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Abstract 
Mismatches in the spatiotemporal variability of resource, resource users and 

management actions breeds inefficiency in the management of marine resources.  To 

date, the spatiotemporal resolution and extent of fisheries management has been largely 

dictated by logistical and political constraints, and secondarily by the geographic range 

of the species or meta-population dynamics.  Management units are rarely smaller than 

1000 km2 in developed coastal fisheries, and management measures generally occur at 

resolutions larger than 100 km2.  From a temporal perspective, the finest resolution of 

management measures is at best a month but more generally a year.  As such, attempts 

to manage processes and patterns at sub-10 km, sub-1 month resolution often involve 

some level of spatiotemporal mismatch.  To address the obvious spatiotemporal 

mismatch between a dynamic ocean and static management, to allow for a 

comprehensive implementation of ecosystem-based fisheries management, and to 

minimize inefficiency in our management of marine resources, we must seek to develop 

more dynamic management measures that allow managers to address scales, processes 

and patterns occurring under ten kilometers. 

In this dissertation I apply point pattern processes, cumulative distribution 

functions, receiver operator characteristic curves, simulated annealing tools, regression 

models and clustering techniques to develop examples of two dynamic management 
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measures and to compare the efficiency of static versus dynamic management measures.  

I show that autocorrelation analysis can inform the distances and times used in real-time 

closures based on move-on rules.  Further, I identify optimum bottom temperature 

threshold values to separate individual species within the Northeast Multispecies 

Fishery from Atlantic cod.  Results demonstrate that dynamic spatiotemporal 

management measures are widely applicable, and more effective and more efficient than 

static time-area closures.  Unexpected trends in some results due to a changing climate 

indicate possible increasing thermal overlap between Atlantic cod and many other 

species in the fishery.  Implications of scale in fisheries management and the importance 

of coarse scale (1 – 10km) ecological patterns to fisheries are discussed. 
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1. Introduction: Spatiotemporal management of fisheries 
to reduce bycatch and increase fishing selectivity1 

Marine environments are currently under stress due to a variety of human 

influences (Halpern et al., 2008).  Fisheries represent one of the greatest anthropogenic 

stressors on marine ecosystems (Dayton et al., 1995; Goñi, 1998; Jackson et al., 2001).  

Among the ecosystem effects of fishing, the detrimental impact of bycatch has been 

increasingly documented in recent years (Crowder and Murawski, 1998; Hall et al., 2000; 

Lewison et al., 2004; Gilman et al., 2005).  For the purposes of this dissertation, I define 

bycatch as the catch from a fishery that is not landed due to regulatory or economic 

reasons.  The role of fisheries bycatch in the decline of populations of protected species 

(N. P. Brothers et al., 1999; Spotila et al., 2000; Read et al., 2006; Reeves et al., 2013; 

Wallace et al., 2013) has led to the enactment of conservation policies (Moore et al., 2009) 

and costly management measures including fishery closures and gear alterations (Curtis 

and Hicks, 2000; E. Gilman et al., 2006).   

While much attention has been given to the issue of the incidental capture of 

protected species, bycatch is not merely a protected species issue.  Finfish bycatch can be 

1A version of this chapter has been previously published as: Dunn, D.C., A. Boustany, P.N. Halpin. (2011) 
Spatiotemporal management of fisheries to reduce bycatch and increase fishing selectivity. Fish and 
Fisheries 12:110-119. 
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discarded by fishers due to regulations (i.e., “regulatory discards”) or lack of commercial 

value (i.e., “economic discards”).  A recent FAO report estimates bycatch to be ~23% of 

global marine landings, though these levels can be much higher for specific fishing gear 

(Kelleher, 2005; FAO, 2009).  Mortality rates associated with bycatch can be very high.  

Thus, bycatch represents a sub-optimal use of marine resources: adding to the depletion 

of already heavily exploited stocks; delaying or preventing the recovery overfished 

stocks, depleting prey resources for other fisheries, and causing the early closure of 

fisheries when catch or bycatch quotas of commercial or protected species are exceeded.  

The economic impact of these effects can be substantial.  Rebuilt fisheries have been 

estimated to be worth approximately three times the value of depleted fisheries (Sumaila 

and Suatoni, 2006), and the global opportunity cost of depleted and overcapacity 

fisheries has been projected to be $50 billion a year (Arnason et al., 2009).  Further, the 

early closure of an otherwise sustainable fishery due to a bycatch quota being exceeded 

results in unrealized economic gains and places an undesirable financial burden on 

fishers (Curtis and Hicks, 2000; Chakravorty and Nemoto, 2001).  In order to maximize 

the economic efficiency and limit the ecosystem effects of fishing, bycatch must be 

minimized and fishing selectivity (i.e., catch to bycatch ratios) must be increased.  

As ecosystem-based management approaches are employed and more fisheries 

are managed through multi-species, multi-objective models, the management of 
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regulatory bycatch will likely increase.  This can already be seen in the importance given 

to the management of bycatch in the fisheries policy of many governments (e.g. the EU 

Common Fisheries Policy or the Australian Fisheries Management Act), and recent 

reforms of such legislation (CEC 2009, or e.g., the Magnuson-Stevens Fishery 

Conservation and Management Reauthorization Act of 2006).   It is also particularly 

relevant in the United States, as the deadline for setting Annual Catch Limits (ACLs) in 

fisheries experiencing overfishing passed in 2010, and in all other fisheries in 2011.  This 

has resulted in a dramatic expansion of the number of quotas for which fishers and 

regulators will have to account (Hall et al., 2000).  Quotas are a type of catch 

management measure that limit the total number of fish that can be taken in a fishery, 

but this type of measure does not improve fishing selectivity.  Typical effort-based 

management measures (e.g., bag limits or trip limits) also cannot address issues of 

fishing selectivity.  However, operational measures (i.e. how and where fishing occurs) 

can be used for this purpose.  Thus, to ensure that regulations do not result in the early 

closure of fisheries, it is imperative that managers be given the tools necessary to limit 

bycatch through operational management measures.  Targeted spatiotemporal fishery 

closures can increase fishing selectivity by prohibiting fishing in areas with high bycatch 

to catch ratios, and are a possible solution open to managers (Hall, 2002; Hall and 

Mainprize, 2005).  Time-area closures have been used internationally to reduce bycatch 
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of both protected and commercial species (Hooker and Gerber, 2004; or e.g., AFMA, 

2009; PFMC, 2008).  However, many methods to identify and manage the 

spatiotemporal nature of bycatch remain acutely under-utilized.  In an effort to 

synthesize available information before further analyzing individual measures and 

developing comparisons of static vs. dynamic measures, I present an analytical 

framework in this introduction for the spatiotemporal management of fisheries to 

reduce bycatch and increase fishing selectivity. 

 

1.1 Why mitigate bycatch with spatiotemporal measures? 

The current movement towards marine spatial planning (MSP) offers an 

important framework and impetus to examine how we manage fisheries spatially.  As 

plans are put forth, fishers and regulators will want to ensure that areas of persistently 

high fishing efficiency and selectivity remain open to fisheries.  This requires that 

researchers and regulators first understand the spatiotemporal nature of bycatch within 

their systems, and then identify and protect economically efficient fishing locations 

against the potential negative impacts of other industries (i.e. mining, shipping, etc.).  

The framework put forward in this introduction offers fisheries managers a means to 

identify such fishing areas, and a first step toward objectively participating in the MSP 

process. 
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Ecosystem-based management of biological resources requires that the measures 

taken be ecologically appropriate and relevant (i.e., related to the biology or ecology of 

the species in question).  Thus, the use of marine spatiotemporal closures to reduce 

bycatch should be based on clearly quantifiable relationships to behaviors (e.g., 

foraging) or physiology (e.g. range limits due to salinity or temperature, etc.).  To date, 

fisheries closures have largely been used to prevent catch or to reduce bycatch of 

sedentary species associated with particular static habitats (e.g., protecting deep-water 

grouper species or groundfish by protecting deep-water hardbottom habitats; (e.g., 

AFMA, 2009; SAFMC, 2007).  The use of one particular area for multiple life history 

stages makes such species-environment relationships ideally suited to static spatial 

management.  However, management measures directed at protecting an individual 

life-history stage (e.g., protection of spawning aggregations) can also effectively limit 

risk to endangered or overfished species (e.g., AFMA, 2009b; Beets and Friedlander, 

1999; Dutton et al., 2005).  Further, networks of closures meant to protect successive 

individual life-history stages may be highly successful where a single spatiotemporal 

measure meant to protect one life-history stage is not enough to guarantee the 

sustainability of a population.   
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Table 1: Examples of behaviours or physiology and potential management measures 
and analytical techniques that may be applied to address them. 

Analytical Technique Examples of Ecological Relevance (i.e., patterns revealed) 

Periodicity analyses • Temporal-regulated behavioral patterns (e.g., foraging) 

Local spatial association 
analyses 

• Persistent habitat usage (e.g., reef-dependent species) 

Combination of periodicity 
and local spatial 
association analyses 

• Migration patterns (both horizontal and vertical) 
• Seasonal habitat usage 

Spatial & temporal 
autocorrelation analyses 

• Episodic resource usage 
• Schooling and social behaviour 

Oceanographic correlate 
analyses 

• Physiological limits (e.g. to temperature or salinity) 
• Correlates to behavioural states (e.g. foraging) 

   
 

Numerous behaviors and physiological traits can be used as the ecological basis 

for mitigating bycatch with spatiotemporal measures (see Table 1).  Persistent habitat 

usage, the use of one area by resident species throughout multiple life-history stages, 

was discussed above.  Dynamic or ephemeral habitat usage will require different 

management approaches.  Protection of seasonal habitat usage has also been a common 

objective of fisheries closures, and the use of bycatch rates to focus such time-area 

closures is not uncommon.  Migration patterns have been incorporated in 

spatiotemporal management through the use of rolling closures meant to protect the 

species as they move through particular areas during their migration (e.g., NEFMC, 
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1999).  Bycatch of animals engaged in episodic resource usage (i.e., the targeting of static 

habitats by opportunistic foragers, or specific ephemeral habitats by specialized 

consumers including depredation events) can be mitigated through event-triggered 

closures.  Schooling or other social behavior among marine organisms also lends itself to 

such dynamic management measures.  Finally, physiological limits or preferences offer 

clear values that can be used to create oceanographic closures (e.g., Howell et al., 2008; 

http://www.pifsc.noaa.gov/eod/turtlewatch.php) or compared to maps of oceanographic 

climatologies to optimize the siting of static fishery closures based on the probability 

that the oceanographic feature will be present in a given cell over a specific time period 

(i.e., weekly, monthly, annually, etc.; e.g. Hobday and Hartmann, 2006; Hobday et al., 

2010).  Similarly, oceanographic correlates of various behavioral states, or life-history 

stages, can be used to delineate and protect such areas.  

Although the theoretical ecological relevance of various spatiotemporal 

management measures is easily defined, there are few examples of the use of bio-

physical parameters other than benthic habitat type as the basis for selecting the location 

of a spatiotemporal fishery closure.  Event triggered closures are the most common form 

and are used to close shellfish fisheries due to declines in water quality following storms 

(e.g., NCDENR, 1987) and are implemented via move-on rules to inform real-time 

closures in marine fisheries.  Move-on rules are reviewed in chapter 1 to provide 
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background before a theoretical example informed by spatiotemporal autocorrelation 

analysis is developed.   

The spatiotemporal associations between fishing effort, non-target species and 

observed oceanographic features may also be used to identify critical pelagic areas that 

can be delimited and managed using static or dynamic fishery closures.  Correlations 

between bycatch rates and dynamic oceanographic features have been elucidated in 

peer-reviewed literature (Klaer and Polacheck, 1998; N. Brothers et al., 1999; Kobayashi 

and Polovina, 2005; Dietrich et al., 2009).  Oceanographic characterizations of catch rates 

are even more common (e.g. Bigelow et al., 1999; Seki et al., 2002; Zagaglia et al., 2004) 

and include a wider variety of variables (e.g. frontal systems, sea-surface height, or 

salinity).  Further, numerous habitat models for commercial and non-target species 

based on dynamic oceanography have been published (Redfern et al., 2006; Oppel et al., 

2012).  However, these relationships to dynamic oceanographic features have rarely 

been incorporated into active resource management planning.  In chapter 2, bottom-

temperature is used to differentiate biomass of target and non-target species to identify 

optimum threshold values to inform temperature targeting and temperature-based 

closures.  The rest of this introduction places these management measures within a 

broader framework, offering a concise description of the management options that 

might be used based on information gathered by specific analytical techniques.   
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1.2 The analytical framework 

Five questions surround any attempt to designate a fishery closure: (1) What are 

the specific outcomes to be achieved (e.g. to reduce unintended bycatch of a non-target 

species during the peak migratory season etc.); (2) How should the closure be 

constrained in time; (3) how should the closure be constrained in space; (4) how will the 

implementation be designed and enforced; and (5) how will the benefits and costs be 

objectively measured? 

I propose the use of a general decision tree as a guideline to assist in the 

definition of appropriate time and space requirements to better meet fisheries 

management objectives within an MSP context. These approaches aim to reduce bycatch 

by using the periodicity of bycatch events in space and time, the autocorrelation of the 

events, and the relationship of events to oceanographic patterns.  On the temporal side, 

fisheries closures may be dynamic (i.e., triggered by an event), seasonal or permanent. 

When a closure is being implemented to mitigate bycatch the spatial component may be 

broken down further by three additional questions: 1- how are the bycatch events 

distributed compared to catch; 2- are the bycatch events spatially autocorrelated to other 

catch, bycatch or depredation events (i.e., are you more likely to have a second event 

after an initial one); and 3- are the bycatch events correlated with a spatially explicit 
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oceanographic variable.  Many techniques exist to either describe or analyze bycatch 

data.  These methods may be included in a decision tree (Figure 1) to come to an 

objective conclusion regarding the appropriate spatiotemporal nature of a fishery 

closure designed to reduce bycatch.  

Decision trees are useful management tools that are commonly utilized in 

resource management.  Regional fishery management councils in the United States are 

currently using or investigating the use of decision trees to set Allowable Biological 

Catch (ABC) limits (e.g. Armsworth et al., 2010).  The theoretical decision tree offered 

here classifies the analytical tools available to describe or analyze catch or bycatch data 

into four types: periodicity analyses, local spatial association analyses, spatiotemporal 

autocorrelation analyses and oceanographic correlate analyses.  It is organized so that 

the decision tree portrays increasing complexity in the resultant management options as 

you move down the tree.  Similarly, the data required to perform the analyses also tends 

to increase as you approach the lower nodes (see Table 2).  However, this increase in 

data requirements and management complexity also tends to decrease the time/area 

affected by the management measure as the tools applied delimit more and more 

specific times and areas. In other words, the better definition of spatiotemporal 

relationships provides for more targeted management interventions.  
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Figure 1: This decision tree describes some possible analytical tools that may be used 
to understand and manage bycatch of finfish and protected species through 
spatiotemporal management measures.  The management measures become more 
targeted as the user moves down the decision tree, however data requirements, 
uncertainty and the complexity of the management measures generally increase. 

An easily defined but potentially low precision spatiotemporal management 

measure is the total closure of a fishery during a particular season.  This type of broad 

management intervention may address a variety of recurring temporal patterns in 

fisheries bycatch data (e.g., diurnal, lunar, seasonal, and inter-annual), but are not 

triggered by the specific pattern of bycatch events.  Specific recurring periodicities in 

fisheries bycatch have been found to be explanatory factors affecting bycatch rates 
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(Barnes et al., 1997; Klaer and Polacheck, 1997; Weimerskirch et al., 2000; Kobayashi and 

Polovina, 2005; Dietrich et al., 2009; Kot et al., 2010).  Numerous statistical methods exist 

to describe this type of periodicity.  Kot et al. (2010) apply four such methods to bycatch 

data: an analysis of the inter-annual coefficient of variation in bycatch rates by month; a 

Fast Fourier Transform (FFT); a linear regression of catch per unit effort (CPUE) and 

bycatch per unit effort (BPUE) data; and a Wilcoxon Signed Rank Test on monthly 

BPUE.  These statistics require significantly less data than all other methods described in 

this paper, as there is no spatial element to the analysis.  However, the resultant 

management measure, a full fishery seasonal closure, is coarse and will likely have 

broad socioeconomic impacts.  Further analysis to define more specific spatial and 

temporal patterns in fisheries bycatch may be employed to develop more targeted and 

effective management efforts. 

Table 2: Minimum, useful and optimal data requirements for the analyses described 
in the decision tree.  

 
Time Day Week Month Year Lat/Long Oceanography 

Periodicity 
Analyses Optimal Useful Useful Min 

   

Local Spatial 
Association 
Analyses    

Min Min 
  

Spatiotemporal 
Autocorrelation 
Analyses  

Optimal Useful Useful Min Min 
 

Oceanographic 
Analyses  

Optimal Useful Min 
 

Min Min 
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If the CPUE or BPUE data are spatially explicit and have been measured at a 

resolution relevant to managers, the spatial extent of the closure may be addressed 

through the use of local spatial association statistics.  These statistics identify local 

spatial clusters (i.e., “hot spots”; Anselin, 1995).  When applied to a dataset of spatially 

explicit catch or bycatch rates, these statistics allow for the identification of areas of 

persistently high catch or bycatch.  Lewison et al. (2009) use a Moran’s scatterplot to 

identify such clusters.  Gi and Gi* statistics (Getis and Ord, 1992), and Local Indicators of 

Spatial Association (LISA) like the local Moran’s I (Anselin, 1995) may also be used to 

identify spatial clustering.  Perhaps most significantly, these statistics may be applied to 

bycatch to catch rates or bycatch to catch value ratios to identify areas of low fishing 

efficiency (i.e., areas where bycatch rates are high relative to the target catch rate; 

Bartram et al., 2010).  The use of systematic conservation planning software (e.g. 

Marxan; Ball et al., 2009) to optimize site selection based on BPUE or fishing selectivity 

ratios is another method that can be employed to help define spatiotemporal closures 

(Grantham et al., 2008).  Regardless of whether these methods are applied to bycatch 

rates or fishing selectivity ratios, they offer a means to create more targeted time-area 

closures that should consequentially decrease the negative impacts to fishers. 

