servers may use five paths dissipating

up to 40W.

4.2.3 Inter-Blade Communication

Multiple blades are integrated into a server. Blades share an address space in a

distributed shared memory machine and communicate via a backplane interconnect.

Bridges and switches perform address translation and route memory requests to the

appropriate blade [46, 57, 89]. We describe a blade architecture in which a processor

can access a remote blade’s memory with load/store instructions via PCIe.

PCIe Interfaces. The memory controller, PCIe root complex, and non-transparent

bridges (NTBs) are all integrated into the processor die [50]. The BIOS configures

PCIe ports to serve as NTBs, which provide blade-to-blade interfaces. The BIOS

also divides the physical address space into regions, one for each blade.

When a last-level cache miss occurs, the memory controller uses the memory

address to differentiate local and remote memory requests. The PCIe root complex

handles a remote request, creating a packet that travels to the destination blade via

serial PCIe links. The receiving blade’s NTB translates the request’s address into

its own physical address space, using BIOS-configured registers that track address

space regions.

Delay. Communication costs are determined by the interconnect, which uses

serial links. Each inter-blade connection begins and ends with a bridge that performs

address translation. A typical 64b PCIe transmission requires 240ns of which 50ns is

attributed to DRAM [45]; the remaining 190ns is round trip transmission delay for
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PCIe links.

In a blade server system, the cost of inter-blade communication also depends on

the number of HyperTransport hops. Six PCIe links are used to connected twelve

NTBs for the example in Figure 4.2. A memory request may traverse HyperTransport

to reach the correct bridge and traverse PCIe to reach the correct blade. We calculate

the expected HyperTransport delays on sending and receiving blades, which are

incurred in addition to PCIe and DRAM latencies. With round-trip overheads,

accessing data on a remote blade may require 410ns, including 50ns for DRAM,

190ns for PCIe, and 170ns for expected HyperTransport delay.

Energy. Energy costs increase with blade connectivity. In our example, each

uni-directional connection is 16 lanes-wide and a bi-directional connection requires

32 lanes that dissipate 4.8W. Each lane dissipates 150mW and transfers data at

0.5GB/s [58]; energy cost is 37.5pJ/bit. Moreover, bridge logic and SerDes circuitry

dissipate 2.5W. In total, an inter-blade link dissipates 10W for 32 lanes and two

bridges.

We consider connectivity between four blades, each with four processors and

integrated bridges. These NTBs support back-to-back PCIe connections between

pairs of blades [50]. A fully-connected network requires six connections and twelve

NTBs, which in total dissipate up to 60W.

4.2.4 Summary and Discussions

Table 4.1 summarizes our estimates of communication costs and Figure 4.4 illustrates

the distribution of power consumed by data communication. DRAM accounts for

much of the communication power, but inter-processor and inter-blade overheads

still comprise nearly 30% of the total. More generally, memory and data account for

more than 25% of datacenter energy [14].

In summary, our analytically derived technology models are accurate and con-
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Technology DDR3 HT3.1 PCIe 2.0
8 2Gb,x8 PTP PTP

Data Rate 0.2 0.8 0.5
(GB/s per lane)
Lanes x64 x32 x16
Uni-directional B/W 12.8 25.6 8.0
(GB/s)

Transfer Energy 160.0 (@20% util.) 36.0 37.5
(pJ/bit) 70.0 (@100% util.)

Latency (ns) 50-100 100 RT 190 RT

Table 4.1: Summary of technology models and estimates
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Figure 4.4: Power breakdown for data communication

sistent with prior measurements on physical machines. For the DRAM models, we

use detailed timing and power parameters from manufacturer specifications [75, 91].

For the inter-processor models we use the HyperTransport Consortium’s technology

parameters [45] to estimate the latency attributed to packet processing and trans-

mission. Our estimates align with NUMA measurements for pointer-chasing work-

loads [10, 71, 95]. Inter-processor power numbers are also consistent; we estimate

40W peak and 10-20W at typical utilization, which corroborates industry measure-

ments of 12-16W [7]. Additionally, our inter-blade latency estimates are consistent

with emulation parameters for disaggregated memory [60] and out inter-blade power

estimates are derived from manufacturer specifications for PCIe bridges and link
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interfaces [56, 84].

