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We study the low-temperature behavior of a simple cluster-crystal forming system through simulation.

We find the phase diagram to be hybrid between the Gaussian core model and the penetrable sphere

model. The system additionally exhibits S-shaped doubly reentrant phase sequences as well as critical

isostructural transitions between crystals of different average lattice site occupancy. Because of the

possible annihilation of lattice sites and accompanying clustering, the system moreover shows an unusual

softening upon compression.

DOI: 10.1103/PhysRevLett.105.245701 PACS numbers: 64.70.K�, 62.20.�x, 64.70.D�, 82.30.Nr

Since van der Waals and Kirkwood, we better appreciate
the fundamental role of harshly repulsive interactions in
the organization of matter [1]. But what happens when
harshness turns into softness? Core softened potentials
can exhibit microphase separation [2], reentrant melting,
and isostructural phase transitions [3], as found in systems
as diverse as cerium metal [4], star polymers [5], dipolar
spheres [6], electron bubbles [7,8], and rotating Bose gases
[9]. Even softer coreless repulsive interactions are also
found in complex systems. Nonlinear fields can form par-
ticlelike structures governed by solitonlike interactions
[10,11]; and for structures with low fractal dimension,
such as polymers [12], dendrimers [13,14], and microgels
[15], the centers of mass can be immaterial and thus over-
lap with only a finite free energy penalty. As a result,
materials governed by such interactions exhibit unusual
phenomenology compared to ‘‘simple’’ matter [16]. Soft
core models are further used to study the difficult glass
[17,18] and classical ground state determination problems
[19,20], highlighting the broad interest in the behavior of
systems with soft potentials.

A certain universality permeates the thermodynamic
assembly of systems governed by bounded, purely repul-
sive interactions. Two phenomenological categories have
been identified from a mean-field analysis. Systems with
pair interactions whose Fourier components are purely
positive are expected to show reentrant melting, while
those with some negative Fourier components should clus-
ter and freeze into multiply occupied crystals (MOCs)
upon compression [17,21–27]. Crossing the divide be-
tween the two categories can be realized via the tunable
generalized exponential model of index n (GEM-n) [23],
whose pair potential for particles a distance r apart is

�ðrÞ ¼ " exp½�ðr=�Þn�; (1)

with " and � setting the units of energy and length,
respectively [28]. Upon compression at low temperatures,

the n ¼ 2 Gaussian core model (GCM) [30], which has a
purely positive Fourier transform, forms cubic crystals that
eventually remelt [31,32], while all GEM-n of n > 2 have
some negative Fourier components and are thus predicted
to form MOCs at high temperatures [22], including the
n ! 1 penetrable sphere model (PSM) limit [21].
For strong interactions (or effective low temperatures),

which may be the experimentally most relevant regime, the
phase behavior of MOC-forming systems is not under-
stood. Various plausible ordering scenarios upon compres-
sion are suggested by theory and experiments: Density
functional theory predicts a continuous increase in cluster-
ing [22,23]; the PSM limit presents a sequence of second-
order phase transitions between crystals of increasing
occupancy [21]; and bubble solids alternate liquid and
crystal phases of increasing lattice occupancy [7]. A cas-
cade of pure first-order isostructural solid-solid transitions
between crystals of different occupancy is also plausible,
as theoretically predicted by Ref. [33]. Such isostructural
transitions should terminate at critical points, because the
cluster occupancy of high-temperature MOC formers in-
creases continuously with density [23,24]. A rare example
of this type of critical point is found in pure cerium, where
a pressure-induced electronic promotion underlies the tran-
sition between two isostructural solids with different lattice
spacing [4,34]. Critical points involving volume collapse
have also been predicted for a variety of purely classical,
discontinuous model potentials [3,35]. But the experimen-
tal colloidal systems in which they could be observed have
intrinsic size polydispersity [36] or smooth effective inter-
actions [16] that inhibit phase separation. The relatively
broad lattice spacing of MOCs and their smooth interaction
form suggest that crystal formation should be less sensitive
to these experimental constraints.
In this Letter, we present a computational study of the

low-temperature behavior of theMOC-forming GEM-4. Its
phase behavior is shown to be a complex hybrid between
the GCM and the PSM limits. We furthermore find
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complex reentrant transitions and evidence for a cascade of
isostructural transitions.