Seasonal and time-area closures are common fisheries management mechanisms.  

They are well suited to address known ecological and biological characteristics of some 
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fisheries (e.g., species-habitat relationships, or spawning seasons).  As I have indicated, 

these characteristics make them equally applicable to the reduction of bycatch.  I have 

also suggested how they may be used to increase fishing selectivity.  However, these 

methods are static measures and may not necessarily be ideally suited to dealing with 

dynamic, ephemeral events such as bycatch.  Event-triggered or dynamic oceanographic 

closures offer a means to address events such as these that otherwise show no 

predictable spatial or temporal pattern (i.e., clustering in time and/or space).   

The use of event-triggered closures to mitigate bycatch is based on the 

assumption that the likelihood of a bycatch event occurring increases after an initial 

event.  Temporal and spatial autocorrelation analyses may provide a useful method to 

determine if this assumption is valid.  Ripley’s K and the O-ring statistic have been 

applied to bycatch data to measure autocorrelation (Gilman et al., 2007; Gardner et al., 

2008; Lewison et al., 2009b).  Semivariance analyses (Matheron, 1963; Meisel and Turner, 

1998) to define the scale of spatial autocorrelation could also be used for this purpose, 

though no example of the application of this method using bycatch data exists at this 

time (though see Ciannelli et al., 2008; Petitgas, 1996 for reviews of geostatistics in 

fisheries).  By determining the temporal and spatial distance at which bycatch events 

occur, managers should be able to create more targeted closures than might be possible 

with the previous techniques discussed above.  The lack of application of autocorrelation 
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analyses to inform event-triggered closures to mitigate bycatch is confounding as it 

requires no more spatiotemporal data than that required to implement time area 

closures (i.e., the date and location of the bycatch event).  The main obstacle to the use of 

event-triggered closures is likely the need for near real-time management of the fishery 

for this measure to be effective. 

Alternatively, the final node in the decision tree, oceanographic correlate 

analyses, can be used to define either static or dynamic closures.  As mentioned 

previously, patterns of fisheries target and non-target catch have been shown to be 

influenced by numerous oceanographic variables.  Habitat models (see Guisan and 

Zimmermann, 2000) generated from observer survey or animal telemetry data may be 

used to determine the realized niche of a species, and corresponding environmental 

envelope (i.e. minima and maxima).  These values may then be used to regulate fishing 

above or below the predicted minimum or maximum value in which the bycaught 

species is commonly found.  In other circumstances researchers have used descriptive 

statistics and regression models to determine the oceanographic correlates of bycatch 

events themselves (Brothers et al., 1999; Hobday and Hartmann, 2006; Gardner et al., 

2008; Zydelis et al., 2011; Reid et al., 2012). The use of oceanographic correlates to create 

near real-time dynamic closures is proposed, but has not been widely implemented at 

this point.  Sea surface temperature is the basis for a voluntary closure in both the 
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United States (Howell et al., 2008), and a regulated closure in Australia (Hobday et al., 

2010).  Although substantial data and analytical capacity that went into the 

implementation of these two oceanographic closures, the success and targeted nature of 

the resulting closures in mitigating bycatch provide insight into the utility of these 

measures and should encourage fisheries managers to move towards the collection of 

higher resolution data. 

The framework presented here is meant to relate spatiotemporal data 

requirements, analytical techniques and management measures to reduce bycatch.  

While I believe that many fisheries in developed countries will be able to make use of 

the whole decision tree, I acknowledge that data availability and resolution will be a 

limiting factor in many developing regions.  However, in such cases this framework 

should still prove useful in guiding the implementation of data collection policies.  It 

should also be noted that as modelling measures increase in complexity (i.e., as we move 

further down the decision tree) so does the opportunity for error.  Improvements in our 

ability to focus spatiotemporal management measures are generally tied to increasing 

model uncertainty.  Thus, these measures should not be used in lieu of catch measures 

that implement hard quotas (i.e., those that close the fishery when the quota is 

exceeded), but in concert with such measures.  Where the exceeding of a bycatch quota 
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does not result in the closure of the fishery, but in regulations requiring the discard of 

the bycatch, more precautionary measures are preferable.  
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2. Move-on rules and the new objective function in New 
England fisheries2 
2.1 Introduction 

2.1.1 The influence of sector-based management on fishing strategies 
in New England 

The productivity of waters and fisheries off the coast of New England has been 

widely recognized (McFarland, 1911; Kurlansky, 1997; Rosenberg et al., 2005; Alexander 

et al., 2009). The historic economic importance of the Atlantic cod (Gadus morhua) fishery 

to the development and economy of the region cannot be overstated (Ackerman, 1941; 

Innis, 1954; Doeringer et al., 1986).  However, persistent growth and recruitment 

overfishing leading to sequential depletion of stocks has resulted in trophic cascades and 

a fundamentally altered ecosystem (Murawski et al. 1997; Fogarty and Murawski 1998; 

NEFMC 2012; for regional examples, see also Myers and Worm 2003; Frank et al. 2005).  

Although some successes at rebuilding stocks have been noted, the latest assessment 

update listed 80% stocks in the Northeast Multispecies Fishery Management Plan (FMP) 

as being overfished and/or experiencing overfishing (NEFMC 2012).  Recent 

amendments to the FMP have addressed these problems through a sweeping 

2 A version of this chapter has been previously published as: Dunn, D.C., A.M. Boustany, J.J. Roberts, P.N. 
Halpin (2014) Empirical move-on rules to inform fishing strategies: a New England case study. Fish & 
Fisheries 15(3):359–375. 
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restructuring of the fishery.  The main change has been the introduction of a hard quota 

and catch shares, which have been shown to halt or reverse fishery collapses (Costello et 

al., 2008).  Amendment 16 both expanded the scope of the FMP and allocated quota for 

16 groundfish stocks between sectors and a common pool, and ushered in accountability 

for both landings and discards for the first time (NEFMC 2010).  Sector management, 

whereby fishermen voluntarily formed groups (or “sectors”) with pooled allocations 

based on their historical fishing and managed primarily under a quota, offered an 

appealing alternative to the “common pool” which retained input controls such as days-

at-sea and trip limits.  Fishermen overwhelmingly chose to join sectors:  95% of the 

historical landings in the multispecies groundfish fishery participated in sectors in FY 

2010 (NEFMC 2012). 

The potential effects of the new quota system and accountability for discards on 

the fishing strategies of New England fishermen are enormous.  The nature of 

multispecies fisheries like the New England groundfish fishery is such that healthy and 

depleted stocks co-exist, which can result in the catch of stocks with very large and very 

small quotas simultaneously.  The smallest allocations are often referred to colloquially 

as “choke stocks” because once filled they choke off access to other stocks in that area (or 

require the fishermen to lease more quota).  As the amount of quota held by a fisherman 
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or a sector varies widely, what is considered a choke stock differs among individuals, 

between individuals and sectors, and among sectors.   

Beyond the low-quota “choke” stocks, discards represent another potential cost 

to fishermen’s profitability.  Here we define discards as fish that cannot be landed due to 

regulatory or market constraints and therefore generate no profit, whereas landings are 

fish that are landed and sold.  After the passing of Amendment 16, minimum size limit 

regulations are the only regulatory discard permitted under the FMP.  Catch of any 

“allocated” species, including such juvenile discards, are now counted against the 

sector’s quota.  Thus, juvenile catch and market discards (e.g., any fish that is 

unmarketable due to depredation by sharks, rotting, gear damage, etc.) now have a 

double cost, as the fishermen are unable to reap a profit from the catch and it also counts 

against the sector’s quota. 

Previously, fishermen in the New England multispecies groundfish fishery 

sought to land enough of a target stock to fill multiple stock-specific trip limits, while 

minimizing the operational costs of running a fishing vessel (crew, bait, fuel, etc.).  With 

the implementation of Amendment 16, this equation has fundamentally changed.  

Landings are no longer constrained by trip limits and as such the incentive to maximize 

catch of target stocks has increased.  However, fishermen now must also factor the cost 

of leasing more quota and lost quota due to discards into their fishing strategy.  
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Consequently, sector members have a strong incentive to minimize (1) the catch of choke 

stocks, (2) regulatory discards largely due to minimum size limits, and (3) depredation 

events.  The use of market measures to enable catch-quota balancing in multispecies 

fisheries has been well discussed in the economics and policy literature (Buck, 1995; 

Squires et al., 1998; Dupont and Grafton, 2000; Sanchirico et al., 2006).  Work has also 

been done to examine how fishermen shift effort allocation to target specific mixes of 

stocks when transferable quota systems are implemented and fishing strategies are 

altered (Branch and Hilborn, 2008; Poos et al., 2010).  However, little work has been 

done to consider what information might be useful to fishermen to inform their 

allocation of fishing effort under the new incentive structure.  Here, through a 

cooperative research approach including fisheries biologists, spatial ecologists, sector 

managers and fishermen, I examine the utility of spatiotemporal autocorrelation 

analyses to inform “move-on” guidelines to assist a sector to reduce discards and 

maximize their profit. 

I define a move-on rule (also known as “encounter protocols”) as a regulation or 

guideline that triggers the targeted closure of an area in a fishery to one or more gears 

for a temporary period when a catch (or bycatch) threshold is reached, without closing 

the entire fishery.  Specifically, such move-on rules provide a distance which fishermen 

should move, or the amount of time they should wait, to avoid a certain type of catch.  
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They are commonly implemented to reduce catch of juveniles or non-target species.  We 

differentiate such rules from general event-triggered closures, which are most often 

applied to a whole fishery and remain in place until the following season (e.g. the 

closure of a fishery when a bycatch quota is reached).  Similarly, they also differ from 

time-area closures, as time-area closures are generally not dynamically instantiated (i.e., 

based on the occurrence of a particular event).   

2.1.2 Spatiotemporal autocorrelation in fisheries 

In the introduction, I presented a framework for minimizing discards and 

increasing catch selectivity through the use of spatiotemporal management measures 

(i.e. time-area closures).  I put four types of analytical methods (periodicity, local 

indicators of spatial association, space-time autocorrelation, and oceanographic correlate 

analyses) in a decision tree where each node adds management complexity, but also 

decreases the time/area affected.  The first two groups of methods can inform seasonal 

and time/area closures.  Seasonal closures and time/area closures have been extensively 

used to, among other objectives, mitigate bycatch (Dawson and Slooten 1993; Witherell 

and Pautzke 1997; Murray et al. 2000; Hooker and Gerber 2004; Notarbartolo di Sciara et 

al. 2008; PFMC 2008; AFMA 2009a,b).  However, in the introduction I suggest that when 

the goal is to decrease bycatch or discards, these types of closures may be less useful 

than other types of closures and may result in coarsely targeted management measures.  
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Alternatively, I indicated that consideration should be given to event-triggered closures 

or dynamic oceanography-based closures that can more efficiently meet the bycatch or 

discard mitigation objective (i.e. do so while minimizing lost target fish catch and 

economic burden for fishermen).  Dynamic empirical oceanographic closures have 

recently been employed in Hawaii and Australia to mitigate bycatch (Hobday and 

Hartmann, 2006; Howell et al., 2008; Hobday et al., 2010) and the scientific literature 

contains many examples of how oceanographic habitat models can be used to 

implement such closures (Palacios et al. 2006; Hyrenbach et al. 2006; Eckert et al. 2008; 

Louzao et al. 2011; Zydelis et al. 2011; Block et al. 2011; Nur et al. 2011).  Although move-

on rules have been used longer than oceanographic closures (Kenchington, 2011), they 

have received far less attention in peer-reviewed literature. 

2.1.3 Move-on rules in fisheries management 

Move-on rules have been incorporated to varying degrees in the management of 

a number of fisheries (Table 3).  These measures have been utilized from Antarctica to 

Norway, and in fisheries employing everything from anchored gillnets to pelagic 

longlines to purse seines.  Generally speaking, they are most frequently implemented to 

reduce bycatch of juveniles or non-target species (including finfish, protected species 

and corals or sponges).  Kenchington et al. (2011) and Shotton and Patchell (2008) offer 
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non-exhaustive reviews of the use of move-on rules in the context of the development of 

encounter protocols for deep-sea fisheries.  
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Table 3: Examples of the range in type and geographic scope of fisheries that utilize move-on rules.  The literature describing 
these examples provides little to no explanation for the times and distances employed. 

Management 
Measure 

Fishery Country Move-on 
distance 

Move-on time Frequency of 
assessment 

Threshold (trigger mechanism) 

Chinook Salmon 
Bycatch 
Reduction Plan 
and Agreement 
(i.e., the 
Voluntary Rolling 
Hotspot System; 
Madsen and 
Haflinger, 2010) 

Walleye Pollock 
Bering Sea and 
Aleutian Island 
Fishery 

USA Expert opinion 7+ days, based 
on vessel 
bycatch rate  

Weekly Based on an analysis of areas that 
exceed the base bycatch rate (a moving 
average) 

Scottish Cod 
Conservation 
Credits (Holmes 
et al., 2011; 
Needle and 
Catarino, 2011) 

Mixed gear, 
demersal whitefish 
fishery (targeting 
cod, haddock and 
whiting) 

Scotland 50 – 225 nm2 21 days Daily Triggered when catch rates exceed 40 
juvenile cod per hour of fishing. 

Cod juvenile and 
spawning real 
time closures 
(Marine 
Management 
Organisation, 
2012) 

North Sea and 
Skagerrak fisheries 
using particular 
gears 

EU & 
Norway 

23 or 64 nm2, 
depending on 
distance from 
shore 

14 days, 21 days 
or a calendar 
month, 
depending on 
distance from 
shore 

daily for at-sea 
inspections or 
voluntary notification 
by fishermen; also 
have monthly for 
LPUE-based closures 

Triggered when catch of mature cod (> 
50 cm) exceeds 10 per hour of fishing, 
or 80 cod (all sizes) per hour of fishing. 
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Juvenile real time 
closures 
(European 
Commission, 
2011) 

North Sea and 
Skagerrak fisheries 
using particular 
gears 

EU & 
Norway 

50 nm2 21 days Theoretically upon 
encounter, but based 
on country reporting 
to the EU. 

Triggered when catch rates of juveniles 
exceed 7.5% or 10%, depending on the 
overall ratio of cod in the catch. 

Conservation 
Measures 33, 41 
& 42 (CCAMLR, 
2011) 

Patagonian 
toothfish and 
mackerel icefish 
fisheries. Some 
measures affect 
other Antarctic 
fisheries. 

CCAMLR 5 nm 5 days Real time (upon 
encounter) 

Various. Used to limit juvenile mackerel 
icefish catch and bycatch of non-target 
species in specific statistical areas. 

Vulnerable 
Marine 
Ecosystem 
Encounter 
Protocols (Auster 
et al., 2010) 

Deep sea fisheries in 
areas beyond 
national jurisdiction 

Various 
RFMOs 

Generally, 1-2 
nm2 

Generally, until 
review 

Real time (upon 
encounter) 

Implementation of the protocols is 
highly variable between the various 
RFMOs.  

Gulf of St. 
Lawrence 
groundfish small 
and incidental 
catch protocols 
(DFO, 2008) 

Atlantic groundfish 
fisheries 

Canada Management 
area 

> 10 days, based 
on catches from 
a test fishery 

Daily, based on at-
sea-observer 
reporting 

Triggered when catch of “undersized 
fish reaches or exceeds 15% of the catch 
of any of the species [with a minimum 
size limit] or when incidental catches of 
a closed species reaches or exceeds the 
established level for the fleet.” 

Gulf of St. 
Lawrence herring 
fishery small fish 
protocols (DFO, 
2009) 

Atlantic herring 
fisheries 

Canada Expert opinion > 5 days, based 
on catches from 
a test fishery 

Daily, based on dock-
side monitoring 

Triggered when catch of juvenile herring 
“exceeds 25% of the total number of 
herring that were caught and retained 
during that fishing trip…” 
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Coral/sponge 
encounter 
protocols (DFO, 
2011) 

British Columbia 
groundfish trawl 
fishery 

Canada “Vessels will be 
encouraged to 
avoid the area 
where the 
bycatch of 
coral and 
sponge 
occurred.” 

“Vessels will be 
encouraged to 
avoid the area 
where the 
bycatch of coral 
and sponge 
occurred.” 

Daily, based on at-
sea-observer 
reporting 

“This procedure will be followed any 
time a vessel catches more than 20 
kilograms of combined corals or 
sponges in one tow.” 

Hoki small fish 
move-on rule 
(Shotton and 
Patchell 2008) 

Hoki fishery New Zealand 
Hoki Fishery 
Company 
(New 
Zealand) 

5 nm 5 days Real time (upon 
encounter) 

Move-on rule was implemented if 10% 
of catch (by numbers) were juvenile 
hoki. 

Fish aggregating 
device (FAD) 
closures (WCPFC, 
2009) 

Purse seine fishery 
for highly migratory 
fish stocks 

Western and 
Central 
Pacific 
Fisheries 
Commission 

50 nm 7 days Upon retrieval of a 
FAD  

Applies to fishing after retrieval of a 
FAD during a FAD closure. 

Right Whale 
Dynamic Area 
Management 
(DAM; NMFS, 
2002) 

lobster trap/pot and 
gillnet 

USA 15 nm around 
a “core area”, 
defined by a 
polygon 
encompassing 
the 15 nm 
buffer zone. 

15 days Daily, but not applied 
until “2 days after 
publication of a 
notice in the Federal 
Register.” 

“A DAM zone will be triggered by a 
single reliable report from a qualified 
individual of 3 or more right whales 
within an area (75 nm2; 139 km2) such 
that right whale density is equal to or 
greater than 0.04 right whales per nm2 
(1.85 km2).” 

 



 

While move-on rules are being used, there are no examples of an empirical approach to 

determining the times or distances employed.  That is, each example appears to have 

been formulated either by expert opinion, through negotiation with stakeholders, and/or 

input by enforcement personnel.  Although analyses of the underlying spatiotemporal 

autocorrelation or patch dynamics in the catch data could inform the choice of times and 

distances employed in move-on rules, I could find no rules generated by such analyses.  