We arrive at these estimates using parameterized models, which we design to

accommodate a range of technology options . Similar methodology can be used

to derive estimates for other technology generations or protocols. For example, we

consider 2Gb DDR3 DRAMs for memory because they provide the requisite capacity

for big memory servers. Our extensible models can accommodate other DRAM parts

and emerging memory technologies (e.g., LPDDRx [68], fast sleep modes [69], and

PCM [41]).

We consider HyperTransport 2.0 because it is a widely used and open protocol.

Our models can be revised for HyperTransport 3.0 when its specifications become

publicly available. Importantly, our models are equally relevant to Intel’s Quick-

Path Interconnect, which relies on the same fundamental technology – packetized

communication over fast, point-to-point links.

The current models focus on communication within a server and neglect inter-

server networks. Although emerging 40GbE and 100GbE networks provide com-

pelling bandwidth and may be relevant for key-value stores, they do not provide the

low latency we require for direct load/store access to remote memory (at the time of

this research). Ethernet latency is several orders of magnitude greater than remote

memory access latency, which is at most a few hundred nanoseconds. Note that all

the estimates in this project are based on technologies and white papers available

around 2012, as the research is conducted between year 2012-2013.

4.3 Case Studies in Managing NUMA

We illustrate opportunities for parameterized design and management with two case

studies that deploy our technology models. First, we adapt queueing policies to the

costs of varied communication paths. Second, we compare the energy-efficiency of

remote execution against migration.
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4.3.1 Execution Model

Run-time systems rely on task queues to produce parallelism while preserving a pro-

gramming models clean abstractions (e.g., MapReduce, Spark, GraphLab). The task

at the head of the queue is likely to find its data already in main memory because

of in-memory caching or software-level data prefetching. For example, Spark caches

data from the current iteration of a machine learning kernel to ensure its availability

for the next one. However, non-deterministic queueing complicates the coordina-

tion of task scheduling and data placement; the data placement mechanism cannot

predict which core will become available at a certain time. A lack of coordination

exposes NUMA in blade servers. Tasks must navigate multiple levels of NUMA and

still guarantee service quality. We look beyond the bimodal locality classification

(e.g., local versus remote) and examine distance to data when scheduling tasks with

NUMA.

4.3.2 Task Queues and Refusal Scheduling

Refusing Execution. We draw inspiration from delay scheduling [115], which improves

storage locality for MapReduce tasks. For an in-memory computational application,

when a task arrives at the head of the task queue in a blade server, the next available

core may not have its data prefetched in local memory. Instead, the data may have

been prefetched into another processor or blade’s memory. Our case studies present

policies that dictate whether a queued task should refuse execution on an available

core due to NUMA.

Figure 2 illustrates refusal scheduling. Arriving tasks enter a queue. When a core

becomes available, the scheduler determines this cores proximity to data required by

the next task (e.g., address of tasks vertex given an graph in distributed memory).

The schedulers refusal policy selectively refuses and permits NUMA. Refusing tasks

enter a high-priority retrial queue. Queues prioritize tasks with earlier arrival times
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Figure 4.5: Refusal policies and queue management.

for FIFO fairness. A refusal limit is used to avoid starvation. We consider four

refusal policies for multiple NUMA levels (e.g., Figure 4.5).

Refusal Policies. We demonstrate refusal policies for the blade server illustrated

in Figure 4.2, which supports three types of remote access: inter-processor with

one hop, inter-processor with two hops, and inter-blade. We define refusal polices

according to the degree a task tolerates remote data access.

• Local Execution (Local). Task accepts execution on processor for which its

data is local. Otherwise, task refuses.

• Inter-processor 1-Hop Execution (IP-1). Task prefers execution on pro-

cessor for which its data is local. It also accepts execution on processor that is

one inter-processor link away. Otherwise, task refuses.

• Inter-processor 2-Hop Execution (IP-2). Task prefers execution on blade

for which its data is local. The task refuses execution if its data resides on
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another blade.