We perform lattice Monte Carlo simulations [37] of the
GEM-4 model, whose high-temperature behavior was pre-
viously determined [24], for N ¼ 1000–5000 particles at
constant N, volume V, and temperature T. The pressure P
is obtained from the virial and the Helmholtz free energy F
of the different phases is calculated via thermodynamic
integration. The ideal gas reference [29] is complemented,
for the body-centered cubic (bcc) and face-centered cubic
(fcc) crystal phases, with a potential well centered around
each of the Nc lattice sites [27]. This crystal reference, by
allowing for the characteristic multiple occupation of lat-
tice sites and for particle hopping between those sites,
permits a reversible integration path. For a fixed number
density �, the average lattice site occupancy nc ¼ N=Nc at
equilibrium is identified for every state point by simulating
crystals at various fixed nc then minimizing the resulting
constrained free energy FðncÞ, i.e., identifying the loci
Fðneqc Þ such that (Fig. 1)

�
@FðncÞ
@nc

�
�;T;nc¼neqc

¼ 0; (2)

similarly to the scheme employed in Ref. [38] and that used
for GEM-4’s high-T phase diagram determination. In the
latter, nc was tuned until the (unphysical) field conjugate to
nc had vanished [24,39], which allows for a gradient-based
minimization of F, but relies on an additional independent
calculation of the chemical potential �. This approach
breaks down at low T, where � cannot be efficiently
resolved by Widom’s particle insertion [29]. Phase coex-
istence is then determined through common tangent

construction of the free energy data. A linear transforma-
tion � ~F�=N ¼ �F�=N � �� with inverse temperature �
and arbitrary unitless parameter � enhances the visibility of
the coexistence regime (Fig. 2).
We present two projections of the low-T phase diagram

in Fig. 1. As anticipated from the high-T extrapolation, the

cluster bcc phase vanishes at a triple point Tð1Þ
t ¼ 0:078ð1Þ.

But surprisingly the transition is preceded by a S-shaped
doubly reentrant (SDR) crystal phase sequence, where both
a maximum and a minimum in the coexistence curve are

observed. Below Tð1Þ
t , the phase diagram is surprisingly

rich. GCM-like phase behavior [30–32] is followed by an
unexpectedly complex clustering regime. Because the tail
of the GEM-4 decays faster than any inverse power, the
liquid freezes into a single-occupancy fcc (fcc1) that
reaches vanishingly small densities at low T, in agreement
with predictions from genetic algorithms [40,41] and pho-
non theory [33]. This fcc1 phase gives way to a single-

occupancy bcc (bcc1) phase at a second triple point Tð2Þ
t ¼

0:031ð1Þ. For a narrow temperature range above Tð2Þ
t , a

bcc1 wedge between the liquid and the fcc1 phase leads
to reentrant crystallization of bcc1 upon compression. The
maximum freezing temperature for bcc1 at T ¼ 0:039ð1Þ
leads to a second SDR sequence similar to that observed in
the hard core and soft shoulder model [3,4]. By contrast to
the GCM’s reentrant melting behavior [30–32], here the
liquid reentrance section of the SDR sequence spreads only
over a finite density regime 0:59 & � & 0:68 and over a
much smaller temperature range 0:0385 & T & 0:039. The
intermediate nature of the GEM-4 suggests that this reen-
trance might become more pronounced as the GCM is
approached, i.e., n ! 2þ, and should disappear before
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FIG. 1 (color online). T-� (left) and P-T (right) low- and high-T (left insets [24]) simulation phase diagrams. The isostructural
critical point (h) is extrapolated from the law of rectilinear diameters [29], and the T ¼ 0 results (d) come from phonon theory [33].
Left: The coexistence regions (shaded) are delimited by simulation results for liquid (4), bcc (5), and fcc (�) phases. The free energy
per particle for the bcc (5) and fcc (�) phases at T ¼ 0:03 and � ¼ 0:85 shows that a fcc with neqc ¼ 1:94ð1Þ is the ground state (right
inset). Right: The phase boundaries (solid lines) are guides for the eye that are consistent with the Gibbs-Duhem slopes (not shown) at
the coexistence points ( � ). The triple points (4) are numbered. The right inset enlarges the SDR liquid-bcc1-liquid-bcc1 sequence and
the bcc1-fcc1-bcc1 crystal reentrance.
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the PSM limit n ! 1, where reentrance is not expected
[21]. The connection between the high- and low-T regimes

occurs through a third triple point Tð3Þ
t ¼ 0:040ð1Þ, at

which bcc1 vanishes. A prior, coarser study of the liquid-
crystal transition in this regime missed both the presence of
fcc1 and of the reentrant melting [42]. It also inaccurately
assigned the unusual shape of the liquid-crystal coexis-
tence curve to the onset of clustering, while it is rather
caused by the reentrant melting.