The origin of existing rules is almost never clear, but some appear to have been 

generated by assimilating values used in other fisheries (e.g. the CCAMLR examples), or 

by increasing times or distances when stocks become overfished (e.g., the New Zealand 

hoki example).  Some rules offer no guidance on the time or distance to be moved at all 

(e.g., the BC groundfish example), while others rely on expert opinion to draw a 

polygon around hauls with high bycatch rates (e.g., the Bering Sea and Aleutian Islands 

(BSAI) pollock fishery).  Examples like that seen in the BSAI pollock fishery may actually 

be considered more of a time/area closure, as they don’t offer guidance in response to a 

single event (or encounter), but use a group of events to define an area to be closed.  

In this chapter, I develop data-driven move-on guidelines to assist the efficient 

utilization of multiple quotas.  These rules can inform on-the-water decisions by 

fishermen and enable real-time management of fisheries by providing information on 

the extent and persistence of negative catch events (i.e., catch of choke species and 

juveniles or depredation events).  I believe that as these guidelines are implemented they 
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will be the first move-on rules utilizing autocorrelation-based times and distances 

employed by a fishing industry.  Further, in collaboration with Jason Roberts of the 

Marine Geospatial Ecology Lab, I have implemented this analytical approach in a freely 

available software tool so that other sectors and fisheries may apply these methods 

(Marine Geospatial Ecology Tools; http://mgel.env.duke.edu/mget). 

 

2.2 Methods 

2.2.1 A collaborative approach 

This study was a conducted through a collaboration between the Cape Cod 

Commercial Hook Fishermen’s Association (CCCHFA), the Georges Bank Cod Fixed 

Gear Sector and the Marine Geospatial Ecology Lab (MGEL) at Duke University.  

CCCHFA is a non-profit organization that actively campaigns for a healthy marine 

environment to support a secure and viable future for sustainable commercial fisheries.  

The GB Cod Fixed Gear Sector is an organization of commercial fishermen who have 

come together to collectively manage annual allocations of fish under the Northeast 

Multispecies FMP.  Through a series of meetings in Chatham, Massachusetts, fishermen, 

sector managers, fishery biologists, spatial ecologists and tool developers sat down to 

describe fishing activities, outline the problem space, generate research questions, 

present methods, and vet final results.  The Maine Coast Fishermen’s Association and 

the Port Clyde Community Groundfish Sector also participated in these meetings.  This 
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type of collaboration, and the actionable results derived from it, was only possible 

through the work of the sector manager and the CCCHFA to bridge the gap between 

scientists and fishermen, and to generate the level of trust required in such a project. 

2.2.2 Data 

I examined spatiotemporal distribution of catch and discard data using observer 

data produced by the Northeast Fisheries Observer Program (NEFOP).  NEFOP is a 

program of the Northeast Fisheries Science Center (NEFSC) of the National Marine 

Fisheries Service (NMFS), and collects, maintains and distributes data for scientific and 

management purposes in the northwest Atlantic Ocean.  After initial meetings 

describing the project to the fishermen, data waivers for 36 vessels were obtained by the 

collaborators associated with the GB Cod Fixed Gear Sector, affording access to high-

resolution fishing effort and catch data necessary to perform the analyses.  Although 

Fixed Gear Sector fishermen employ handlines, benthic longlines and anchored sink 

gillnets (both large mesh and extra-large mesh), due to limited sample sizes, only data 

pertaining to gillnet sets were used.  The observer data spanned 6 years (2005-2010) and 

contained information on 1110 gillnet hauls, including 9343 catch records (i.e., species by 

haul and disposition of the catch).  Records with no catch or no information on species, 

location, or mesh size were removed.  As different species are targeted with different 

mesh sizes (per National Marine Fisheries Service regulations), I further divided the 

gillnet sets into two categories: large mesh (< 8 inches; n=455 sets), and extra-large mesh 
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(≥ 8 inches; n=541 sets).  This analysis is focused on the large mesh stand-up gillnets that 

are primarily used to target Atlantic cod and pollock (Pollachius virens).  Any large mesh 

gillnet sets employing tie-downs (i.e., a line used to connect the bottom of a gill net to 

the top, to create a bend or pocket in the net) were discarded (n=22), as they were used 

to target other species. 

2.2.3 The space–time K function 

Data on catch positions may be thought of as a marked point process (Stoyan 

1984a,b; Baddeley 2008).  While typical analyses of spatial point processes are evaluated 

against a null hypothesis of Complete Spatial Randomness, marked point processes 

consider the distribution of marks compared to an underlying distribution of events to 

which they belong.  For example, from the perspective of this study, I test whether the 

distribution of gillnet hauls containing catch depredated by hagfish is clustered or over-

dispersed in comparison to all gillnet haul positions.  The spatial and temporal scales 

over which the pattern occurs can inform management by indicating the distance in 

space and time a fisherman must move his/her gear (or wait) to reach an area where the 

marked point process (e.g., hagfish depredation) no longer exhibits autocorrelation.  In 

this study I am specifically interested in clustering, as the aggregation of events over 

small distances and short timeframes presents an opportunity for the targeted use of 

event-triggered closures to avoid such cases.   
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I follow the methods presented in Gardner et al. (2008) but, given my specific 

interest in informing move-on rules, focus on clustering in space-time interactions.  Here 

I summarize those methods and concentrate on the specifics of my approach.  To 

analyze spatial and temporal autocorrelation in the marked point processes, I applied a 

variation on Ripley’s K function (Ripley, 1977).  Ripley’s K compares the expected 

intensity of events (i.e., fishing sets) based on a global mean from the entire dataset, to 

the intensity found in the marks (i.e., hauls with catch of choke stocks, regulatory 

discards or depredation events).  The space-time K function can be described by the 

equation 

 

for t,d > 0 (Diggle et al., 1995; Gatrell et al., 1996; Gardner et al., 2008).  N is the total 

number of events, A is the total area, T is the total length of the time series (in days), si is 

the spatial location of event i and hi is the time of event i.  The weight w(si,sj)v(hi,hj) is an 

edge-correction factor equal to the proportion of the circle centered at si that is inside the 

study area and the proportion of the time interval centered at hi that is inside the 

observed time span.  The indicator function I( ) identifies those events sj,hj that are 

within a distance d and time t of the event si,hi.  To eliminate purely spatial covariates 

(e.g. depth gradients) and temporal covariates (e.g. seasonal fluxes in water 

temperature), I subtract the independent space and time autocorrelation. 
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)(ˆ)(ˆ),(ˆ),(ˆ tKdKtdKtdKind −=  

The same is done for the marks.  As I am comparing the distribution of marks with the 

overall distribution of events, the overall distribution is subtracted from the initial K 

function: 

),(ˆ),(ˆ),(ˆ tdKtdKtdD indmm −=  

In doing so, I isolate the effect of only those processes that are correlated in both space 

and time.  I test the null hypothesis that the spatiotemporal autocorrelation in the marks 

is not significantly different than exhibited by all fishing sets.  I use random labeling, a 

permutation test where points within the overall fisheries dataset are randomly labeled 

as marks, and compare the distribution of results from the permuted events to those 

found using the true marks (Kenkel, 1988; Cuzick and Edwards, 1990).  I ran one 

thousand permutations and calculated a test of statistical significance by comparing the 

overall sum of  across all d and t with the frequency distribution of the sums of 

each , for i = 1 to 1000.  As I considered only clustering, I used a one-sided test 

and considered values of (d,t) above the 95% of the distribution of permuted values (α 

= 0.05) to reject the null hypothesis of no difference in clustering between the marks and 

the overall dataset (Diggle et al., 1995; Loosmore and Ford, 2006). 
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Further, to find the scales of the spatiotemporal autocorrelation, I plotted 

 against the 95% envelope of the permuted values.  Values above the envelope 

indicate spatial clustering is present.  However, since all points within a given distance 

are used to calculate the K function,  values are correlated to those values at shorter 

distances.  While there are drawbacks to this method of calculating autocorrelation 

(Wiegand and Moloney, 2004; Lewison et al., 2009a), it is useful for finding threshold 

distances; the distance up to which the marks are more clustered than the overall 

dataset.  Such thresholds are indicated by peaks in the surface of ; however, 

these values above the envelope do not infer statistical significance at each separate d 

and t.  For ease of visualization, the 95% envelope is subtracted from , and 

normalize the values between 0 and 1 in my figures.  Thus any values > 0 indicate a 

response outside the 95% envelope and those values of 0 show no difference from 

random.  Peaks in spatiotemporal autocorrelation are indicated by a value of 1.  All 

analyses were done using the software program R (R Core Team, 2014) and the splancs 

package (Rowlingson and Diggle, 1993). 

I applied the spatiotemporal K function to four types of events: catch of choke, 

interaction with nuisance stocks, catch of juveniles, and depredation events (Table 4).  

After discussion with fishermen, it was suggested that yellowtail flounder (Limanda 
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ferruginea) be considered a choke stock.  Fishermen and the sector manager were also 

concerned with avoiding barndoor skate (Dipturus laevis), but for slightly different 

reasons.  They suggested barndoor skate could reach such high levels in a given area 

that it reduced CPUE of target stocks thereby forcing the fishermen to move gear to new 

fishing grounds (Eric Brazer, personal communication).  Since it is not lack of quota, but 

hyper-aggregation of a non-target species that prevents fishing in the area, I differentiate 

barndoor skate from yellowtail flounder, and refer to it as a nuisance stock.  While I did 

not consider cod a choke stock in this study, the most recent stock assessment for Gulf of 

Maine cod reversed previous findings of improvements in the fishery and 

recommended major reductions in the GOM cod quota (NEFMC, 2012).  Given the likely 

cuts to the GOM cod quota based on the stock assessment, the stock will become a choke 

stock for GB Cod Fixed Gear Sector fishermen targeting GOM haddock (and any other 

sectors active in the region).  Juvenile catch of target species (cod and pollock) was also 

investigated.  Lastly, I looked at depredation events.  There are four main sources of 

depredation events in the fishery: sharks (generally, spiny dogfish Squalus acanthias), 

gray seals (Halichoerus grypus), Atlantic hagfish (Myxine glutinosa) and “fleas” (marine 

amphipods).  Depredation by sharks, hagfish and fleas was included in the analysis but, 

due to a lack of data, depredation by gray seals was not. 

I initially limited the analysis of spatiotemporal clustering in catch events to 10 

kilometers and 30 days, acknowledging that move-on rules beyond these extents would 
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be economically infeasible.  However, to insure that the maxima visible within the 

extents of the initial study were not local maxima, I repeated the analysis over 50km.  

Proposed move-on distances (in time and space) were derived from peaks in the 

 surface (i.e., the distance and time-lag to the peak).  To test the efficacy of the 

proposed move-on distances, I implemented a script to iterate through the marked hauls 

by date and time and remove any future hauls within the time and distance specified by 

the move-on rule.  The hauls that were “removed” from the dataset during further 

iterations represent fishing activities that would have been performed in a different 

location (or not at all).  The number of marked hauls (i.e., those associated with one of 

the event types considered) and the number of unmarked hauls (i.e., those not 

associated with the event considered) “removed” were compared to the total number of 

marked hauls and unmarked hauls to derive event rates inside and outside of the extent 

of the move-on rule. 

 

2.3 Results 

All catch types displayed overall spatiotemporal patterns over 10 kilometers and 

30 days, significant at p < 0.05, except catch of barndoor skate (Table 4).  Space-time 

interactions were apparent in the  surfaces for each event type considered, 

including barndoor skate.  Both yellowtail flounder and barndoor skate exhibited 
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Table 4: Significance test for overall spatiotemporal clustering, move-on distances and performance measures for choke stocks, 
juvenile catch and depredation events.  The sum of  is compared to the 95% quantile of 1000 random labeling 

permutations of the spatiotemporal K function. 

Group Species 

95% 
Random 
Labeling 
Quantile 
(*10^15) 

Sum of 
D-hat in 
marks 
(*10^15) 

p < 
0.05 

Move-on 
Distance 
(km) 

Move-
on 
Time 
(days) nmarks 

Marked Hauls 
Within Move-
on Rule (%) 

Unmarked 
Hauls 
Within 
Move-on 
Rule 

Rate of 
Marked 
Hauls within 
Move-on 
Rule 

Rate of 
Marked 
Hauls 
outside 
Move-on 
Rule 

Choke Yellowtail 
Flounder 

7.884 13.249 * 6.5 1 31 10 (32.3%) 19 (4.7%) 34.5% 5.2% 

Nuisance Barndoor 
Skate 

9.894 9.149  2 2 20 4 (20.0%) 22 (5.3%) 15.4% 3.9% 

Juvenile Cod 5.059 7.233 * 2.5 1 163 84 (51.5%) 37 (13.7%) 69.4% 20.0% 

Juvenile Pollock 6.119 8.935 * 3.5 1 62 27 (43.5%) 41 (11.1%) 39.7% 8.9% 

Depredation Fleas 6.409 13.186 * 2 2 59 27 (45.8%) 3 (0.8%) 90.0% 7.4% 

Depredation Hagfish 6.109 13.978 * 3 5 69 42 (60.9%) 22 (6.0%) 65.6% 7.1% 

Depredation Shark 10.594 33.035 * 6 1 19 9 (47.4%) 6 (1.4%) 60.0% 2.3% 

 



 

autocorrelation (Figure 2a & b).  While spatiotemporal autocorrelation in barndoor skate 

catch was not significant over 10 kilometers and 30 days, space-time interaction was still 

visible at short distances and time-lags (2 kilometers and 2 days).  Given the clear and 

strong peak at a short distance, I recalculated the spatiotemporal K function limited to 5 

kilometers and 30 days.  The sum of the  values was significant at this shorter 

distance.  

Catch of juveniles also exhibited space-time interaction across both species 

considered (Figure 2c & d).  Juvenile pollock and cod catch demonstrated very clear 

trends and both had thresholds at very short times and distances (2.5-3.5 kilometers and 

1 day).  Trends in time were also clear in depredation events though identification of 

threshold values was slightly more difficult due to indistinct trends over distance 

(Figure 3).  Although flea damage and hagfish damage continued to exhibit local peaks 

in spatiotemporal autocorrelation out to ~14 kilometers, much of that autocorrelation is 

due to autocorrelation found at shorter distances (i.e., the distances examined in this 

study).  As such, I am confident that the results (2 kilometers and 2 days for flea 

damaged catch, and 3 kilometers and 5 days for hagfish depredation) represent operable 

thresholds.  Shark damage exhibited an oddly even trend in space and time, likely due 

to a small sample size (n = 19 shark depredation events).  It did, however, have a specific 

peak at 6 kilometers and 1 day. 

38 



 

 

  

Figure 2: Spatiotemporal autocorrelation in catch of (a) yellowtail flounder and (b) 
barndoor skate stocks, and juvenile catches of (c) pollock and (d) cod for large-mesh 
stand-up gillnet gear.  Color values are unitless and represent relative distance above 
the 95% envelope generated from 1000 random label permutations.  Peaks in the 
surface indicate the spatiotemporal extent of the clustering.  I.e., a value of 1 
corresponds to the highest autocorrelation value within over the time and distances 
used in the analysis. 
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Figure 3: Spatiotemporal autocorrelation in depredation events in sets using large-
mesh stand-up gillnet gear: (a) depredation by fleas, (b) depredation by hagfish, (c) 
depredation by sharks.  Color values are unitless and represent relative distance 
above the 95% envelope generated from 1000 random label permutations.  Peaks in 
the surface indicate the spatiotemporal extent of the clustering.  I.e., a value of 1 
corresponds to the highest autocorrelation value within over the time and distances 
used in the analysis. 
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Analysis of the efficacy of the proposed move-on guidelines offered strong 

evidence for the utility of move-on rules and the validity of the approach taken in this 

study (Table 4).  An ideal move-on rule would encompass all negative catch events 

within it limits and as few events without negative catch as possible.  The best results 

were clearly the move-on rules for depredation events.  If the recommended move-on 

rule had been in place, the rate of depredated hauls (depredated hauls/all hauls) would 

have declined by nearly half (47.1%; sd=0.063), while only a small fraction (2.8%) of the 

non-depredated haul would have been affected.  The rate of depredated hauls within the 

move-on rules was a factor of 9.3 to 25.6 times the rate of depredated hauls outside the 

move-on rules.  The move-on rule for juvenile catch was similarly effective, reducing the 

juvenile haul rate (hauls with juveniles/all hauls) over 30 percent (32.9%; sd=0.002).  

However, on average, 12.4% of hauls with no juvenile catch were affected, resulting in 

the juvenile haul rate outside the move-on rule being only 3.5 to 4.5 times higher than 

the rate inside the bounds of the move-on rule.  Choke and nuisance stock catch was the 

least mitigated by the move-on rule, the rate of hauls with these stocks (hauls with choke 

or nuisance stocks/all hauls) would have been reduced 21.1% (sd = 0.088), but would 

have affected only 5.0% of the non-choke or nuisance stock hauls.  As such, the 

difference in the rate within the move-on rule was slightly higher than that found for the 

juvenile catch move-on rule (4.0 to 6.6 times the rate outside the extents of the move-on).   
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2.4 Discussion 

2.4.1 Actionable & operable results 

These analyses revealed strong space-time interactions in virtually all of the most 

important catch types related to the use of quota in the multispecies groundfish fishery 

in New England.  Catch of choke and nuisance stocks, catch of juveniles, and depredated 

catch all exhibited peaks in spatiotemporal autocorrelation that can inform move-on 

rules empirically.  Most of the threshold values derived from these analyses are at 

distances under 4 kilometers and at time lags of 2 days or less.  Several fall within 2 

kilometers and 2 days.  These are actionable and operable scales for groundfish 

fishermen, and adherence to the move-on rules may be less economically detrimental 

than continued fishing in an area with a higher likelihood of negative catch events.  

While no attempt was made to determine the ecological underpinning for the move-on 

times and distances, I suspect they are related to movement behavior of the stocks as 

well as the persistence of ephemeral oceanographic conditions. 

The results of the validation exercise provide strong support for the use of move-

on rules to avoid catch of choke and nuisance stocks, juveniles, and particularly in 

avoiding depredation events.  An astounding 90% of hauls within the range of the 

move-on rule for flea depredation were flea damaged hauls.  This figure is all the more 

dramatic given that the extent of the move-on rule was just 2 kilometers for 2 days.  