• Inter-blade Execution (IB). Task prefers execution on a processor for which

its data is local. It then prefers execution on a blade for which its data is

available via inter-processor links. Otherwise, task executes on any available

core via inter-blade links.

The policies are presented in order of increasing NUMA tolerance. Local is least

tolerant; tasks require local memory and refuse even one hop to another processor’s

memory. In contrast, IB tolerates both inter-processor and inter-blade communica-

tion.

Multi-Queue Implementations. Although Figure 4.5 shows a single queue,

refusal scheduling generalizes to multiple queues with round-robin load balancing.

Instead of one queue for the server, suppose we implement one queue per processor.

When a core becomes available, the task at the head of each queue applies its refusal

policy. Among the tasks that do not refuse, the oldest executes. This policy for m

queues approximates a single-queue policy that relaxes FIFO and checks the next m

tasks when a core becomes available. Multiple queues and the single queue provide

the same mean queueing time, but queueing time variance increases with multiple

queues. This case study can be generalized to multiple queue implementations with

modification to the simulation environment.

4.4 Multi-scale Simulation

We present a multi-scale framework that links detailed processor and memory sim-

ulators to a discrete event queueing simulator, thereby permitting the first coor-

dinated study of NUMA and queueing dynamics. Memory simulation quantifies

NUMAs effect on average memory access time, processor simulation quantifies the
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effect on instruction throughput, and queueing simulation quantifies the effect on

system throughput.

4.4.1 Methodologies

Processor and Memory Simulator. We integrate the Marssx86 full-system pro-

cessor simulator [83] with the DRAMSim2 memory simulator [91]. Accessing local

memory requires 50ns in addition to any queueing delays at the memory controller

and any buffer/bank conflicts at the DRAMs. We further add inter-processor and

inter-blade latencies, from the technology model, when accessing remote memory.

We parameterize latency to assess performance penalties when communicating via

one HyperTransport hop, two HyperTransport hops, and PCIe.

Queueing Simulator. We implement a discrete event simulator, modeled after

BigHouse [72, 73], to capture datacenter queueing dynamics. BigHouse uses service

time from physical measurements, which is realistic but inflexible. In contrast, we

embed architectural parameters (derived in this section) into cycle-accurate processor

and memory simulators to estimate service time. This estimate accounts for NUMA

delays, which vary according to the length of the communication path from core to

memory. Service time dictates response times in a G/G/k queue,1 which cannot be

captured in closed-form equations and must be simulated. The queueing simulator

tracks each task’s response time and reports summary statistics for datacenter service

service (e.g., 95th percentile).

Energy cost depends on the amount of data transferred and the links used. Pro-

cessor simulation reports the amount of data transferred by remote accesses. Queue-

ing simulation reports the number of tasks that use each link. We aggregate these

statistics to estimate the average communication power consumed in the system.

And we exploit our models and simulators to evaluate new management strategies

1 Generalized inter-arrival time, generalized service time, k servers.
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Bandwidth Penalty Penalty
# Name (Intensity, MB/s) HT-1 PCIe

Apache Spark

S1 Word count MI 264 1.17x 1.67x
S2 Logistic regression MI 242 1.17x 1.60x
S3 Pagerank MI 276 1.22x 1.76x
S4 Transitive closure MI 235 1.19x 1.62x
S5 Alternating least MI 231 1.16x 1.55x

squares
S6 K-means MI 283 1.22x 1.76x
S7 Pi CI 21 1.01x 1.04x

Phoenix MapReduce

M8 Word count MI 111 1.10x 1.33x
M9 Histogram CI 42 1.02x 1.05x
M10 String match CI 28 1.04x 1.12x
M11 Linear regression CI 7 1.0x 1.0x

Parsec

P12 Facesim EMI 2159 1.39x 2.46x
P13 Dedup CI 50 1.09x 1.19x
P14 Bodytrack CI 35 1.02x 1.06x
P15 Vips CI 23 1.01x 1.04x
P16 Ferret CI 73 1.04x 1.18x
P17 Raytrace CI 19 1.02x 1.06x
P18 Swaptions CI 5 1.00x 1.00x
P19 Streamclusters CI 4 1.00x 1.00x
P20 Blackscholes CI 3 1.00x 1.00x

Table 4.2: Benchmarks, their demand for remote memory bandwidth (Extremely
Memory-Intensive, Memory Intensive, Compute Intensive) and latency penalties
from NUMA.

for blade servers.