Clustering does indeed influence the phase diagram
topology, but at densities further away from the liquid
phase. At low T the nature of clustering is unlike what is
seen at higher T, where nc changes linearly with � result-
ing in a nearly density-independent lattice constant [24].
Here, nc is quasiquantized, and at very low T the lattice
constant a changes discontinuously through isostructural
transitions between fcc lattices of nearly perfect integer
mean occupancy nc $ nc þ 1 (Figs. 2 and 3). The first
occurrence of these transitions, fcc1 $ fcc2, is partially
interrupted by the bcc1 phase, down to the fourth triple

point Tð4Þ
t ¼ 0:012ð1Þ (Fig. 1). But at higher densities, the

fcc2 $ fcc3 coexistence is fully developed. No other liq-
uid or crystal phases are found to interfere and genetic
algorithm results corroborate that no other crystal symme-
try should be stable in this density regime [40,41]. It is at
the moment computationally difficult to go beyond fcc3,
but both a zero temperature treatment paired with phonon
theory [33] and a simple mean-field cell theory predict a
cascade of nc $ nc þ 1 isostructural transitions to carry
on ad infinitum, slightly broadening the coexistence regime
between two integer occupancies. As argued above, the

topology of the phase diagram demands that each unin-
terrupted isostructural transition terminates at a critical

point, the first one of which is found at Tð2;3Þ
c ¼ 0:049ð3Þ.

Hopping between lattice sites should depress Tðnc;ncþ1Þ
c as

nc increases, and mean-field critical universality is gener-
ally expected [22,43]. The series of first-order isostructural
transitions contrasts with the continuous second-order
clustering transitions for the PSM predicted by cell theory
[21]. This last observation suggests that the behavior of the
PSMmight be singular, but further studies are necessary to
clarify the GEM-n family phase behavior as n ! 1.
One of the key material properties of MOCs is the

presence of two distinct microscopic mechanisms for re-
sponding to compression. Like any other crystal, MOCs
can affinely reduce their lattice constant, but additionally
they can eliminate lattice sites by increasing the mean
lattice occupancy. We can decompose the bulk modulus

B � V

�
@2F

@V2

�
N;T

¼ Bvir � Bcorr (3)

into a constant nc virial contribution Bvir and a ‘‘softening’’
correction Bcorr, which map directly to the two microscopic
mechanisms [24,44]. At high T, Bcorr can be as high as half
the virial component [24], but in low-T crystals, the qua-
siquantized jumps in nc lead to a significantly different
mechanical behavior. Away from the coexistence regions,
where nc is nearly constant, the system responds only
affinely to isothermal compression and the virial contribu-
tion to the bulk modulus captures the full response of the
system, i.e., Bcorr � 0 (Fig. 3) [45]. But in the softening
regions that precede and follow the phase transitions the
quantization is imperfect, and Bcorr � 0. Near the bcc1-
fcc2 transition, for instance, Bcorr is nearly equal to the
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virial contribution, which means that the system exerts
almost no resistance to compression. This very rapid
change in mechanical properties with compression is un-
common and may lead to novel material behavior. The
different physical natures of the virial and softening con-
tributions indeed suggest a separation of time scales for
their microscopic relaxation, with slow particle redistrib-
utions contrasted by fast affine deformations. Hardening or
softening of the material upon compression might thus
depend on the deformation rate.

We have presented the intriguing low-temperature phase
behavior of the MOC-forming GEM-4 through a numerical
method specially designed for this class of systems. The
complexity of the phase behavior is particularly notewor-
thy considering the simplicity of the model, which is free
of competing length scales. Experimental soft matter real-
izations of MOCs are still lacking, but large-scale,
monomer-resolved simulations of amphiphilic cluster-
forming dendrimers are currently under way [46].
Importantly, the approach outlined in the present work
should be directly applicable to phenomena of reversible
cluster formation in other branches of physics. Examples
are the structures formed by the soft solitons [10,11], the
quasi-2D electron bubbles in the quantum-Hall regime
[7,8], and the predicted clustering of vortex lines in rotat-
ing Bose gases [9].

We thank D. Frenkel, O. Poplavskyy, N. Cooper
(Cambridge), and C.N. Likos (Vienna) for helpful discus-
sions and A. Dawid (Grenoble) for careful reading of the
manuscript. K. Z. and P. C. acknowledge ORAU and Duke
startup funding. B.M.M. acknowledges EU funding via
FP7-PEOPLE-IEF-2008 No. 236663.

*patrick.charbonneau@duke.edu
†bmm32@cam.ac.uk

[1] J. D. Van der Waals, On the Continuity of the Gaseous and
Liquid States (Elsevier Science, New York, 1988).

[2] M.A. Glaser et al., Europhys. Lett. 78, 46 004 (2007).
[3] D. A. Young and B. J. Alder, J. Chem. Phys. 70, 473

(1979).
[4] D. A. Young, Phase Diagrams of the Elements (University

of California Press, Berkeley, 1991).
[5] M. Watzlawek, C. N. Likos, and H. Löwen, Phys. Rev.
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