Further, only 0.8% of all unmarked sets were affected by the rule (i.e., 0.8% of all sets 
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without flea damage would have been re-located to a different area).  This efficiency was 

matched by the effectiveness of the move-on rules, as seen in the potential 54.1% 

reduction in hauls with hagfish depredation.  The move-on rules for choke and nuisance 

stocks, or juveniles of target stocks, had less effect but still clearly showed the benefit of 

avoiding the spatiotemporal clustering of these events.  In all cases except barndoor 

skates, employment of empirical move-on rules would have led to at least a 25% 

reduction in the rate of these negative catch events.  Therefore, managers and fishermen 

can expect significant decreases in discards under these move-on rules.  Except for 

juvenile cod catch (n = 163), the sample sizes of depredation, nuisance, choke and 

juvenile catches were not large (n = 19-69).  I expect that re-running this analysis with 

larger sample sizes might increase the efficacy of the move-on rules. 

2.4.2 Implementation Options 

Although this study follows in the footsteps of initial calls for and efforts to 

determine empirical move-on rules (Dunn et al., 2011; Gardner et al., 2008a; Lewison et 

al., 2009b), this is the first time such an autocorrelation study has been done in 

cooperation with industry.  This collaborative approach will provide a direct mechanism 

whereby the results of the study can be used to directly inform fishing activity.  As such, 

consideration needs to be given to exactly how these move-on rules might be 

implemented by the sector managers and fishermen.  In mobile gear (e.g., trawls or 

pelagic longlines), fishermen set and haul a single piece of gear consecutively and can 
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make adaptive decisions based on conditions and the characteristics of the last haul.  

However, many stationary gears (e.g., anchored sink gillnets or traps) are often set and 

hauled at one time, limiting how information on catch from one gillnet may be used in 

determining where to locate the next set.  Under these constraints, there are four 

possible methods for incorporating move-on rules into the use of anchored sink gillnets:   

(1) Increase “exploratory fishing” before the gillnets are set 
and apply the move-on rule based on the exploratory 
fishing;  

(2) For move-on rules with temporal extents > 1 day, apply 
the rule in deciding where to fish the next day;  

(3) When setting all gillnets, separate them by the distance in 
the move-on rule;  

(4) If the need to avoid choke species or discards is great 
enough, investigate the possibility of consecutive sets 
(i.e., setting and hauling one net at a time). 

It is not uncommon for gillnet fishermen to “explore” with a rod and reel before 

setting their gear.  This exploratory fishing is a quick test of the density of target stocks, 

and sublegal fish or non-target species.  Based on what is found, the fishermen may 

choose to set his or her nets or move to different fishing grounds.  This study can be 

incorporated into the exploratory fishing process to offer some guidelines in how far to 

move.  The main issue with relying solely on this method of implementation is that 

depredation of catch from a rod and reel is far less likely than depredation of catch that 

remains in an anchored sink gillnet for hours to days.  Therefore, this method can only 

inform catch of juveniles, choke or nuisance stocks.  Option 2 (above) would limit 
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fishermen to only implementing move-on rules that have a time element greater than 1 

day.  Several of the move-on rules developed in this study do have temporal extents 

greater than one day (barndoor skate catch, and flea and hagfish depredation), and 

could be used in this manner.  However, this method would not reduce unwanted catch 

for all gear deployed at the same time.  This would reduce the efficacy of the move-on 

rule.  The third listed option is to proactively separate each gillnet in a trip by the 

distance specified in the move-on rule.  The distribution of distance between consecutive 

sets in the dataset indicated that 43.9% of sets were greater than 1 kilometer away from 

the last set, 19.6% were greater than 2 kilometers away, and 12.4% were greater than 3 

kilometers away.  Five of seven of the move-on rules identified in this study recommend 

moving 3 kilometers or less.  Thus, there is some potential to implement this option, 

though it would clearly mean increasing the average distance between sets and 

potentially increasing fuel costs.  The last option (4) is a significant departure from the 

current method of fishing and would require substantial education and outreach for 

fishermen to accept such a fundamental change.  However, if the drawbacks are large 

enough (e.g. the cost to lease more quota is prohibitive), they may consider multiple, 

shorter, consecutive sets.  This method of fishing would be more precautionary than 

setting all nets at one time and would incur greater costs (e.g. time, fuel) on the part of 

the fishermen, but may be necessary as fishermen approach quota limits.  While these 
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implementation options may be viable, further bioeconomic analysis and discussion 

with fishermen would be necessary to see which, if any, would be optimal. 

To facilitate the development and implementation of move-on rules using this 

approach, I have added tools for performing spatiotemporal analyses of fishery records 

to the free, open-source Marine Geospatial Ecology Tools software (MGET; Roberts et 

al., 2010, version 0.8.  These tools integrate with the popular ArcGIS software (ESRI, 

2010) and allow managers to run the analyses on any fishery that has records of landings 

or discards that include spatial and temporal data.   

 

2.4.3 Empirical move-on rules 

The importance of a data-driven process to determining move-on rules is self-

evident.  Without knowledge of how the species or events of interest are correlated in 

time and space, managers and fishermen will likely develop rules that either 

underestimate the degree of autocorrelation and result in less or no decrease in the 

negative catch, or overestimate the autocorrelation and cause unnecessary economic 

burden to fishermen (by overly limiting the time/area they can fish in and increasing 

fuel and labor costs).  If the measure is implemented by managers, such inefficiency may 

also undermine trust between fishermen and managers.  Of note is the difference found 

in the time/distance of autocorrelation in juvenile cod catch in this study (1 day and 2.5 

kilometers or ~5.725 square nautical miles) as compared to the rules in place under the 
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Scottish conservation credits program (21 days and 50-225 square nautical miles).  I do 

not imply that the rule used in the Scottish program is incorrect or ineffective, but the 

difference does suggest a need for further research into possible explanations and 

consideration of multiple scales of autocorrelation.   

One potential reason for the difference between my results and the rules 

employed in Scotland is their use of threshold values of catch to define an “event”.  That 

is, they define a juvenile catch event as being a haul that results in more than 40 juvenile 

cod per hour of fishing (Holmes et al., 2011; Needle and Catarino, 2011).  I define a 

juvenile catch event as a haul that has any juvenile catch.  The development of such 

catch thresholds should be based on an understanding of the population level effects of 

the catch, and are beyond the scope of this study.  Such thresholds, however, are easily 

incorporated into an analysis of spatiotemporal autocorrelation and should not limit the 

use of this technique.  Another possible explanation is the different gear examined in the 

two studies.  This analysis was done on anchored sink gillnets, whereas the Scottish 

studies looked at trawl gear, which inherently covers larger swaths of the seabed.  

 

2.4.4 Broader applicability of empirical move-on rules 

In this study I suggest that, due to the implementation of quotas and sector-

based management, catch of choke stocks and discards (both regulatory and market-

based) will likely play an increasingly important role in the fishing strategies of New 
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England fishermen.  More broadly, they also affect, or are likely to affect, all US fisheries 

following the passing of the Reauthorization of the Magnuson-Stevens Act of 2006 with 

its requirements to implement Annual Catch Limits for all fisheries by 2011, and 

globally as discards policies are reconsidered (e.g. the ban on discards under the EC’s 

Common Fisheries Policy).  This is particularly true given the continued movement 

toward catch shares (Arnason 2002; Chu 2009; Jardine and Sanchirico 2012).  In an effort 

to help fishermen and managers deal with these new factors, I offer analyses of 

spatiotemporal autocorrelation to generate empirical move-on rules that will aid in the 

efficient fulfillment of quotas.  Such rules can simultaneously benefit the fishermen by 

minimizing lost opportunities for revenue, and benefit the target stock by minimizing 

overages in quotas and capture of juveniles that could lead to growth and recruitment 

overfishing.  The utility of this method is not limited to efficient use of target stocks, but 

can also be applied to avoid protected species and may offer a much more targeted 

method of approaching the issue of protected species bycatch than simple time area 

closures. 
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3. Temperature-based targeting in a multispecies fishery 
under climate change1 
3.1 Introduction 

3.1.1 Background 

Multispecies fisheries, where less productive “weak” stocks mix with more 

productive “strong” stocks, present a challenge to both fishermen and fisheries 

managers.  Under a multispecies quota system, fishermen must avoid weak stocks (with 

small overall quotas) or choke stocks (i.e., stocks for which they have little quota), and 

target strong stocks or those for which they have relatively higher quotas.  We 

intuitively know, and research confirms, that fishermen can target and avoid species 

within a multispecies fishery (Pascoe et al., 2007; Branch and Hilborn, 2008; Gillis et al., 

2008; Quirijns et al., 2008).  However, even in systems with strong individual incentives 

(i.e., catch shares), efforts to match catches to quotas and avoid weak stocks have proven 

problematic (Copes, 1986; Squires et al., 1998; Sanchirico et al., 2006; Pascoe et al., 2007).  

This has led to research on fishermen behavior (including discarding and targeting of 

different catch compositions) under multispecies ITQ systems (Branch, 2006; Branch et 

al., 2006; Pascoe et al., 2007; Branch and Hilborn, 2008; Poos et al., 2010).  However, 

correlations between catches and oceanographic variables have rarely been considered 

1 A version of this chapter is being submitted to Fisheries Oceanography as: Dunn, D.C., J.H.  Moxley, P.N. 
Halpin. Temperature-based targeting in a multispecies fishery under climate change. Fisheries 
Oceanography. 
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in efforts to manage weak stocks or improve targeting through spatiotemporal 

measures. 

Spatiotemporal associations between target or non-target species and observed 

oceanographic features may be used to identify critical areas that can be delimited and 

managed using static or dynamic measures (Hobday and Hartmann 2006, Dunn et al. 

2011, Lewison et al. in review, Maxwell et al. in review).  Correlations between bycatch 

rates and dynamic oceanographic features have been elucidated in peer-reviewed 

literature (e.g., Klaer and Polacheck 1998, Brothers et al. 1999b, 1999a, Kobayashi and 

Polovina 2005, Dietrich et al. 2009).  Oceanographic characterizations of catch rates are 

even more common, and have been examined for a wide range of fisheries from lobsters 

to tunids (e.g. Beardsley 1969, Laurs et al. 1984, Evans et al. 1995, Bigelow et al. 1999, 

Waluda and Rodhouse 2001, Seki et al. 2002, Campana and Joyce 2004, Zagaglia et al. 

2004, Drinkwater et al. 2006, Mourato et al. 2014), and include a wide variety of variables 

(e.g. frontal systems, sea surface height or salinity).  However, these relationships are 

rarely translated into active spatiotemporal resource management.  Here, in an effort to 

inform targeting and spatiotemporal management in the US Northeast Multispecies 

fishery, I seek to determine if bottom temperature can be used to separate Atlantic cod 

(Gadus morhua) from other species within the Fishery Management Plan (FMP) and three 

species that commonly interact with this fishery: spiny dogfish (Squalus acanthias), silver 

hake (Merluccius bilinearis) and Barndoor skate (Dipturus laevis).   
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3.1.2 Known effects of temperature on species in the Northeast 
Multispecies Fishery 

Temperature controls important physiological processes in fish (Fry 1971; 

reviewed for Atlantic cod in Drinkwater 2005) and thus it is likely an important factor in 

determining their niches and resulting distribution.  In particular, the distribution of fish 

in the Northeast U.S. Continental Shelf Large Marine Ecosystem has been shown to be 

based on temperature and depth (Murawski and Finn, 1988; Gabriel, 1992; Perry and 

Smith, 1994; Methratta and Link, 2006).  Many studies have described the thermal 

preference and found significant correlations between the distribution of Atlantic cod 

and bottom temperature (Coutant, 1977; Scott, 1982; Murawski, 1993; Perry and Smith, 

1994; Castonguay et al., 1999; Rose, 2005; Ruppert et al., 2009; Tamdrari et al., 2012; 

Shackell et al., 2014).  Several studies have also found direct effects of temperature not 

just on the distribution of cod, but also the degree of aggregation in cod as well (Swain 

et al., 1998; Dutil et al., 1999; Tamdrari et al., 2012).  Drinkwater (2005) reviewed the 

effects of temperature on cod more broadly including effects on growth, body condition, 

spawning, reproduction, distribution, migration, abundance and recruitment. 

One common method to examine habitat associations of target species has been 

the use of empirical cumulative distribution functions (CDF) of biomass by bottom 

temperature.  In the Northwest Atlantic, Perry and Smith (1994) use CDFs to identify 

associations between yellowtail flounder (Limanda ferruginea), haddock (Melanogrammus 

aeglefinus), silver hake and Atlantic cod and depth, temperature and salinity on the 
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eastern Scotian Shelf.  The authors only found a statistically significant relationship 

between cod and temperature during summer.  In my study area, cumulative 

distribution functions were also employed by Helser & Brodziak (1996) and Methratta 

and Link (2006) based on the Northeast Fisheries Science Center (NEFSC) scientific 

bottom trawl survey data.  Helser & Brodziak (1996) analyzed cumulative distribution 

functions of temperature across all strata in the Northeast Multispecies Fishery and 

compare them to catch weighted CDFs to determine if there were statistically significant 

relationships between three species (cod, yellowtail flounder and haddock) and 

temperature.  It is reassuring to know that, unlike Perry and Smith (1994), Helser & 

Brodziak (1996) did find a significant relationship between cod and bottom temperature 

in my study region in 19 out of 27 spring surveys and 15 out of 32 fall surveys.  I draw 

further comfort from the results of Methratta and Link (2006) who found that cod stayed 

in relatively cooler waters in both fall and spring.  However, the variability of these 

findings, and the findings for other species in the region (e.g. yellowtail flounder), 

indicate that there may be significant differences in the utility of temperature-based 

targeting and closures across species and seasons (Perry and Smith, 1994; Helser and 

Brodziak, 1996; Methratta and Link, 2006).   

I build on these studies by investigating the utility of temperature thresholds 

generated from CDFs to separate target species in the Northeast Multispecies fishery.  

The methods are similar in that both utilize CDFs and examine distances between CDFs 
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across a spectrum of temperatures.  Yet, this study is distinguished by its focus on the 

utility of using temperature as a dynamic management tool, rather than solely focusing 

on identifying statistically significant relationships between species and temperature. 

   

3.2 Methods 

3.2.1 Data 

To examine the potential for using bottom temperature to reduce non-target 

catches, I analyzed 16 years (1998-2013) of data from the NEFSC Scientific Trawl 

Surveys.  The surveys collect data from 350 to 400 sampling stations using a stratified 

random sampling design (NEFSC 1988). Within each stratum, 2.0° latitude by 2.5° 

longitude rectangular sampling units are randomly selected and each station is sampled 

with a standardized bottom trawl deployed for 30 min at a tow speed of 3.5 km/h 

(Azarovitz 1981, Despres-Patanjo et al. 1988, NEFSC 1988).  Measurements of bottom 

temperature and depth, among other variables, are also recorded.   

The Multispecies Groundfish Fishery Management Plan (FMP) includes 13 

species, and governs groundfish from the Gulf of Maine to Cape Hatteras.  Fishermen in 

this fishery generally employ trawls, but gillnets and hook and line gear are also present.  

To remove regional differences and potential metapopulation effects and to attempt to 

offer results directly applicable to a specific group of fishermen, I limit the extent of the 

study to the area off of Cape Cod and Georges Bank used by the Fixed Gear Sector of the 
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Northeast Multispecies fishery (i.e., between 67.67° and 70.91° West and 39.99° to 42.42° 

North; n=51,319 species catch records).  My analyses required records with information 

on the species type, depth, bottom temperature and expected catch weight.  Therefore, 

any record missing this information was removed from the dataset, resulting in a final 

dataset of 37,214 species catch records from 2,480 tows.   

To more clearly convey the implications of this study, I divide species into three 

categories: top catches, no retention species and others.  I again try to make this study as 

applied as possible and define the top catches as the top three catches by weight in the 

Fixed Gear Sector (specifically, the large-mesh gillnet component of that sector).  While 

top catches differ slightly by season and year, they are dominated by Atlantic cod, spiny 

dogfish, haddock and pollock (Pollachius virens).  No retention species are those for 

which the quota is set at 0.  Current no retention species are windowpane flounder 

(Scophthalmus aquosus), ocean pout (Zoarces americanus) and Atlantic wolffish (Anarhichas 

lupus).  Other species are neither top catches nor no retention species and include: 

Acadian redfish (Sebastes fasciatus), witch flounder (Glyptocephalus cynoglossus), winter 

flounder (Pseudopleuronectes americanus), American plaice (Hippoglossoides platessoides), 

yellowtail flounder, white hake (Urophycis tenuis), and Atlantic halibut (Hippoglossus 

hippoglossus).  For the purpose of this study, I include two further species that commonly 

interact with the fishery but are not in the FMP as part of this “other” group: silver hake 

and barndoor skate.  When I refer to target/non-target species, I refer to this on an 

54 



 

individual fishermen level, not at the level of the entire fishery.  Given the nature of a 

multispecies fishery with quotas for each species, any species may be a target or bycatch 

at some point in time.   

3.2.2 Seasonal variability 

Variability in seasonal temperatures will strongly affect the utility of a seasonal 

temperature threshold to separate two species.  That is, the greater the inter-annual 

variability in seasonal temperatures, the less likely that any single threshold value will 

work well across all years.  To address such inter-annual variation, I standardized 

bottom temperatures from the fall and spring surveys for the day of year of the survey 

and the depth of the survey using a linear regression (bottom temperature ~ day of year 

+ depth of tow).  I then calculated the standard deviation of the median temperature 

across all years in that season.  The median bottom temperature was used because the 

distribution of standardized bottom temperatures were not normally distributed in 12 of 

16 years (Shapiro-Wilk Test, p < 0.05).  Spring bottom temperatures exhibited strong 

variability, so I applied K-means clustering to identify two clusters of years 

corresponding to those with “warm” springs (n = 6) and those with “cold” springs (n = 

10). 