4.4.2 Benchmarks and Parameters

Benchmarks. We evaluate twenty benchmarks drawn from Apache Spark [116],

Phoenix MapReduce [87], and Parsec [17]. These workloads operate on big data,

demand throughput, and represent the class of applications targeted by blade servers.

Spark addresses performance limitations in MapReduce for iterative machine learning

algorithms. MapReduce performs I/O to the distributed file system between the

map and reduce phases, which is inefficient within an iterative algorithm such as
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Figure 4.6: Local vs Remote Memory Access.

K-means. In contrast, Spark keeps data in memory across computational iterations

to improve performance by an order of magnitude. We evaluate both Spark and

Phoenix, an implementation of MapReduce for shared memory machines. Finally,

Parsec workloads benchmark data analytics.

Table 4.2 classifies applications according to memory intensity. We measure band-

width demand and classify applications as (extremely) memory-intensive or compute-

intensive. Bandwidth demand correlates with NUMA-induced performance penal-

ties. Extremely memory-intensive tasks must execute on cores with data in local

memory; these tasks would otherwise saturate interconnect bandwidth. The remain-

ing workloads are amenable to a mix of local and remote execution.

Local and Remote Access. Figure 4.6 shows the percentage of local and

remote data accesses. We focus our evaluation on remote accesses to prefetched data

and assume that local memory holds code and stack contents. NUMA tolerance varies

widely, even among memory-intensive applications, because tasks access memory at

different rates and not all accesses address the heap. The simulator identifies address

space regions for code, stack, and heap, using region boundaries to differentiate
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Core 4-way OoO core (2GHz)
L1 Cache 128KB Private L1 Instruction cache

128KB Private L1 Data cache
L2 Cache 2M L2 8-way associate

write-back, 64B cache line size
DRAM DDR3, clock 667MHz, 50ns
Remote Comm. One HyperTransport hop: 100 ns
Latency Two HyperTransport hops: 130 ns

PCIe: 360 ns
Table 4.3: Marssx86 and DRAMSim2 simulation parameters.

remote memory requests from local ones. We track statistics for user mode and

neglect those in kernel mode.

Simulation Parameters. Table 4.3 summarizes processor and memory simu-

lation parameters. We study the big memory blade server of §4.2, which represents

current server design [29, 48]. We implement four scheduling polices – Local, IP-1,

IP-2 and IB – that selectively permit and avoid NUMA. Each policy permits a task

to refuse execution up to the refusal limit. A small refusal limit (1-10) is insufficient

in a many-core server. On the other hand, a large refusal limit (1000) significantly

delays execution. To strike a balance, we limit the maximum number of refusals to

100.

4.5 Evaluation

We use our models and simulators to evaluate case studies in NUMA mitigation. We

find that the optimal refusal pol- icy varies according to a tasks memory intensity

and system utilization. In addition, we discover that permitting fine- grained NUMA

is more energy-efficient than coarse-grained page migration.

4.5.1 Throughput

Avoiding NUMA reduces task service time and increases throughput. A throughput

analysis favors restrictive policies, which refuse execution on cores that require remote
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Figure 4.7: Throughput as a function of task arrival rate for representative tasks
drawn from (a) Spark K-means, (b) Parsec facesim, and (c) MapReduce string match.
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data access. For example, Local and IP-2 policies restrict data movement and limit

service time degradation. We detail the relationship between refusal scheduling and

throughput in two steps. First, we quantify service time for an individual task.

Then, we quantify the maximum sustainable throughput for a stream of tasks within

a blade server.

We simulate an individual task and quantify its performance under three scenarios

for data movement – using local memory, using inter-processor communication, and

using inter-blade communication. We determine how NUMA penalizes instruction

throughput and extend these penalties to task service rate. For example, suppose

each task executes 100M instructions, core frequency is 2.5GHz, and core IPC is 1.

Each core services 25 tasks per second and a blade server with 256 cores services 6,400

tasks per second. This analysis assumes each task uses local memory. In practice,

however, some tasks use remote memory and NUMA penalties degrade throughput.

Figure 4.7 shows how avoiding NUMA increases throughput. Let us define a

server’s maximum sustainable throughput λmax as the highest task arrival rate the

machine can accommodate without increasing response times. As tasks arrive more

quickly and the rate exceeds λmax, tasks accumulate in the queue and response

time increases. A server can sustain higher arrival rates by refusing NUMA execu-

tion, thereby reducing service time and increasing service rate. Local maximizes

throughput while IB penalizes it.

The x-intercept in each figure identifies λmax. For Spark K-means, the server

sustains only 4.6K tasks per second under IB, which permits all communication and

NUMA execution, and sustains 6.4K tasks per second under Local, which refuses

all communication. We observe similar trends for all memory-intensive tasks. But

compute-intensive tasks, such as MapReduce StringMatch, are insensitive to NUMA

and λmax is insensitive to refusal policy.

Figure 4.8 summarizes our throughput analysis for the benchmark suite, showing
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Figure 4.8: Maximum sustained throughput for varied benchmarks indexed in
Table 4.2. Vertical dash lines separate benchmark groups: S1-S7, M8-M11, P12-
P20. This figure format will be consistent for all the graphs in this section.

how throughput improves as the refusal policy becomes more restrictive. With a

policy that favors local execution, tasks encounter lower service time and higher

service rates. And this effect is most pronounced for memory-intensive workloads

(S1-S6, M8, P12), which suffer more from NUMA penalties. Ranking the policies by

increasing throughput gives: IB, IP-2, IP-1, Local. Note, however, that aggregate

throughput is only one measure of system performance. When we consider individual

task latency, judiciously permitting NUMA proves beneficial.

4.5.2 Response Time

Judiciously permitting NUMA reduces queueing delay and response time for indi-

vidual tasks. Dequeueing a task when a core becomes available means less time in

the arrival and retrial queues. A latency analysis favors permissive policies, which

allow execution on cores that require remote data access. However, latency is not

determined by NUMA policy alone. Policy interacts with system utilization and
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a task’s NUMA sensitivity. We simulate two scenarios – highly and lightly loaded

servers – and analyze queueing dynamics for millions of tasks. We calculate the 95th

percentile for response time; recall that response time is queueing time plus service

time.

Figure 4.9 reports the 95th percentile for response time. NUMA execution can be

beneficial, even when tasks are memory-intensive (S1-S6, M8, P10) and server load

is high. As seen in the throughput analysis, refusing NUMA (e.g., Local) reduces

service time by improving locality. But refusing NUMA also increases queueing time

by causing tasks to re-enter the queue for scheduling. If every tasks refuses NUMA,

queueing delays accumulate and harm end-to-end response time. Thus, judiciously

permitting NUMA is beneficial.

NUMA execution can be beneficial, even when tasks are memory-intensive (S1-

S6, M8, P10) and server load is high. IP-1 and IP-2, which permit inter-processor

communication with one and two hops, consistently perform better than Local.

We explain this effect by examining a task’s likelihood of de-queueing when a core

becomes available. If a task adopts Local and refuses communication, the task de-

queues to execute on one specific processor, the one with its data in local memory.

However, if a task adopts IP-1 and tolerates one communication hop, the task de-

queues to execute on any one of three processors, the one with its data and the two

that are one-hop away in the mesh. In other words, a task that adopts IP-1 instead

of Local is 3ˆ more likely to exit the queue when a core becomes available. More

choices shorten queueing times, which shorten response times.

Dequeueing quickly is even more attractive for compute-intensive tasks (S7, M9,

M11, P13-P20). These tasks require little data movement. Refusing NUMA execu-

tion to avoid communication does not reduce service time and only increases queue-

ing time. Compute-intensive tasks can adopt IB, which exploits the PCIe backplane

for direct load/stores to another blade’s memory, without penalty. Indeed, refus-
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Figure 4.9: 95th percentile response time. Response times normalized to IB policy,
which permits all NUMA accesses. Data shown for (a) high server utilization and
(b) low server utilization.
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ing remote execution by adopting Local can harm response time as queueing time

increases – see tasks P18-P20.