3.2.3 Empirical cumulative distribution functions 

The empirical cumulative distribution function plots discussed in the 

introduction describe the percent of biomass for a species caught in the scientific trawl 
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surveys up to a given temperature.  Specifically they may be described with the 

following equation: 

 

Where B is biomass (in weight or numbers of individuals caught), n is the sample 

size for the year/season subset of the data, T is the temperature associated with a single 

trawl in the survey, and t is the range of temperatures over which the species was 

caught.  I is an identity function which determines whether the set is in included in the 

cumulative total (1) or left out (0) based on the temperature of the trawl.  The objective 

of this analysis was to find the temperature at which the percentage of target biomass 

available to fishermen is maximized, while the percentage of non-target biomass is 

minimized.  To identify the optimal temperature to maximize this objective function I 

used a bagged approach to remove any trends across years (e.g., an overall increase in 

water temperatures between 1998 and 2013).  Specifically, based on the k-means 

clustering of spring-time temperatures, for each iteration (n=1000) I randomly sampled 7 

of 10 “cold” years and 4 of 6 “warm” years to train the model.  For each season / year 

combination in a bag, I calculated an empirical CDF for biomass of cod and an 

interacting species at 0.25°C temperature intervals.  Species/season/year combinations 

that had less than 5 records were removed from the analysis (Atlantic wolffish, ntotal = 2; 

and Atlantic halibut, ntotal = 20).  Next, I calculated the absolute value of the difference 
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between the cumulative percentages of the target and non-target biomasses available at 

each temperature.   

Since a variety of threshold values may provide very similar results, I opted to 

identify a range of “acceptable” threshold values for each species/season/year 

combination.  I arbitrarily defined “acceptable” as any temperature that resulted in a 

difference in percentage biomass available between target and non-target species greater 

than or equal to 90% of the maximum difference found in that species/season/year 

subset.  The acceptable threshold values for each species/season/year combination across 

all iterations were aggregated together by species and the median of these values was 

selected as the optimal threshold value for that species/season.  The median was used 

rather than the mean because the threshold values were not normally distributed.  The 

result of this approach was three threshold values for each cod/interacting species 

combination per bag (i.e., one for each: “cold” springs and “warm” springs, and one for 

fall).  These thresholds values were then validated using the 4 years that were not 

included in the training data bag. 

Validation of the threshold values involved a very similar process as was used to 

generate the optimum threshold value.  For each model iteration, empirical distribution 

functions were developed for both target and non-target species.  In an effort to generate 

operable results I looked at two easily implementable scenarios: the ability to fish at all 

temperatures above a specific value, or the ability to fish at all temperatures below the 
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value.  To implement this, I took the maximum of the absolute value of the difference 

between the percent available biomass of cod and the interacting species above and 

below the threshold temperature. 

To help describe the feasibility of the threshold values, I created several other 

performance metrics to help describe the validation results.  Specifically, I calculated the 

“breadth” of the acceptable threshold values as the mean number of acceptable 

threshold values divided by 4 to give a value in °C (the values were in .25° intervals).  

The breadth indicates the buffer around the threshold value that will still generate 

similar results (i.e., 90% of the maximum difference found).  This is of particular interest 

in relation to the standard deviation of the optimum threshold value.  A standard 

deviation less than half the breadth is a likely indicator that the threshold value is robust 

to interannual variability.  Mean Breadth is given in °C.  Due to spatiotemporal 

variability in water masses, I view values of Breadth < 0.5°C as inoperable, values 

between 0.5°C and 1°C to be challenging to implement, and values >1°C to be operable.  

Since percentage of biomass does not offer any information on the quantity of catch of 

that species, I also include total weight in the supplementary materials to give the reader 

an overall idea of the magnitude of the catch in question. 
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Figure 4: The Area Under the Curve is calculated by plotting the percentage of 
biomass of each species available at each 1/4 degree interval, taking the absolute 
value of the area beneath that curve, and then subtracting the area beneath the line of 
complete overlap (i.e. slope = 1). 

I offer one final metric to describe the overall biological separability of the two 

species by temperature: the Area Under the Curve.  Specifically, I used the previously 

calculated CDFs of each species to produce a form of a Receiver Operator Characteristic 

(ROC) curve (Figure 4).  Estimating the area under the curve (AUC) using the Mann-

Whitney approach follows naturally from estimating the ROC curve as a step-function 

based on empirical cumulative distribution functions (Green and Swets, 1966; Hanley 

and McNeil, 1982).  The CDF of the target species was used as the true positive 
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(sensitivity), while the CDF of the non-target species was used as the true negative 

(specificity).  Since the worst case scenario is completely overlapping thermal responses 

(indicated by an ROC curve with slope = 1), I subtract the area under this line from the 

ROC curve and take the absolute value of the Area Under the Curve (for cases in which 

the non-target species is found at temperatures colder than the target species).  The 

median AUC value for each season indicates the likely thermal separation between two 

species based solely on thermal preference of the two species.  I consider values of AUC 

> 0.75 to indicate strongly separable species, 0.50 < AUC < 0.75 to suggest reasonably 

separable species and AUC < 0.50 to be poorly separable species. 

The analytical approach outlined above results in: (1) an optimum temperature 

value to use in targeting or avoiding specific catch events; (2) a value indicating the 

maximum difference in the percentage of the target to non-target species biomass 

available above (or below) the threshold temperature; and (3) two descriptive metrics to 

help describe the feasability and utility of applying the threshold value.   

3.2.4 Post-hoc analysis 

The main purpose of this study was to describe how useful bottom temperatures 

are in separating species within the Northeast Multispecies Fishery compared to Atlantic 

cod.  However, the results from this analysis indicated that separability was not static 

either between or within years.  While I expected shifts across seasons based on previous 

studies (Perry and Smith, 1994; Helser and Brodziak, 1996; Methratta and Link, 2006), I 
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did not expect changes across years (i.e., between years with cold and warm springs).  

To help explain the spring results, I developed a linear model of the difference in 

breadth for each species between warm and cold spring.  I used the species’ mean 

minimum temperature, mean maximum temperature, mean range of temperatures and 

the mean median temperature (i.e., the mean of the median seasonal temperature across 

all years) in cold springs as explanatory variables as well as the standard deviation of 

those variables.  I ran a stepwise (backward and forward) regression with model 

selection by Akaike information criteria. 

All analyses described above were conducted using the R statistical software 

package (R Core Team, 2014).  Data was manipulated using the plyr (Wickham, 2011) 

and reshape2 (Wickham, 2007) packages.  Empirical distribution functions were 

generated using the spatstat package (Baddeley and Turner, 2005), and AUCs were 

calculated using the flux package (Jurasinski et al., 2014).  The stepwise linear regression 

was done via the MASS package (Venables and Ripley, 1999).  Figures were developed 

using ggplot2 (Wickham, 2009) and plotrix (Lemon, 2006). 
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Figure 5: Optimum threshold temperatures for separating species within the 
Northeast Multispecies FMP and species that commonly interact with the fishery 
from Atlantic cod.  All warm spring threshold values were great than cold spring 
values, and all fall threshold values were greater than warm spring values. 
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3.3 Results 

3.3.1 Spring clustering analysis 

Spring temperature distributions were characterized by high variability of the 

median temperature when compared to the fall.  The K-means clustering analysis to 

reduce interannual variability in mean spring bottom temperature was constrained to 

two clusters.  The analysis resulted in a “cold” cluster of 10 years (1998, 1999, 2001, and 

2003-2009; standardized cluster mean = -0.968) and a “warm” cluster of 6 years (2000, 

2002, and 2010-2013; standardized cluster mean = 0.813).  Deviance was largely 

explained by the difference between the clusters rather than by differences within each 

cluster (between sum of squares/total sum of squares ratio = 0.793), indicating a good fit 

of the K-means clustering in spite of the 2-group constraint.   

2.3.2 Bagged threshold temperature analysis 

The optimum threshold temperatures (Figure 5) found for cold springs (range = 

4.25 – 7.00°C) were always lower than warm springs threshold temperatures (range = 

5.50 – 8.00°C), and warm springs always produced lower threshold values than fall 

(range = 8.25 – 12.50°C).  The mean difference in optimum threshold temperatures 

between cold and warm springs was 1.15° C (sd = 0.38°C), while optimum threshold 

temperatures in fall averaged 3.40°C (sd = 1.37°C) higher than warm springs. 

 

 

63 



 

 

Figure 6: The difference in percentage biomass available for Atlantic cod and each 
comparison species for warm vs cold springs and warm springs vs fall.  The dotted 
line represents a 1-to-1 relationship (i.e., no change) between seasons.  Distance from 
the line indicates strong changes between seasons. 
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To better understand the implications of the results, I report them in the three 

categories mentioned in the methods: top catches, no retention species and others.  All 

four of the species that made up the top catches in cold and warm springs displayed 

strong differences from Atlantic cod in the percentage of their biomass available at or 

below the optimum threshold temperature (Figure 6; mean = 65.95, sd = 10.53).  

Alternatively, the percentage of biomass of no retention species were poorly 

distinguished from Atlantic cod in cold springs (windowpane flounder = 21.70; ocean 

pout = 28.76).  Windowpane flounder was more strongly differentiated in warm springs 

(58.22), while ocean pout remained difficult to separate by temperature (26.38).  Spring 

results for “other” species ranged widely with white hake and witch flounder displaying 

strong differentiation (>50 in both cold and warm springs), while American plaice, 

pollock, yellowtail flounder and winter flounder were less differentiated (<50).  Of note, 

pollock and windowpane flounder were highly variable between cold and warm springs 

(85.18 vs. 30.44 and 21.70 vs. 58.22).   

Results for the top caught species in the fall season ranged in the difference of the 

percentage of biomass available at the threshold temperature (as compared to Atlantic 

cod) with spiny dogfish and haddock being easily differentiated (>50), while silver hake 

was poorly differentiated by temperature (19.60).  The no retention species also 

displayed mixed results (windowpane flounder = 78.85, ocean pout = 13.04).  Of the 

“other” species, only witch flounder and white hake were strongly distinguished from 
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cod (67.97 and 51.67, respectively), while American plaice and pollock faired almost as 

well (43.87 and 46.90, respectively).  Yellowtail flounder and winter flounder were again 

poorly distinguished from cod by temperature (14.44 and 26.37, respectively).  There 

were strong seasonal differences between warm springs and fall for both barndoor skate 

and silver hake with both becoming less distinguished from cod by temperature 

(barndoor skate = 75.00 to 33.72; silver hake = 59.74 to 19.60).  White hake was also less 

easily separated in fall, but was still well distinguished from cod (72.00 to 51.67). 

The initial results above describe the maximum differentiation between the 

percentage of cod biomass available above (or below) an optimum threshold 

temperature as compared to a suite of other species.  Essentially these results describe 

the utility of trying to differentiate species with threshold temperatures.  However, they 

do not offer insight into how feasible it is to separate the species.  Results of analysis into 

the AUC and mean threshold temperature breadth lend insight into the feasibility of the 

optimal temperature threshold reported above.  That is, while the maximum difference 

in percentage of available biomass at the threshold temperature may be very large (i.e., 

most of the target biomass is available and only a fraction of the interacting biomass), a 

very small shift in temperature may radically shift this ratio and result in a far greater 

portion of the interacting population becoming available.  The breadth metric offers 

some insight into this, but is meant to focus on how much variability captains will have 

around targeting the threshold temperature.  The AUC metric offers insight into the 
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biological separability of the two species; using one value to describe differences in 

percent biomass available across all temperatures.  Alternatively, breadth describes 

operational feasability of separating the species. 

 

Figure 7: Separability by temperature of all species compared to Atlantic cod.  A 
decrease in breadth was found between cold and warm springs, but operable 
separation was found across each temperature regimes and season.  Breadth was 
generally categorized into “not operable” (< 0.5°C), “possible” (0.5 – 1.0°C) and 
operational (>1.0°C). 

For the top three catches in cold springs, spiny dogfish and pollock were strongly 

separable by AUC (>0.81; Figure 7), while haddock was poorly separated (AUC = 0.34).  

Warm springs exhibited a reduction in the AUC of the well distinguished top catches: 

spiny dogfish (∆AUC = -0.15) and pollock (∆AUC = -0.38).  Conversely, haddock 

separability increased (∆AUC = 0.19). All three top catches were well distinguished from 

cod by temperature in fall (AUC > 0.52).  While the two no retention species were both 
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poorly separated from cod by temperature in cold springs (AUC < 0.31), they differed in 

their response to warming waters.  While ocean pout remained poorly distinguished in 

warm springs (AUC = 0.22) and falls (AUC = 0.16), windowpane flounder became 

reasonably separable in warm springs (AUC = 0.57) and was the most distinguished 

species from cod in fall in this study (AUC = 0.87).  

In cold springs, the “other” species were divided between being well separated 

(AUC > 0.76; witch flounder, barndoor skate, Acadian redfish, silver hake and white 

hake) and poorly separated (AUC < 0.25; winter flounder, American plaice, yellowtail 

flounder).  Warm springs distributed “other” species more widely across AUC values, 

with two in each quartile.  Acadian redfish was strongly separable from cod in fall (AUC 

> 0.81), while 3 species exhibited poor separation (winter flounder yellowtail flounder 

and silver hake < 0.37).  Strong decreases in seasonal AUC values were seen in barndoor 

skate (∆AUC = -0.44) and silver hake (∆AUC = 0.41), which became indistinguishable 

from the cod distribution across temperatures (AUC = 0.04). 

Very strong differences were found in mean breadth across both springs and fall.  

In general, I found mixed operational separability in cold springs, poor operational 

separability in warm springs, and good operational separability in fall (Figure 7).  

Breadth change in a similar manner for all top catches.  All three had breadth >0.5°C in 

cold springs, all three experienced declines in breadth in warm springs (resulting in 2 of 

3 with breadth < 0.5°C), and all three had strong operational separation from cod by 
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temperature in fall (breadth > 1°C).  Both of the no retention species reacted in exactly 

the same manner as the top catches (cold spring breadth >0.5°C; warm spring breadth 

<0.5°C; and fall breadth >1°C).  The “other” species had a similar response.  All had 

breadth >0.5°C in cold springs, all but one had breadth <1°C in warm springs (winter 

flounder), and all but 2 had breadth >1°C in fall (yellowtail flounder and silver hake).  

Decreases in breadth were seen in 11 out of 13 species between cold and warm springs.  

Two of the three top catches, spiny dogfish and pollock, showed very large decreases in 

breadth (>0.71°C).  Only two species saw any increase in breadth from cold to warm 

springs (yellowtail flounder, 0.01°C; and American plaice, 0.25°C). 

 

Table 5: Results of the explanatory model of the difference in breadth of acceptable 
threshold values between cold and warm springs. 

 
Estimate Std. Error t value Pr(>|t|) Significance 

(Intercept) 0.729 0.272 2.678 0.023 * 

Weighted Median Temp -0.221 0.054 -4.058 0.002 ** 

SD of Min Temp 0.371 0.190 1.955 0.079 . 

Significance codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

3.3.3 Post-hoc analysis 

To reiterate, breadth describes the thermal extent of “acceptable” threshold 

temperature values.  The smaller the breadth of acceptable threshold values that 

separate two species, the more difficult it would be to efficiently target one or the other 
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species based on temperature.  The final model of the difference in breadth between cold 

and warm springs included the weighted median temperature and the standard 

deviation of the minimum temperature (Table 5).  Weighted median temperature had a 

negative effect on difference in breadth between cold and warm springs, while the 

standard deviation of the minimum temperature had a positive effect.  The final model 

explained 62% of the null deviance with just two variables. 

 

Table 6: Species meeting all three criteria for successful temperature-based targeting 
against Atlantic cod (using Breadth > 0.5°C) by season and temperature regime type. 

Cold Springs Warm Springs Fall 
Barndoor skate Barndoor skate Haddock 
Pollock Redfish Pollock 
Redfish Spiny Dogfish Redfish 
Silver hake White hake Spiny Dogfish 
Spiny Dogfish Witch flounder White hake 
White hake   Witch flounder 
Witch flounder   Windowpane flounder 

 

3.4 Discussion  

3.4.1 Temperature targeting in a multispecies fishery 

For temperature based closures or targeting to be useful three elements must 

coincide: 1) the magnitude of the difference between the percentage biomass available 

above (or below) the threshold temperature must be strong (Difference > 50); 2) the 

species should be biologically generally separable across the range of temperatures they 

inhabit (AUC > 0.50); and (3) the threshold temperature must have a reasonable buffer 
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which offer similar results (Breadth > 0.5°C and probably > 1°C).  Warm spring had the 

lowest number of top catches that met these criteria (1, spiny dogfish; Table 6).  Two of 

three top catches met the criteria in cold springs and all three met the criteria in fall.  

While low-quota species in this fishery will vary by license holder, it is highly likely that 

Atlantic cod will become a choke species for many fishermen.  This study suggests that, 

although temperature targeting of top catches will be difficult in warm springs, 

temperature can be used to separate a choke species (cod) from more abundant species 

in cold springs and during the fall.  This is particularly crucial for the common pool 

fishermen who are under a trimester TAC system (i.e., the fishery can be closed three 

times during the year when the trimester TAC is reached). 

Of the two no retention species, only windowpane flounder in fall appears to be 

well suited for temperature targeting.  While not a no retention species, barndoor skate, 

which is managed under the Northeast Skate Complex fishery, is considered a nuisance 

species by some fishermen in the Northeast Multispecies fishery as it can cluster in areas 

in very high densities and prevent the targeting of other species.  Barndoor skate met all 

three conditions in both cold and warm springs.  Thus, I find utility (on a species by 

species basis) in temperature targeting to reduce catch of choke species, no retention 

species, and nuisance species.  It is important to note, however, that the utility of 

temperature targeting in each of these cases is highly seasonal.  Interestingly, given the 

increased correlation between cod and temperature in spring found by Helser & 
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Brodziak (1996), there was little difference between the total number of species meeting 

the criteria for temperature targeting against cod in the cold (n=7) or warm (n=5) springs 

and the fall (n=7).   

3.4.2 The influence of climate change on targeting within a 
multispecies fishery 

While some species experienced drastic decreases in the difference in percentage 

biomass available compared to cod at the optimum threshold temperature between cold 

and warm springs, there was no significant trend across all species.  However, a clear 

declining trend was visible in the breadth of acceptable threshold values.  While not the 

initial focus of this study, the implications of the changes in breadth between cold and 

warm springs for selectivity in multispecies fisheries under a warming climate are 

disturbing.  I discuss them below. 