Finally, suppose the server is lightly loaded. Because many cores are available,

queueing time is less important and service time dominates response time. In this

setting, refusing NUMA execution and safeguarding service time performs better but

not by much. Local out-performs less restrictive policies like IB and IP-2 by less

than 20% for memory-intensive tasks and by much less for compute-intensive ones.

From a different perspective, this data favors judiciously permitting NUMA because

doing so penalizes performance by less than 20%.

Summary. Our models and analysis produces three conclusions for adapting

refusal policies to different system settings with model hardware:

1. Compute-intensive tasks should permit NUMA (IB) since tasks are insensitive

to memory latency.

2. Memory-intensive tasks should selectively permit NUMA (IP-1, IP-2) in highly

loaded servers to balance service time and queueing time.

3. Memory-intensive tasks should avoid NUMA (Local) in lightly loaded servers

to reduce service time since queueing time is negligible.

4.5.3 Comparison to Data Migration

Task scheduling policies that permit NUMA exploit fine-grained load/store access to

remote memory. Remote access retrieves the data needed to fill a cache line instead

of migrating entire pages from remote locations into local ones. Although migration

is fast, its energy costs are high. We compare the energy costs of remote access and

data migration. Our results show that migration energy is 1.5-5.0x greater than that

of remote access for memory-intensive workloads.
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Energy cost depends on the amount of data transferred and the links used. The

processor and queueing simulations report data transferred by remote accesses and

tasks that use each link. First, to estimate the amount of data migrated, we count the

number of unique pages accessed by a program during a 100M-instruction simulation

and multiply by the page size (4KB). After a page has migrated into local memory,

the processor core retrieves the desired cache line. We use Dpage to denote the amount

of data moved during page migration and use Daccess to denote the amount of data

actually accessed to fill a cache line.

EMigrate “ Dpagep2EMem@100 ` ELinkq `DaccessEMem@20 (4.1)

Equation (4.1) estimates the page migration energy. Page migrations access DRAM

twice – once to read from remote memory and once to write into local memory

– and transfer data at high bandwidth. In addition, these memory transfers may

traverse inter-processor and inter-blade links. We estimate the energy costs for both

types of communication. DRAM cost when transferring data at full bandwidth is

EMem@100 “70pJ/bit. Link cost, based on the expected number of inter-processor

hops, is ELink=110pJ/bit – see §4.2. Finally, filling cache lines incur a relatively high

DRAM cost because these accesses do not fully utilize channel bandwidth, which

increases the average cost to EMem@20 “110pJ/bit.

ERemote “ DaccesspELink ` EMem@20q (4.2)

For comparison, Equation (4.2) estimates the cost of direct access to remote memory.

The simulator counts last-level cache misses, ignoring those for local code and stack,

and multiplies by the cache line size (64B) to estimate the amount of data accessed

remotely (Daccess). Remote access incurs costs for links and for DRAM at the remote

location.
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To note that, the amount of input data that needs to be copied is estimated by the

unique number of pages that have been touched by the program during the execution.

To make this characterization more accurate, simulating the entire program is needed

to model the cache misses across all the application phases. With those data, we can

use the actual input data size instead of the page size. Due to the long simulation

time of all the applications, we only profiled 100M instructions on the region of

interest.

Energy Efficiency. Figure 4.10 shows that the energy cost of data migration is

1.5-5.0ˆ that of remote access. Remote access is less expensive because it transfers

fine-grained cache lines, not coarse-grained memory pages. However, we might expect

migration to perform better if a task transfers a page to access it multiple times,

thereby amortizing the cost of reading a page from remote memory and writing it

into local memory. We determine the number of page accesses that are required

to make migration competitive with remote access. This break-even point, where

Equations 4.1 and 4.2 are equal, is shown below for several communication paths.

• Inter-blade: Daccess{Dpage “ 2.2ˆ

• Inter-processor two-hop: Daccess{Dpage “ 2.9ˆ

• Inter-processor one-hop: Daccess{Dpage “ 4.8ˆ

Migration is less expensive than remote access to another blade if each byte in the

migrated page is accessed 2.2ˆ, on average. Likewise, migration is less expensive

than remote access to another processor if data in the migrated page is used more

than 2.9-4.8ˆ. Migration’s break-even point given inter-processor communication

is higher because remote access across HyperTransport or QuickPath interconnects

consumes little energy.
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Figure 4.10: Data migration versus remote access (Energy). Benchmarks 18-20
are out of scope; baseline energy is too small for compute-intensive workloads with
little memory activity.
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Figure 4.11: Data migration versus remote access (Power)
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Figure 4.12: Data migration versus remote access (ED2).

Figure 4.11 shows that migration dissipates more power than remote access.

Moreover, it shows that migration is an inefficient mechanism to improve perfor-

mance. For example, inter-blade remote accesses increase task delay by 1.6-1.7ˆ

– see Table 4.2. Migration eliminates this slowdown by avoiding remote accesses

but increases communication energy by 2.0-8.0ˆ to do so – see Figure 4.10. Such

asymmetric energy-delay trade-offs encourage policies that selectively permit NUMA

instead of data migration.

Finally, Figure 4.12 presents the ED2 metric for energy efficiency. This metric

is equivalent to performance-cubed per Watt, which is a voltage invariant metric

derived from the cubic relationship between power and voltage [21]. Moreover, this

metric emphasizes performance over power. In this setting, data migration is pre-

ferred when remote access requires inter-blade communication, which more heavily

penalizes performance. But remote access is still preferred when remote access re-

quires inter-processor communication.
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4.5.4 Power Efficiency Analysis

Figure 4.13 presents the average communication power for four degrees of NUMA

refusal. Refusal policies divert data flow between various paths and interconnects.

Some of these paths dissipate more power than others. Intelligently refusing execu-

tion reduces power by eliminating communication with distant memory. Ranking the

policies by increasing power efficiency gives: IB, Local, IP-2, IP-1. This ranking

is determined by how each refusal policy distributes data movement across links in

the system.

Figure 4.14 shows the distribution of task data accesses for the NUMA-refusal

policies. To understand this graph and its implications for power, consider the Local

scheduler, which refuses execution on available cores unless task data resides in local

memory. The scheduler limits the maximum number of refusals. Once a task reaches

this limit, it must dispatch to the next available core. Most tasks execute locally

but tasks that refuse too often risk inter-blade communication. This risk means that
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Local, dissipates more power than IP-1 and IP-2 policies, which selectively permit

inter-processor communication. Permitting all types of remote data access with IB

is obviously power-intensive.

Figure 4.13 presents power numbers that are consistent with reasonable link uti-

lization. For example, the memory-intensive benchmarks S1-S6 running with the IB

scheduler dissipates 13W. From this number, we can infer link utilization. Hyper-

Transport and PCIe dissipate 40W and 60W at peak utilization, but we expect 60%

and 40% utilization on these communication paths given the distribution in Figure

4.14 and utilized power scales to 48W. The fact that the simulator reports 13W for

the memory-intensive S1-S6 suggests that these Spark workloads use about 25% of

the link bandwidth.

In summary, we find that remote access and NUMA execution is more efficient

than data migration. Moreover, NUMA-aware scheduling policies reduce power and

energy by shifting communication towards more efficient paths. Finally, the power

analysis indicates that NUMA execution produces moderate link utilization through-
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out the blade server.

4.6 Conclusions and Future Work

In this chapter, we analyze communication costs in blade servers, deriving technol-

ogy models for system simulation. We present case studies that coordinate NUMA

mitigation and queue management. These studies illustrate benefits in throughput,

response time, and energy efficiency for various applications. Our results motivate

further hardware design space exploration and sophisticated task management for

in-memory computing on blade servers.