The effect of climate change on the distribution of fish stocks has been a major 

area of research for fisheries scientists and ecologists for decades (DeAngelis and 

Cushman, 1990; Frank et al., 1990; Glantz, 1990; Murawski, 1993).  However, the main 

focus of this research has been on climate-induced shifts in latitude or depth (Murawski, 

1993; Drinkwater, 2005; Perry et al., 2005; Rose, 2005; Fogarty et al., 2007; Nye et al., 2009; 

Pinsky et al., 2013) and resultant impacts on growth and productivity (Fogarty et al., 

2007; Brander, 2010; Mantzouni et al., 2010; Shackell et al., 2012) with less attention paid 

to consequent changes in interspecific interactions and effects on fishery selectivity.  The 

shift in the mean breadth of the threshold values between cold and warm springs found 
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in this study indicate a significant (Wilcoxon signed rank test, p = 0.003) and substantial 

(mean = -0.30°C, sd = 0.33°C) change in how virtually every species in the Northeast 

Multispecies fisheries is distributed across bottom temperature compared to Atlantic 

cod.  Only one species meaningfully increased the breadth of acceptable threshold 

values in warm springs compared to cold springs (American plaice = +0.25°C).  These 

results indicate that the ability to selectively fish in the Northeast Multispecies fishery 

will become more difficult under a warming ocean.  While, selectivity in a multispecies 

fishery has always been a problem, its importance has been amplified with the 

introduction of catch share systems with quotas for individual species within the fishery. 

Specifically, the post-hoc analysis indicated that the breadth of acceptable 

threshold values for species caught at higher median temperatures were more strongly 

affected by the shift in bottom temperature than those caught at lower median 

temperature values.  It also suggested that the breadth was affected by standard 

deviation of the minimum bottom temperature at which the species was caught.  These 

results are curious in that they suggest two separate mechanisms affecting the breadth of 

acceptable threshold values.  First, the influence of high median temperatures might be 

explained by Atlantic cod being forced into a distribution across bottom temperatures 

previously largely occupied by species with higher median temperatures, including all 

three top catches (i.e., spiny dogfish, haddock, pollock, and barndoor skate, silver hake, 

white hake, witch flounder, windowpane flounder and redfish).  The mean change in 
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the range of acceptable threshold values for species with median temperatures higher 

than cod was -0.41°C, compared to just -0.03°C for species with lower median 

temperatures than cod.  Three of the four highest changes in breadth were also the three 

highest median temperature species (i.e., spiny dogfish, barndoor skate and silver hake).  

This narrowing of the temperature window in which these species are well separated 

from cod indicates that, as the Northeast US shelf continues to warm under climate 

change, it will become more difficult to target these warm-temperature species while 

avoiding cod. 

The second mechanism is driven by the relative weight of a species’ temperature 

and depth preferences.  Several previous studies have suggested that species with strong 

depth or substrate preferences (“depth-keepers”) are likely to be exposed to a wider 

range of temperatures across seasons (Murawski, 1993; Methratta and Link, 2006).  

Although my linear model is solely based on variables derived from species 

distributions in spring, the connection between standard deviation of (minimum) 

temperature and strong depth or habitat preference remains evident.  Three out of the 

four species with the highest standard deviation of minimum temperature were depth-

keeper: windowpane flounder (a shallow depth-keeper), witch flounder and white hake; 

barndoor skate was the only temperature-keeper (Scott, 1982; Gabriel, 1992; Murawski, 

1993; Methratta and Link, 2006).  Conversely, the three out of four of the species with the 

lowest standard deviation of minimum temperature were temperature-keeper (spiny 

74 



 

dogfish, American plaice, and haddock; Scott 1982, Gabriel 1992, Murawski 1993, 

Methratta and Link 2006).  The other, silver hake, is widely distributed but generally 

considered to be a deep-water species (Methratta and Link, 2006).  However, unlike the 

median temperature variable, only one of the three species with the three lowest 

standard deviations of minimum temperature exhibited the expected strong decrease in 

breadth between cold and warm springs (spiny dogfish).  The second lowest standard 

deviation, American plaice, was actually the only species to exhibit a significant increase 

in breadth.  This indicates the importance of standard deviation in minimum bottom 

temperature variable is in explaining the very strong decrease in breadth of spiny 

dogfish, and any extrapolation of these findings to suggest a decreased ability to target 

temperature-following species and not catch cod under climate change needs further 

study.  The findings relative to climate change in this study warrant serious 

consideration and follow-up using the full temporal and spatial extent of the NEFSC 

Scientific Trawl Surveys. 

3.4.3 Further considerations 

It is also important to note that, as with numerous previous studies (e.g., 

Murawski 1993 or Methratta and Link 2006) I did not take into account stock structure, 

ontogenetic shifts or differences in distribution based on sex.  While these variables may 

be significant factors affecting the distribution of various species across temperature 

(Murawski and Finn, 1988) I believe that this study provides insight into the main trends 
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in temperature targeting in the region and potential effects of climate change on 

selectivity in the Northeast Multispecies fishery.  It is also important to note that I have 

considered the percent biomass available for a species at a given temperature, not the 

total biomass available.  It is feasible that I may be comparing 90% of 1,000 tons of one 

species and 90% of 10 tons of another.  For this reason I have included the weight of 

catch of each species in each season / year combination in the Supplementary materials.  

I believe that any implementation of the methods used here by management must also 

include a trade-off evaluation of the total biomass of both target and non-target species. 

For temperature targeting to reach its full utility in this fishery, seasonal gaps in the 

temporal extent of the NEFSC Scientific Trawl Survey data need to be filled (e.g. through 

the use of the NEFSC study fleet).     
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4. Why do we persist with persistence? A comparison of 
static and dynamic fishery closures2 
4.1 Introduction 

4.1.1 Background 

At the turn of the millennium, Hyrenbach et al. (2000) presented a thought piece 

in Aquatic Conservation: Marine & Freshwater Ecosystems that fundamentally altered 

the scope of what many thought could be accomplished with time-area closures.  The 

stated purpose of the piece was to “stimulate discussion and research on the 

implementation of pelagic protected areas… [and] to argue that in principle large-scale 

reserves can be applied to highly dynamic marine habitat…”  With their Viewpoint 

piece, Hyrenbach et al. achieved something arguably greater- it was the first real 

discussion of dynamic ocean management in general (Elliott Norse, personal 

communication).  Unfortunately, the intervening period has resulted in few real world 

examples of the concept of dynamic ocean management (see Dunn et al. 2014, Little et al. 

2014, Lewison et al. in review for non-exhaustive reviews of existing measures).  The 

vast majority of spatiotemporal management measures (i.e., marine protected areas or 

time-area closures) remain static in either time or space, and more often than not they 

are static in both (Hyrenbach et al., 2000; Norse, 2005; Game et al., 2009).  We persist in 

2 A version of this chapter will be submitted as: Dunn, D.C., A.M. Boustany, P.N. Halpin. Why do we persist 
with persistence? A comparison of static and dynamic fishery closures. 
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clinging to the idea that resources or biodiversity must be spatially or temporally 

persistent for managers to effectively address them using spatiotemporal measures.  

4.1.2 The importance of scale in fisheries management 

While ocean management is principally static, the ocean itself is fundamentally 

dynamic.  Primary production on land is dominated by large static flora in habitats that 

change on the order of decades to millennia, but primary production in the ocean is 

almost entirely driven by planktonic organisms whose abundance and distribution 

change on the order of minutes to months.  Plankton abundance is a function of highly 

variable factors influencing growth (light, temperature and nutrient availability) and the 

equally variable physical forcing driving their distribution (e.g., molecular processes, 

internal and surface waves and tides, fronts and eddies, wind-driven mixing, 

biophysical coupling, or basinal or decadal/multidecadal oscillations) (Bainbridge 1957, 

Haury et al. 1978, Smith 1978, Steele 1978, Denman and Gargett 1983, Mackas et al. 1985; 

reviewed in Legendre and Demers 1984a, Martin 2003).  The first attempt to describe 

how these physical forces interact across spatial and temporal scales came from Henry 

Stommel (1963).  Stommel’s intent in developing his seminal spectral analysis diagram 

was to point out that the scale at which an oceanographic process is measured is 

extremely important and to differentiate realizable from intractable goals.  Haury et al. 

(1978) followed Stommel’s lead and adapted his diagram to describe drivers and 

variability of plankton biomass.   
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If the causes of heterogeneity in the distribution of phytoplankton are different 

on different spatial and temporal scales, it should come as no surprise that the 

spatiotemporal distributions of higher trophic level organisms are also patchy and 

forced by diverse scale-dependent drivers (Mann, 1993; Langton et al., 1995; Bertrand et 

al., 2002; Croll et al., 2005).  Perhaps only slightly less obvious is that the distribution of 

fishing effort is in no way exempt from these factors.  If variability in the distribution 

and abundance of target species and fishing effort are based on multiple drivers across 

multiple scales, we can also assume that fisheries management should be a multiscale 

process, capable of addressing drivers at all tractable scales.   

 

Figure 8: The spatiotemporal extent of: a) fishing gear, intra-annual shifts in fishing 
effort and traditional static spatiotemporal management measures (i.e., permanent or 
seasonal time-area closures); and b) dynamic management measures including grid-
based closures, real-time closures based on move-on rules and oceanographic closures 
overlaid on the “Stommel diagram” from Haury et al. 1978 (after Stommel 1963). 

When scales associated with various elements of fisheries management are 

overlaid on Haury’s diagram, we can begin to understand what ecological processes 

fisheries management is capable of addressing (Figure 8).  Process leads to pattern and 
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Haury et al. also describe dominant patterns at each scale.  Scales smaller than 10km 

differ from larger scales by including coactive and social patterns as dominant forces.  

Coactive patterns, as defined by Hutchinson (1953), arise from interactions between 

species (e.g., competition, niche partitioning, predation and parasitism) while social 

patterns are “determined by signalling of various kinds, leading either to spacing or 

aggregation”.  This general ~10km threshold is important in fisheries management 

because it is approximately the minimum resolution of spatiotemporal management 

measures.   

The spatiotemporal resolution and extent of fisheries management has been 

largely dictated by logistical and political constraints, and secondarily by the geographic 

range of the species or meta-population dynamics (Langton et al., 1995).  Management 

units are rarely smaller than 1000 km2 in developed coastal fisheries, and management 

measures generally occur at resolutions larger than 10km2.  From a temporal 

perspective, the resolution of management measures is at best a month and generally a 

year.  As such, attempts to manage processes and patterns at sub-10 km, sub-1 month 

resolution likely involves some level of spatiotemporal mismatch.  This is troubling as 

inefficiency in the management of marine resources is born of mismatches in the 

spatiotemporal variability of resource, resource users and management actions.  Further, 

it raises some doubt as to whether (and at what cost due to the inefficiency of the 

measures) we can meet commitments to implement ecosystem-based fisheries 
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management (EBFM) with spatiotemporal measures that may be fundamentally 

mismatched in space and time to address coactive and social patterns.  To address the 

obvious spatiotemporal mismatch between an incredibly mutable ocean and static 

management, to allow for a comprehensive implementation of EBFM, and to minimize 

inefficiency in our management of marine resources, we must seek to develop more 

dynamic management measures that allow managers to address scales, processes and 

patterns occurring under ten kilometers.  

4.1.3 Dynamic Ocean Management 

In the past few years, interest in the concept of Dynamic Ocean Management has 

accelerated (DOM; Hobday et al., 2014; Lewison et al., in review; Maxwell et al., in 

review).  Maxwell et al. defined DOM as “management that changes in space and time in 

response to the shifting nature of the ocean and its users based on the integration of new 

biological, oceanographic, social and/or economic data”.  While this generally describes 

the intent, it is too broad to allow for appropriate differentiation between DOM and 

other forms of management.  I believe DOM should specifically be focused on how 

management is implemented (Figure 9).  That is, dynamic ocean management is any 

coordination of activities related to the marine environment in which the time and/or location of 

the implemented measure is dependent on spatiotemporally variable conditions (e.g., 

oceanography, the contents of a haul or market signals), and is updated in near-real time with the 

objective of increasing efficiency by aligning the temporal and spatial scales of the resource, 
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resource users, management, and markets.  Specificity with regard to how the 

implementation of the management measure is defined (i.e., automatically, in near real 

time and against conditions on the ground) is critical, as it is only through the automatic 

changing of the time and location of implementation that increases in the spatiotemporal 

resolution of management are achieved and spatiotemporal mismatches are overcome. 

 

Figure 9: Dynamic Ocean Management can be seen as a sub-routine within the larger 
adaptive management framework.  While alternate definitions are still being debated, 
I believe it specifically applies to the where and when a management measure is 
implemented (i.e., automatically, in near real time and against conditions on the 
ground). 

In the introduction, I describe a framework for mitigating bycatch with 

spatiotemporal management measures.  The recent work on dynamic ocean 

management largely focuses on three types of examples that fall within that framework: 

grid-based hotspot closures, real-time closures based on move-on rules and 
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oceanographic closures.  Each of these types of measures offers the opportunity to 

manage fisheries at finer spatiotemporal scales than traditional static management.  

Grid-based hotspot closures (e.g., Bethoney et al. 2013, O’Keefe and DeCelles 2013) have 

been implemented on a weekly basis with cellsizes as small as ~5x10 km.  As mentioned 

in chapter 1, move-on rules have been widely implemented with real-time closures 

lasting days to weeks over distances as short as 2-10 km (in radius).  In that chapter, I 

showed that empirically-based move-on rules should be operable down to 1 km and 1 

day in the US Northeast Multispecies Fishery.  With more and finer resolution catch 

data, it is likely that the temporal component could actually be hourly.  Oceanographic 

closures, specifically closures based on sea-surface temperature, have been implemented 

on a daily (Howell et al., 2008) and monthly (Hobday and Hartmann, 2006; Hobday et 

al., 2010) basis.  The spatial resolution of oceanographic closures can be subjective, as in 

voluntary programs it is implemented by captains testing the temperature of the water 

they are in (resolution = meters), while regulated examples require designation of cells 

or areas as being closed and are coarser.  Hobday et al. (2010) base their model for a 

dynamic closure to reduce bycatch of southern bluefin tuna (Thunnus maccoyii) on 5 km 

resolution temperature data, but the final management measure is implemented at a 

coarser scale.  The resolution of the dynamic closures described above suggests that 

dynamic management should allow fisheries managers to expand the scope of the 
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processes and patterns they can address down to the kilometer and day scale (Figure 

8b).   

While we are seeing a growing number of dynamic management measures and 

some coalescing around a definition of DOM, there is a near total lack of concrete 

studies comparing static and dynamic management measures - either theoretical or 

existing.  O’Keefe et al. (2013) evaluate the effectiveness of time/area closures, 

quotas/caps, and fleet communications to reduce fisheries bycatch against a set of five 

criteria.  Evaluation criteria include “(1) reduced identified bycatch or discards, (2) no or 

minimal negative effect on the catch of target species, (3) no or minimal negative effect 

on the catch of other non-target species or sizes, (4) no or minimal spatial or temporal 

displacement of bycatch, and (5) economically viable for the fisher.”  Their results 

indicated that four of the five static time-area closures studied failed to meet even two of 

the criteria, while all of the more dynamic measures used were able to meet at least three 

criteria (mean = ~4.125).   

The one example of a study looking at the efficiency of using static and dynamic 

closures to reduce bycatch, Grantham et al. (2008), examined permanent full fishery 

closures, seasonal full fishery closures and a series of temporary time-area closures.  

While this effort represented a major step forward in considering the utility of quasi-

dynamic management measures, it did not incorporate many of the aspects of what it 

might mean for a closure to be “dynamic” (e.g., either of the examples from the two 
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prior chapters- dynamic instantiation or dynamic delineation).  In the introduction, I set 

out a specific framework based on the idea that more dynamic fishery closures might 

result in more targeted (i.e. efficient) management than commonly results from static 

closures.  In this study, I seek to build on Grantham’s effort and compare the efficiency 

of the forms of spatiotemporal management described in the introduction.  In chapters 1 

and 2, I simulated two types of dynamic closures (i.e., move-on rules and dynamic 

oceanographic closures).  Here, I compare the efficacy and efficiency of dynamic 

measures to optimized static monthly and annual closures developed through the use of 

a spatial conservation prioritization tool (i.e., Marxan; Ball, Possingham, & Watt, 2009; 

sensu Grantham et al., 2008). 

 

4.2 Methods  

4.2.1 Development of closures 

Five types of closures were simulated: 1) seasonal full-fishery closures; 2) static 

annual time-area closures; 3) seasonal time-area closures; and 4) grid-based “hotspot” 

closures; and 5) real-time closures based on move-on rules.  In each case the objective of 

the closure is to minimize catch of juvenile cod while maximizing the percent of adult 

cod catch taken.  An attempt was made to develop an oceanographic closure based on 

threshold bottom temperatures, but due to poor performance of the threshold and high 
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standard error between modeled bottom temperatures and in-situ bottom temperatures, 

it is not included in this study (see Appendix A).   

4.2.1.1 Development of annual and seasonal static closures 

I developed optimized annual and monthly static closures using Marxan (Ball et 

al., 2009;  no software was necessary to determine the optimal monthly full-fishery 

closure).  Marxan is a conservation planning software tool that attempts to efficiently 

solve a minimum set reserve design problem (though see Ball et al., 2009 for other more 

recent and novel uses).  That is, it attempts to efficiently select reserve sites that include 

various types of features such that targets for those features are met while a cost is 

minimized.  Ball et al. describe this function mathematically as: 

 

subject to: 

 

The first term represents the cost c of including site i in the reserve set, across all 

sites Ns.  This value is multiplied by a binomial variable x for site i (i.e., 0 or 1) 

representing whether the site was included in the reserve set.  The second term adds a 

penalty based on the configuration of the reserve set.  A boundary multiplier b is applied 

to a penalty generated relative to the connectivity cv between any two sites (i, h) 
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contained in the reserve set.  The terms xi(1-xh) again use a binomial control variable to 

ensure that only distances between pairs of sites included in the reserve set are included 

in the penalty.  Marxan attempts to minimize these costs subject to the need to meet a 

specific goal G for feature j, across all sites Ns.  Following the previous examples, it does 

this by summing the quantity r of feature j in site i, and multiplying it by the binomial 

control variable xi. 