Our modeling methods lay the foundation for coordinated design of software

scheduling policies and hardware interconnection topologies. The current framework

allows the system scheduler (NUMA-aware scheduler) to choose a tolerable NUMA

level for applications targeting performance or energy goals. The optimal refusal

scheduling policy changes when the optimization goal switches from response time

to energy-efficiency. However, a centralized scheduler faces challenges adjusting for

heterogeneous environments; i.e., heterogeneous tasks, diverse user preferences, sys-

tem goals and data distribution. For future studies, such memory locality-aware

scheduling problem resembles the pricing problem for city parking [25]; microeco-

nomic models can be an effective approach to decentralize the scheduling process

and satisfy diverse users’ preferences. Such a formalism may be an attractive future

work. Decentralized updating rules define prices of each memory location based on

supply, demand, data hot spot and nearby interconnection traffic. Then each task

acts on behalf of itself to choose the location, pays the price and occupies the mem-

ory location. A preliminary study of this extension is done during the author’s PhD

study. This thesis does not include details of this study.
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5

Conclusion

This thesis proposes to use microeconomic models for managing shared datacenters

and presents three pieces of work to demonstrate the workflow and effectiveness of

this approach. In each work, we design system management frameworks that can

improve server utilization and system performance while guaranteeing shared user

fairness. The definition of fairness differs when the system setting changes. For

instance, in the first work, our definition for fair task colocation is stability, satisfied

preferences and fair attribution of colocation costs; in the second work, we pursue

fair resource allocation that guarantees sharing incentives, envy-freeness and Pareto-

efficiency. Both fairness properties are defined from a game-theoretic perspective

to incentivize strategic users to share. With related microeconomic models, we are

able to formalize the problem, develop management mechanisms that can provide

competitive system performance while guaranteeing game-theoretic desiderata.

Our contribution is not limited to adapting microeconomic models for system

problems. Being able to provide satisfactory system performance, we must develop

accurate performance models that can quickly capture applications’ behavior to hard-

ware in datacenters. The coordinated design approach of lightweight performance
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models that can drive the system management mechanisms is a bigger contribution.

In this thesis, we experiment with three types of performance modeling techniques,

ranging from fitting utility functions, to training machine learning models from his-

torical data, to developing our own parametric models from system simulations. Each

method has its own strength and challenges.

Utility functions are the simplest models which provide a concise interface for

designing the management mechanisms. However, these functions can hardly capture

diverse types of applications’ behavior and often times one model is needed for each

type of application. Machine learning models such as classification techniques can

overcome these difficulties in performance modeling. The downside is that there

are limited management algorithms that can use the output of these models for

making resource allocation or scheduling decisions. Finally, the most complicated

performance model used in this thesis is system, architectural simulation combined

with derived technology models. One use case for such a detailed model is to reduce

the design costs and cycles for configurable servers and to provide performance and

energy estimates for various hardware configurations and technology selections. The

other use case for this model is to analyze the application performance and energy

effect under different system management policies for a fixed server configuration.

The results presented in the dissertation, either with simulations or real system

measurements, are just the beginning of this type of research. Each work can be

improved to various degrees and to different directions. Details are stated in the

conclusions and future work section under the corresponding chapter. During the

presentation of this research, I always get one important question “Why do we care

about fairness in systems?” The answer is obvious from the perspective of human

behavior but subtle from the perspective of systems management. Why do company

management systems need fairness? Why do voting systems need fairness? Because

in any system without fairness, human beings as selfish animals will greedily pursue
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their goals until resources are all consumed. There is no guarantee that every human

being will have an equal opportunity to benefit from these resources. And in order

to give an equal opportunity to benefit from these resources, fairness is a common

goal in many management policies. As human users are behind every application,

guaranteeing application’s fairness is similar as giving each user a fair chance to

“survive”. Therefore, it should be considered as an important system outcome. The

challenge still lies in the design of management policies that are both fair and efficient.

109



Bibliography

[1] “Akka scala documentation,” http://doc.akka.io/docs/akka/2.4/AkkaScala.
pdf.

[2] “Docker,” http:/docs.docker.com.

[3] “Movielens,” http://grouplens.org/datasets/movielens/.

[4] “Us census data (1990) data set,” https://archive.ics.uci.edu/ml/datasets/
US+Census+Data+(1990).

[5] “Web data commons: Hyperlink graphs,” http://webdatacommons.org/
hyperlinkgraph/index.html.
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