While the reserve configuration penalty (boundary length modifier; i.e., a 

penalty based on the sum of the lengths of the perimeters of all areas in the reserve 

network) is important for reserves sets considering larval transport or other movement 

patterns, or that need to cluster sites to make compliance and enforcement easier, there 

are circumstances that may not require such constraints.  For instance, in their 

comparison of various quasi-dynamic closures, Grantham et al. (2008) do not include the 

configuration penalty.  Their reserve set was meant to capture a target level of the 

overall bycatch occurring in the fishery while minimizing any effect on the catch of 

commercial species.  Neither the feature (bycatch) nor the cost (target catch) have 

movement characteristics that were meant to be considered in the reserve set, and as 

such it may have been ecologically reasonable for the authors to ignore the configuration 

penalty.  However, their reserves would still require enforcement, and thus the study 

might have benefited from the use of a configuration penalty (as use of the penalty 

would result in smaller, more compact reserve sets). 
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In the present study, I consider a range of configuration penalties to determine 

whether a boundary length modifier improves the efficiency metric proposed below. So 

while this study follows Grantham et al. (2008) in adding a monthly time step t (for the 

seasonal closures), we keep the configuration penalty:  

 

subject to: 

 

The new variable t has been added referencing the time t at which the site i was 

selected.  Grantham et al. (2008) use a monthly time step for t. The temporal resolution 

used in this study is a trade-off between the ability to make fair comparisons with the 

methods used in the previous chapters which have time steps as fine as 1 day, and the 

validity of using such a fine time-step considering the potentially large inter-annual 

variability in when bycatch occurs. 

The target was a percent of total juvenile catch in the dataset.  Juvenile catch is 

recorded in the NEFOP data with a specific disposition code (“RegsSmall”) and is thus 

easily identifiable.  Cost was calculated as the percentage of target catch forgone.  This 

assumes that fishing effort is reduced by the closures rather than shifted.  This 

assumption is difficult to justify in most implementations of time-area closures, but in 
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this circumstance we are comparing closures using the same assumption across the 

board.  Thus we assume not that fishing effort is reduced, but that the shift in fishing 

effort due to any of the closures would have similar results.  Since we are only 

considering a single gear type over a small area, we believe this assumption is 

reasonable. 

4.2.1.2 Development of grid-based “hotspot” closures 

Development of grid-based “hotspot” closures was similar to the validation 

method used to identify the effect of real-time closures based on move-on rules in 

chapter 1 and were meant to mimic (to the degree possible) the methods employed by 

O’Keefe and DeCelles (2013).  A 5km by 10km grid was overlaid on the cleaned Fixed 

Gear Sector large-mesh anchored gillnet data (excluding those using tie-downs) from 

2005 to 2010.  I then developed an R script to iteratively go through the data sorted by 

date.  When a set with a catch of juvenile cod greater than a predefined threshold was 

encountered, the cell in which it occurred was closed to fishing the next day.  Multiple 

juvenile catch thresholds were tested: 0 lbs, 0.1 lbs, 1 lb, 5 lbs and 10 lbs.  Similarly, I 

tested one-day closures and weeklong closures.  Lastly, I tested the same scenarios on 

the 10 km by 10 km grid used for the Marxan-based closures. 

4.2.1.3 Development of real-time closures based on move-on rules 

The methods used here to implement real-time closures based on move-on rules 

follow those in chapter 1.  I again used the cleaned Fixed Gear Sector large-mesh 
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anchored gillnet data (excluding those using tie-downs) from 2005 to 2010.  The move-

on distance (2.5 kilometers) and time (1 day) for avoiding juvenile cod were also taken 

directly from chapter 1.  Rather than using number of events as our metric for 

performance, we used weight of catch.  As in chapter 1, closure effect was calculated by 

iterating through the dataset by time and day and removing any future sets within the 

time and distance indicated by the move-on rule of a set marked as containing any 

juvenile catch (i.e., bycatch threshold = 0 lbs). 

4.2.2 Calculation of time and area required by closures 

Before comparisons between the various types of closures can be drawn, the 

time-area required by each method must first be calculated.  The function used to 

calculate the time-area required for each type of closure will differ.  For move-on rules, 

the total time-area required is simply the number of instances the move-on rules was 

implemented over the course of iterating through the dataset multiplied by the time and 

area used in the rule.  The area of a move-on rule is found by calculating the area of a 

circle with radius equal to the distance employed in the move-on rule.  This relationship 

is captured by the following equation: 

 

Where k is an implementation of the move-on rule, Nk is the total number of 

implementations, s is the distance of the move-on rule, and t is the time-lag of the move-
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on rule.  Grid-based closures are defined similarly, but the area of an individual closure 

is the gridcell size (i.e., 5x10 or 10x10 km). 

The time-area requirements for the static closures were based on the area within 

the study site that was within the selected “reserve”.  However, unlike the dynamic 

closures, the area of the static closures vary with each time step, not with each 

instantiation of a rule.  Thus, continuing to use the same notation, the time and area 

required by the closure may be described: 

 

Thus, the time requirement for the a static closure is found by summing the area a of site 

i multiplied by a control variable describing whether the site was within the reserve set, 

across all sites Ns within the bounds of the study and all timesteps Nt.   

4.2.3 The efficiency metric 

To compare the three types of closures, I examined the percentage of bycatch 

reduced (by weight), the percentage target catch forgone (by weight) and the time and 

area required to achieve the bycatch reduction.  Each of these values separately has 

information useful to managers, but a single metric of efficiency is also useful.  

Therefore, I generated a metric that includes all three values.  The metric may be 

described as: 
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The first term is simply the total reduction in bycatch, the second is the reduction ratio 

(percent bycatch reduction divided by percent catch reduction) and the last term is the 

percent area used.  More specifically, the total reduction in bycatch is the ratio non-

target catch u in set f contained within the closure (represented by the control term xf) to 

the total weight of non-target catch, where Nf is total number of fishing sets.  I multiply 

this term by the ratio of the same term to total catch reduction (notated as with the non-

target catch, except v represents the target catch weight).  The denominator is the ratio of 

time and area used in the closure (denoted as the function R), to the product of all time 

Nt and area Na considered.  The numerator describes the magnitude and efficiency of the 

closure, while the denominator describes how efficient the closure was in time and 

space.  Finally, due to the large range of values displayed by the efficiency metric, I take 

the log of one plus the efficiency metric.  As the ratio of bycatch reduced to catch 

forgone increases and the time-area used decreases, the metric goes to infinity.  

Alternatively, as bycatch reduction efficiency decreases and the time-area required 

increases, it goes to zero.  This equation can easily be weighted to ascribe more 

importance to one or another element within the metric, but such weighting would 

likely differ between any two fishermen or managers.  As such, we do not weight any 

aspect of the metric. 
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All analyses described above were run in R (R Core Team, 2014).  Data was 

manipulated using the plyr (Wickham, 2011) and reshape2 (Wickham, 2007) packages.  

Spatial analyses were completed using the sp and rgdal packages (Bivand et al., 2013, 

2014).  Figures were developed using ggplot2 (Wickham, 2009). 

4.3 Results 

4.3.3 Closure Results 

The real-time closures based on move-on rules reduced juvenile cod bycatch 

62.17% by weight (Table 7).  To draw comparisons between the real-time closures and 

less dynamic monthly and annual time-area closures, a general target of 60% reduction 

in bycatch biomass was set for the Marxan runs.  The time-area required per individual 

closure can be considered the resolution of the management measure.  For instance, each 

real-time closure based on move-on rules had an approximate area of 20km2 and was 

closed for 1 day, resulting in a 20km2-days/closure resolution.  Seen this way, the 

measures can be ordered by resolution: high resolution (i.e., move-on rules, 20km2-days 

per closure; grid-based closures, 50km2-days per closure), medium resolution (monthly 

time-area closures; 3000km2-days per closure), and 2 low resolution closures (annual 

time-area closures, 36500 km2-days per closure; and monthly total closures, 78000 km2-

days per closure).  Trends in the best results from each closure type based on achieving a 

60% bycatch reduction target were monotonic (Table 7, Figure 10).  Percent catch 

forgone increased linearly as the resolution of the management measure decreased 
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(slope = 9.13, R2 = 0.932).  Consequently, the reduction ratio (inversely related to the 

percent catch forgone) decreased linearly with resolution (slope = -1.76, R2 = 0.816).3  The 

total kilometer-days used to achieve the target portrayed a log-linear increase as 

resolution decreased (slope = 0.832, R2 = 0.987).  The combination of the increase in catch 

forgone and the decreases in the reduction ratio and kilometer-days per year resulted in 

a log-linear decrease in efficiency as resolution decreased (slope = -1.07, R2 = 0.953).  

While the best grid-based closure had a higher reduction ratio and used relatively less 

space than the move-on rule, the eight-fold higher reduction in bycatch afforded by the 

move-on rule resulted in a higher efficiency value. 

The initial Marxan runs were all parameterized with a zero boundary length 

modifier and a target of 60% reduction of bycatch to be able to compare them to the 

efficacy of the move-on rules.  Results for runs where the target was allowed to vary 

between 10% and 100% bycatch reduction and where the BLM was allowed to range 

between 0.00001 and 100 were also run.  In both cases where the BLM was allowed to 

vary (i.e., monthly and annual time-area closures), the efficiency of the closure improved 

(0.1 and 0.41 log units, respectively; Table 7), even though the percent catch forgone also 

increased (11.5% and 21.6%, respectively).  Similarly, the reduction ratio improved when 

the target was not constrained (monthly time-area = 44.0%; annual time-area = 46.1%; 

3 The percent catch forgone and kilometer-days of closure trends exclude grid-based closures that could not 
meet this target.  However, reduction ratios can be calculated regardless of the target and they are included 
in this trend and in the efficiency metric) 
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monthly full fishery closure = 7.5%), but the overall percent bycatch reduction was lower 

in each case as well (66.8%, 25.8% and 46.0%, respectively).  
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Table 7: Results from the simulation of four different closures type spanning a range of dynamism. 

ClosureType 

BLM or 
Weight 

Threshold 
(in lbs) Target 

Percent 
Bycatch 

Reduction 

Percent 
Catch 

Forgone 
Reduction 

Ratio 

Number 
of 

Closures 
Per Year 

Area 
Of 

Closure 
Days 

Closed 

Km-
Days Of 
Closure 
Per Year 

Km 
Day 

Ratio 
Efficiency 

Metric 
Move-On Rules NA NA 62.17 8.57 7.25 8 19.63 1 157 0.0002 6.4 

5x10 Daily Grid-based 10 lbs NA 8.31 1.02 8.17 1 50 1 50 0.00005 6.1 
5x10 Daily Grid-based 5 lbs NA 8.51 1.93 4.41 1 50 1 50 0.00005 5.9 
5x10 Daily Grid-based 1 lbs NA 9.12 2.10 4.34 1 50 1 50 0.00005 5.9 
5x10 Daily Grid-based 0.1 lbs NA 9.12 2.10 4.34 1 50 1 50 0.00005 5.9 
5x10 Daily Grid-based 0 lbs NA 14.78 12.43 1.19 2 50 1 100 0.00011 5.2 
5x10 Weekly Grid-based 1 lbs NA 9.64 7.07 1.36 2 50 7 700 0.00074 4.3 

Monthly Time-Area 0 
Best 
(20) 20 3.88 5.15 3 100 30 9000 0.0095 4.0 

Monthly Time-Area 1 60 60.44 18.77 3.22 5 100 30 15000 0.0158 4.1 
Monthly Time-Area 0 60 60.22 16.84 3.58 7 100 30 21000 0.0221 4.0 

Annual Time-Area 0 
Best 
(40) 44.96 15.64 2.87 1 100 365 36500 0.0385 3.5 

Annual Time-Area 0.001 60 68.72 37.47 1.83 2 100 365 73000 0.0769 3.2 
Annual Time-Area 0 60 60.63 30.81 1.97 5 100 365 182500 0.1923 2.8 

Monthly Total NA 
Best 
(30) 36.99 21.73 1.70 1 2600 30 78000 0.0822 2.9 

Monthly Total NA 60 68.54 43.28 1.58 4 2600 30 312000 0.3288 2.5 
 

 

 

 



 

 

 

 

Figure 10: Three efficiency metrics: a) the reduction ratio of bycatch to catch; b) the 
kilometer days used; and, c) the total efficiency metric (reduction ratio divided by the 
percent of total kilometer days used.  Dynamic management measures are depicted in 
purple and static measures in blue. 

a 

b 

c 
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4.4 Discussion 

4.4.1 Dynamic management can be more efficient than static 

The results of this simulation study paint a clear picture about how the use of 

more dynamic measures affects key aspects of fisheries management (i.e., the cost in lost 

catch to achieve bycatch reduction targets and the time-area required).  As the resolution 

of the closures decreases (reading down Table 7): 

1- the percent of target catch forgone increases 

2- the reduction ratio (bycatch/catch) decreases 

3- the total time-area required increases; and 

3- the efficiency of the closures significantly decreases 

The coarser management measures (annual time-area closures and monthly full fishery 

closures) resulted in 4-5x the lost catch and required 100-200x the time-area of the 

dynamic measures (grid-based closures and move-on rules).  Dynamic management 

measures were expected to be more efficient, but the magnitude of the difference was a 

surprise.  Similarly, the monotonic decrease in efficiency as we move from more 

dynamic to less dynamic closures was also surprising.  I expected the differences in 

efficiency to be relatively small and thus there to be some possibility that coarser 

closures might be more efficient than a higher resolution closure in certain instances.  

However, across all boundary length modifiers and weight thresholds, and even when 

the closures were not constrained to the same reduction target, there was essentially no 
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overlap in the efficiency of the various closure types (Table 7).  Overlap was seen in the 

reduction ratios, but this was largely the result of testing sub-optimal grid-based closure 

scenarios (i.e., weekly closures with low threshold values that generated lower bycatch 

reduction at a greater cost in the time-area used). 

The results of this study are not an artifact of the efficiency metric used.  It is 

clear that the range of time-area required across all closure types (i.e., 4 orders of 

magnitude) is far greater than the range in the reduction ratio.  Thus, the time-area used 

likely has an outsized effect on the efficiency metric.  However, the reduction ratio 

displayed the same monotonic increase with little overlap in the best solutions as 

measures became more dynamic.  Thus, while further consideration should be given to 

the optimal method to describe closure efficiency, the results of this study are not 

sensitive to changes in that metric.  

4.4.2 Dynamic management can address coactive and social 
processes 

In chapter 1, I demonstrated how move-on rules can effectively address predation and 

competition.  In chapter 2, I showed how bottom temperature can be used to separate 

species by considering how they partition their thermal niches.  In this study I showed 

how, by managing at scales more relevant to coactive and social processes, dynamic 

management can be significantly more efficient than traditional static spatiotemporal 

management.  By improving the minimum resolution of spatiotemporal management 

measures, dynamic management affords fisheries managers the opportunity to address 
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vital coactive and social processes affecting their stocks (e.g., competition, niche 

partitioning, predation, parasitism, aggregation and social interactions).     

This is the first study to include dynamically instantiated closures (grid-based 

and move-on rule-based) in a direct analysis of the efficiency of different closure types.  

Further comparisons of the efficiency of dynamic versus static closures will be necessary 

before broad generalization can be drawn.  However, it is self-evident that the area 

required to encompass a spatiotemporally dynamic process is inversely proportional to 

the temporal resolution at which it is viewed.  For example, the area required to 

encompass a sea surface temperature front that aggregates fish increases as the front 

moves over a span of days or weeks.  Attempting to manage activities around all 

locations of the front on a monthly basis will take more space than if it is done daily.  

This is the draw of dynamic ocean management.  The near real-time nature of the 

management measures affords managers the opportunity to use higher resolution 

measures, and the ability to use higher resolution measures allows managers to better 

address specific patterns (i.e., coactive and social) and processes that were previously 

intractable.  

 

 

100 



 

5. Conclusions & Future Directions 

5.1 Knowledge and Novelty 

With this dissertation I set out to implement and build on a framework for the 

spatiotemporal management of bycatch and describe how more dynamic forms of 

management (i.e., Dynamic Ocean Management) can increase the efficiency of attaining 

management goals.  In chapters 1 and 2, I offered two novel methods for developing 

dynamic closures.  In chapter 3, I compared dynamic management measures to static 

measure and quantified differences in efficiency between the two types of measures.  

Further, I offered a theoretical ecological basis for why dynamic management not only 

increases efficiency but also affords managers the opportunity manage patterns and 

processes that were previously intractable to them.  While this dissertation provides a 

more specific definition of dynamic ocean management, new methods for the 

development of dynamic management measures and the first quantification of the 

efficiency gained by using dynamic measures, it only scratches the surface of what 

fishermen, researchers, managers and policy makers need to know to fully implement 

DOM.  Here, I summarize the novelty and nature of the work in the previous three 

chapters and discuss gaps in knowledge and future research directions to advance the 

dynamic management of oceanic systems. 

Chapter 1 included the first attempt to generate real-time closures based on 

move-on rules based on autocorrelation analysis.  While the connection between how far 
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in time and space a fishermen should “move-on” and clustering of the species/events 

they are attempting to avoid is entirely intuitive, no effort had been made before this 

work to inform such closures with point-pattern analyses.  In transitioning from move-

on rules to temperature-based targeting and closures, it became clear that the degree and 

scales of patchiness in many species is dependent on temperature.  One logical direction 

for further research on move-on rules would be to develop and compare temperature-

dependent spatial (distances) and temporal (times) scales defining these aggregations.  

In a paper I co-authored based on the R script I produced for chapter 1, Bjorkland et al. 

(in revision) found differences in move-on rule times and distances seasonally and 

regionally.  This work needs to be followed-up with more analyses to determine how 

temperature affects the aggregation and the degree of overlap (e.g., predators and prey) 

in target and non-target species, and to incorporate that knowledge to define the 

time/distance lags for move-on rules.  Further, research needs to continue linking the 

ecology of species being exploited or impacted by fisheries and the scales of these 

dynamic management measures. 

In chapter 2, I examined temperature-based targeting to separate target / non-

target species within the Northeast Multispecies Fishery Management Plan (FMP).  The 

basic method used in chapter 2 was not novel.  Several authors had previously used 

cumulative distribution functions to describe an individual species thermal response 

curves (e.g, Perry and Smith, 1994; Helser and Brodziak, 1996; Methratta and Link, 
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2006)).  However, I took that method a step further by examining how differences in two 

species’ thermal response curves could be used to identify optimal temperature 

thresholds to separate them.  Further, I developed novel metrics for describing how 

differentiable the species were based on the magnitude of the difference, the range of 

temperature values that produced near-optimal results and a novel use of receiver 

operator characteristic curves to describe the overall environmental separability of the 

two species.  The results underscored the validity of this method to help targeting or to 

define time-area closures to protect a number of species within the FMP.  An unexpected 

outcome from this work was evidence that the thermal overlap between cod and other 

species within the FMP is likely increasing under climate change.  If borne out by further 

studies, this has serious implications for management of an ever-dwindling stock of 

Atlantic cod in the Gulf of Maine and Georges Bank. 

While an attempt was made to test an optimal threshold temperature in chapter 

3, a number of factors confounded the effort (see Appendix A).  An obvious next step 

with respect to the development of bottom-temperature closures is to test other 

combination of species and circulation models to determine what the sensitivity of 

results are to temperature threshold breadth and modeled bottom temperature error.  Of 

particular interest is the Finite-Volume Community Ocean Model and Surface WAVE 

model (FVCOM-SWAVE) which has a variable resolution unstructured grid that  

approximates 10km resolution in the study area (Chen et al., 2003; Qi et al., 2009) and 
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has been put forward as the best option for the development of these temperature 

thresholds (J. Hare, pers. comm.).  Further work also needs to be done to bring the 

temporal variability of bottom temperature into any quantification of what breadth may 

be deemed operational. 

The development of a comparison of static and dynamic management measures 

in chapter 3 was meant to put the specific work done in chapters 1 and 2 into a broader 

context.  The comparison shines a harsh light on the lack of efficiency inherent in 

managing a highly dynamic environment with mesoscale measures at monthly or 

annual time scales.  That is not to say that the understanding and integration of 

mesoscale, macroscale and megascale processes and patterns into fisheries management 

is not critical.  Rather, it simply points out that interactions between fishermen and the 

marine environment generally happen at scales smaller than the minimum resolution of 

our current fisheries management.  While the meso and macro scales are, have been, and 

will continue to be, the dominant scales of strategic fisheries management, managers 

must develop finer scale (1 – 10 km) management measures to ensure that the tactical 

implementation of those strategies is done as efficiently as possible. 

The novelty of chapter 3 lies in the quantitative comparison of efficiency between 

static and dynamic measures.  While two previous studies of efficiency of dynamic 

measures were cited in the chapter (i.e., Grantham et al., 2008; O’Keefe et al., 2013), one 

does not include truly dynamic measures (i.e., dynamically instantiated or dynamically 
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defined) and the other does not draw comparisons between measures but rates them 

against criteria.  Significant further work needs to be done to test whether the results of 

chapter 3 are general rules or fishery-specific. 

5.2 Gaps and Needs 

The most obvious overall gap in existing DOM measures and theory is how these 

measures work in a multispecies / multiobjective environment.  While the examples put 

forward in this dissertation are from a multispecies fishery, I have only offered solutions 

to the interaction of two species or two different age-classes of the same species.  A key 

question is how do real-time closures based on move-on rules work toward the end of a 

season, when fishermen, operating in a fishery with 13 choke points based on 13 

different quotas, may be trying to avoid the majority of species in the FMP?  When the 

catch includes multiple species to be avoided, which move-on rule should be used?  

Further, the Northeast Multispecies fishery is an excellent example of a fishery that 

overlaps with multiple other fisheries in the same region and frequently catches species 

that are managed under a different FMP.  How do we ensure that spatial management 

of one fishery in a region does not impinge on the ability of another fishery to meet its 

objectives (both conservation and catch related)?  To answer these questions DOM must 

be scaled up with multispecies and multifishery (i.e., regional) examples. 

Another important question stems from considerations of the data required to 

implement dynamic ocean management measures.  The framework set forth in the 
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introduction was largely constructed in the context of developing spatiotemporal 

management measures for developed fisheries.  When not viewed from this perspective 

it sets up a false dichotomy: that of requiring more data to manage more dynamically.  I 

suspect there are many examples of dynamic management in small-scale fisheries with 

little or no formal data collection.  As has been repeatedly shown throughout the history 

of modern fisheries management, we frequently find ourselves “discovering” 

management measures that actually have been used for millennia but were pushed 

aside by industrial fishing and industrial fisheries management (e.g., tenure systems and 

marine protected areas).  A significant effort should be made by advocates of DOM to 

reach out to groups like Too Big To Ignore (http://toobigtoignore.net) to encourage the 

development of a review of dynamic management measures in small-scale fisheries. 

5.3 Ecological Considerations 

In the introduction to chapter 3, I posed a question with implications far beyond 

the scope of the chapter: Can we meet commitments to implement ecosystem-based 

fisheries management (EBFM) with spatiotemporal measures that may be 

fundamentally mismatched in space and time to address coactive and social patterns?  

Since its inception, calls for EBFM have contained requirements to account for other 

ecosystem components including non-target species, protected species, habitat and 

trophic interactions, and to incorporate spatiotemporal management (Pikitch et al., 

2004).  The COMPASS Scientific Consensus statement on Marine Ecosystem-based 
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Management outlines a number of “key elements” including accounting for dynamic 

changes in ecosystems, and states that “ecosystem processes operate over a range of 

spatial scales, and thus appropriate scales for management will be goal specific” 

(McLeod et al., 2005).  Similarly, one of the “ten commandments” of ecosystem-based 

fisheries management according to Francis et al. (2007) is to “characterize and maintain 

the natural spatial structure of fish stocks.”  It is critical that we recognize that scale does 

not stop at 10km and that the marine realm is a complex adaptive system where large-

scale dynamics can be driven by fine-scale interactions (Levin, 1998; Levin and 

Lubchenco, 2008).  To implement EBFM we must understand the linkages among these 

scales and we must have the ability to address our management to all the scales of the 

natural environment we influence.  To do so efficiently and in a manner that is most 

likely to maintain ecosystem and stock structure, we need to be able to manage at the 

spatiotemporal scale of those effects.  While I believe this dissertation has raised this 

issue, there is a large amount of work ahead of us to better understand cross-scale 

linkages and the ecosystem effects of our choice of resolution and scale in fisheries 

management. 

Beyond the question of scale, there are a number of other important ecological 

factors to consider as we move forward with Dynamic Ocean Management.  An 

argument is made in chapter 3 that as the vagility of an organism or process increases, 

the amount of space required to encapsulate it within a management scheme is inversely 
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proportional to the temporal resolution used.  This implies that dynamic management 

may be more useful for the management of highly mobile pelagic species or processes 

(e.g. sea turtles and tuna, or fronts and eddies), and has limited the consideration of 

dynamic management of more sessile species.  However, the work in this dissertation 

shows that dynamic management can more efficiently meet management targets in 

demersal species as well.  Considered together with the work of Bjorkland et al. (in 

revision) and O’Keefe and DeCelles (2013), a trend begins to appear indicating that the 

utility of dynamic management to demersal fisheries may be the norm, not an anomaly.  

Further work needs to be done examine how dynamic management fares against a 

continuum of species life-histories (benthic vs. pelagic, central place foragers vs. 

wanderers, migratory vs. local populations, etc.).  Only through the production of more 

example analyses examining the efficiency of spatiotemporal management measures 

under various scenarios can we develop an idea of whether the findings here are general 

rules. 

It is not enough to simply think about how much fishing effort or fishing 

mortality is being applied in a fishery.  To maintain ecosystem structure and integrate 

ecosystem impacts into management, we must also understand how and when that 

effort and mortality is occurring.  Further, we need management measures that are 

targeted at the spatiotemporal scales of fishing effort at the time and point it occurs.  I 

sincerely hope that this dissertation has contributed significantly to how we think about 
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space and time in fisheries management and provided concrete examples of how we can 

manage at finer scales and benefit from employing Dynamic Ocean Management.   
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Appendix A 

Development of closures based on bottom temperature 

The Northeast Fisheries Science Center Scientific Trawl Survey data from chapter 

2 were also used in this study and cleaned following the methods found in that chapter.  

However, the objective was the separation of adult and juvenile cod rather than two 

distinct species.  To identify juvenile catch within the scientific trawl survey data we 

defined all cod smaller than the regulatory limit of 19 inches (48.3 cm) as juveniles1.  

Expected catch weight had been summed across all catch sizes in the NEFSC database, 

so we established catch weight by length by applying NEFSC season-specific length-

weight equations and multiplying the modeled weight by the expected number of fish 

caught at that length.  Length-weight ratios for Atlantic cod on Georges Bank are given 

in the 55th Northeast Regional Stock Assessment Workshop (SAW 55) Assessment 

Report (NEFSC 2013).  The SAW 55 reports the following season-specific length-weight 

conversions: 

Quarter 1 and 2 : ln(W) = -11.6913 + 3.0291*ln(L) 

Quarter 3 and 4: ln(W) = -11.9883 + 3.1221*ln(L) 

1 [69 FR 22974, Apr. 27, 2004, as amended at 71 FR 46876, Aug. 15, 2006; 72 FR 11276, Mar. 12, 2007; 75 FR 
18328, Apr. 9, 2010; 76 FR 42585, July 19, 2011; 78 FR 26158, May 3, 2013] 
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Where W is live weight in kilograms and L is total length.  These weights were 

used to calculate the effectiveness of closures in reducing non-target catch and their 

impact on target catches. 

Sets affected by bottom temperature-based closures were identified by removing 

any set that occurred above the threshold bottom temperature.  We derived bottom 

temperature for each set by sampling a 3-D Regional Ocean Modeling System (ROMS; 

(Shchepetkin and McWilliams, 2005; Haidvogel et al., 2008; Kang and Curchitser, 2013) 

with the Fixed Gear large-mesh gillnet data.  The ROMS run used for this study 

extended from January 2005 through 2011, and had a horizontal resolution of 7 km.  The 

ROMS does not assimilate temperature data, so corrections were required.  I corrected 

the ROMS by developing a generalized additive model (GAM) with a Gaussian link 

function to predict in-situ bottom temperature values from the Scientific Trawl Surveys 

using the ROMS bottom temperature, latitude, longitude, month and year as 

explanatory variables.  Two interaction terms were also included, individually 

combining month and year with latitude and longitude.  The ROMS bottom 

temperature, latitude, longitude and the interaction terms were smoothed with a spline 

function.  Model selection was performed by minimizing the generalized cross 

validation (GCV; an estimate of the mean square prediction error based on a leave-one-

out cross validation estimation process). 
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Table 8: Mean difference and standard deviation of the ROMS and corrected 
predicted bottom temperature from in-situ NEFSC Scientific Trawl Survey bottom 
temperature data.   

Month 
Mean ROMS 
Difference 

SD of ROMS 
Difference 

Mean Predicted 
Temp Difference 

SD of Predicted 
Temp Difference 

3 0.345 1.838 0.0005 1.114 
4 1.144 2.112 -0.0004 1.110 
5 2.230 1.443 0.0020 0.570 
9 2.059 3.005 -0.0044 0.955 

10 1.052 2.588 0.0013 1.164 
11 0.634 1.798 -0.0026 1.047 

Means 1.244 2.131 -0.0006 0.993 
 

Results 

ROMS correction results 

I compared the original ROMS model output to the in-situ bottom temperatures 

recorded by the NEFSC Scientific Trawl Surveys (Table 8, Figure 11).  The ROMS run 

had a mean error (i.e., difference from in-situ measurements) of >1°C, and the standard 

deviation of the difference was > 2°C.  The final generalized additive model chosen to 

correct this error through minimization of GCV dropped the year term (though year was 

kept in an interaction term) and explained 91.4% of the deviance in the Trawl Survey 

bottom temperatures (Table 9).  The mean difference between the corrected bottom 

temperature and the in-situ data was approximately 0 (~0.0006°C), but the standard 

deviation was still ~1°C (0.993°C; Figure 11). 
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Figure 11: Distribution of error (i.e., difference from in-situ measurements) for 
the ROMS and the predicted bottom temperature from the GAM. 
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Table 9: Coefficients and approximate estimates of significance for the GAM model to 
correct the ROMS 

Parametric coefficients: Estimate Std. Error t value Pr(>|t|) 
 (Intercept) 4.0286 1.5676 2.57 0.01029 * 

Month 0.7093 0.2274 3.119 0.00186 ** 

Approximate significance of 
smooth terms: 

Effective 
Degrees of 
Freedom 

Ref.df F p-value 

 s(ROMS Bottom Temperature) 7.828 8.636 16.828 < 2e-16 *** 
s(Latitude)      8.898 8.986 8.39 3.08e-12 *** 
s(Longitude)  8.572 8.823 2.905 0.00231 ** 
s(Month, Latitude, Longitude) 95.245 101.679 9.82 < 2e-16 *** 
s(Year, Latitude, Longitude) 74.536 87.528 5.093 < 2e-16 *** 

 

Temperature threshold validation 

Development of the optimum threshold temperature indicated that the threshold would 

likely not perform well.  In chapter 2, I described a set of criteria that would qualify a 

threshold as likely being useful to managers and fishermen: difference in percent 

biomass available of > 50 units; mean breadth of at least 0.5°C and probably 1°C; and an 

AUC > 0.5.  The threshold used to separate juvenile and adult cod failed all three of 

these criteria in each temperature regime and season except the mean breadth criteria for 

cold springs and falls (Table 10).  Validation by applying the threshold to the Fixed Gear 

sector data using the corrected ROMS bottom temperature resulted in a 16.89% 

reduction of juvenile bycatch reduction at the cost of a 47.97% decrease in adult cod 

catch (reduction ratio = 0.35).  These results appear better than they actually were, as 

spring results independently were either 0% bycatch reduction and 0% catch forgone 
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(cold springs, n=5), or 100% bycatch reduction and 77.53% catch forgone (warm springs, 

n=1).  Even given the poor performance of the threshold value during development, it is 

clear that there were issues with the accuracy of the corrected ROMS.  These and other 

obstacles to the implementation of dynamic management are discussed below. 

Table 10: Results of the validation exercise for the optimal temperature threshold  

Season Type 
Median 
Threshold 

SD of 
Median 
Threshold 

Median 
Difference 

SD of 
Median 
Difference 

Mean 
Breadth 

SD of 
Mean 
Breadth 

Median 
AUC 

SD of 
Median 
AUC 

Cold Spring 4.75 0.0056 13.71 6.92 0.75 0.67 -0.082 0.29 

Warm Spring 5.75 0.0040 16.38 11.46 0.42 0.12 0.028 0.29 

Fall 9.5 0.0000 21.86 12.29 1.16 0.86 -0.029 0.21 
 

Obstacles to the implementation of dynamic management 

The failure to implement a theoretical temperature-based closure in this analysis 

affords an opportunity to discuss obstacles and limits to the implementation of dynamic 

management.  The dynamic approaches analyzed in this dissertation all require high-

resolution data.  That is not the case for all dynamic management measures (see Lewison 

et al., in review).  However, other than fleet communication strategies (E. L. Gilman et al., 

2006; O’Keefe et al., 2013), dynamic management measures in developed fisheries 

require at least high resolution fishing set location data.  The pervasiveness of GPS 

recorders has made high-resolution location data a low bar to meet.   

The need for high-resolution temperature data to drive temperature-based 

closures presents a larger obstacle, particularly in the case of bottom temperature.  
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Accessibility is not an issue for sea surface temperatures that can be remotely sensed, 

but bottom temperatures are virtually always based on circulation models which are far 

less accessible than remotely sensed products.  The output from circulation models are 

not generally made openly available, though frequently the model framework is made 

available (e.g., the ROMS used in this study).   

Beyond data accessibility, there is the question of how well these models fit in-

situ conditions and whether and at what spatiotemporal resolution it is feasible to use 

them for management purposes.  In chapter 2, I developed optimum threshold 

temperature values to separate Atlantic cod from other species within the Northeast 

Fisheries Management Plan.  The breadth of the threshold values that produced results 

greater than 90% of the maximum was used as a metric to determine how operationally 

feasible it might be to implement the thresholds.  Breadth values between 0.5°C and 1°C 

were defined as “possible”, while values greater than 1°C were defined as “operational”.  

These values were put forward as being well within the error margin of inexpensive 

temperature sampling equipment that could be used by fishermen.  From this 

perspective, the categories make sense.  However, to test the efficacy and efficiency of 

bottom temperature-based closures for fishing data with no bottom temperature 

records, we need regional models of bottom temperature.  Managers would also require 

such models if they chose to implement bottom temperature-based closures in a top 

down fashion (e.g., Hobday et al., 2010).  If circulation models are used to develop or 
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implement temperature-based closures, the error associated with those models must 

also be considered in determining what breadth of threshold values is “operational”. 

In this study, I used a ROMS that had both a systematic bias in spring values and 

a large standard error when compared to in-situ data (Table 8, Figure 11).  While the 

correction I applied was able to able to remove the systematic bias entirely and halve the 

standard error, there remained a ~1°C standard error.  For the temperature threshold to 

be effective when applied to fishing data based on the ROMS, the breadth would have to 

be greater than 2°C.  The mean breadth for the threshold temperature separating adult 

and juvenile cod did not exceed 1°C in spring and was 1.16°C in fall.  Between the poor 

performance of the threshold in separating the two life history stages and the large 

standard error in the model bottom temperatures, no operable results were found for the 

temperature closure. 

These results are not generalizable to the use of all circulation models.  The 

ROMS used in this study covers the entire northwest Atlantic including the Gulf of 

Mexico at a 7km resolution.  It is highly likely that a local circulation model, or even a 

smaller regional circulation model could have performed better.  Further, the ROMS 

used in this study did not assimilate sea surface temperature values to force the model.  

That is, it was initiated using a set of conditions and then allowed to run.  Use of a 

temperature-assimilative model would also likely have produced better results. 
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